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Abstract—Monaural musical sound separation has been exten-
sively studied recently. An important problem in separation of
pitched musical sounds is the estimation of time–frequency regions
where harmonics overlap. In this paper, we propose a sinusoidal
modeling-based separation system that can effectively resolve
overlapping harmonics. Our strategy is based on the observations
that harmonics of the same source have correlated amplitude
envelopes and that the change in phase of a harmonic is related
to the instrument’s pitch. We use these two observations in a
least squares estimation framework for separation of overlapping
harmonics. The system directly distributes mixture energy for
harmonics that are unobstructed by other sources. Quantitative
evaluation of the proposed system is shown when ground truth
pitch information is available, when rough pitch estimates are
provided in the form of a MIDI score, and finally, when a multi-
pitch tracking algorithm is used. We also introduce a technique to
improve the accuracy of rough pitch estimates. Results show that
the proposed system significantly outperforms related monaural
musical sound separation systems.

Index Terms—Common amplitude modulation (CAM), musical
sound separation, sinusoidal modeling, time–frequency masking,
underdetermined sound separation.

I. INTRODUCTION

M USICAL sound separation attempts to isolate individual
instruments from a polyphonic mixture. In recent years,

this problem has attracted attention as the demand for automatic
analysis, organization, and retrieval of a vast amount of on-
line music data has exploded. A solution to this problem allows
for efficient audio coding, accurate content-based analysis, and
sophisticated manipulation of musical signals [18], [25], [31],
[39]. In this paper, we address the problem of monaural mu-
sical sound separation, where multiple harmonic instruments are
recorded by a single microphone or mixed to a single channel.

Broadly speaking, existing monaural musical sound separa-
tion systems are either based on traditional signal processing
techniques (e.g., sinusoidal modeling), statistical techniques
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(such as independent subspace analysis, sparse coding, and
nonnegative matrix factorization), or psychoacoustical studies
(computational auditory scene analysis).

Sinusoidal modeling assumes a sound to be a linear combina-
tion of sinusoids with time-varying frequencies, amplitudes, and
phases. Consequently, the task of sound separation becomes es-
timating these parameters for each sound source in the mixture
[11], [31]. Sinusoidal modeling is often used for separating har-
monic sounds when the pitch contour of each source is known
a priori or can be estimated accurately.

Statistical techniques for musical sound separation generally
assume certain statistical properties of sound sources. Indepen-
dent subspace analysis (ISA) [9] extends independent compo-
nent analysis, which assumes statistical independence among
sources, to single-channel source separation. Sparse coding as-
sumes that a source is a weighted sum of bases from an over-
complete set. The weights are assumed to be mostly zero, i.e.,
most of the bases are inactive most of the time [2]. Nonnega-
tive matrix factorization (NMF) attempts to find a mixing ma-
trix and a source matrix with non-negative elements such that
the reconstruction error is minimized. It implicitly requires the
mixing weights to be sparse [20]. Several recent systems [29],
[32] have demonstrated the applicability of these techniques to
musical sound separation.

Computational auditory scene analysis (CASA) [36] is in-
spired by auditory scene analysis [5], an influential perceptual
theory which attempts to explain the remarkable capability of
the human auditory system in selective attention. CASA aims to
build computational systems for general sound separation [36],
but several CASA systems have been developed specifically for
monaural musical sound separation [6], [13], [22], [24].

A central problem in separation of pitched musical sounds
is overlapping harmonics. Two harmonics of different instru-
ments overlap when their frequencies are the same or close.
Since Western music favors the twelve-tone equal temperament
scale [7], common musical intervals have pitch relationships
very close to simple integer ratios ( , 4/3, 5/3, 5/4, etc.). As
a consequence, a large number of harmonics of a given source
may be overlapped by another source in a mixture. For example,
in a perfect fifth relationship (3/2), one source has every second
harmonic overlapped while the other has every third overlapped.
An adequate musical separation system must reliably handle
overlapping harmonics.

Almost all music separation systems transform a mixture to
some time–frequency (T–F) representation such as a spectro-
gram. Overlapping harmonics result in T–F regions that con-
tain significant energy from multiple sources. Existing CASA-
based separation systems [6], [13], [22], [24] allocate energy
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exclusively to one source and make no attempt to separate over-
lapping harmonics. Therefore, their separation performance for
musical sounds is limited. Systems based on ISA, sparse coding,
or NMF, handle overlapping harmonics implicitly. These sys-
tems operate in the magnitude domain and rely on the observed
magnitudes in overlapped T–F regions to recover individual har-
monics [9], [2], [29], [32]. Such systems are not expected to
achieve optimal performance because they ignore the relative
phases of the overlapping harmonics, which play a critical role
in the observed magnitude spectrum. For example, assume that
two overlapping harmonics have the same frequency and the
amplitudes of the individual harmonics are and , respec-
tively. In this case, the amplitude of the observed harmonic is

, where is the relative phase of the two
harmonics. If , then . However, if ,
the observed amplitude, , is significantly dif-
ferent. Consequently, the observed magnitude spectrum in the
overlapped region will be different depending on the relative
phase; thus, the phase information must be considered in order
to accurately recover individual harmonics from the overlapped
regions.

One of the earliest systems that explicitly addresses the
problem of overlapping harmonics was proposed by Parsons
[26] for co-channel speech separation. Harmonics of each
speech signal correspond to spectral peaks in the frequency
domain. The Parsons system first identifies composite peaks
where two peaks overlap and then uses the spectral shape of
the analysis window to reconstruct one of the peaks, assuming
that one harmonic is dominant. The other peak is recovered by
subtracting the reconstructed peak from the composite peak.
The system performs separation solely based on the observed
magnitudes in overlapped regions and therefore is subject to the
aforementioned phase problem. It also fails when the overlap-
ping harmonics have the same frequency or close amplitudes.

Realizing that the information in overlapped regions is unreli-
able, several recent systems attempt to utilize the information of
the neighboring non-overlapped harmonics. These systems as-
sume that the spectral envelope of instrument sounds is smooth
[19]. Based on this assumption, the amplitude of an overlapped
harmonic can be estimated from the amplitudes of neighboring
non-overlapped harmonics of the same source. For example,
Virtanen and Klapuri [33] estimated an overlapped harmonic
through nonlinear interpolation of neighboring harmonics.
Every and Szymanski [11] used linear interpolation instead.
Recently, Virtanen [31] proposed a system that directly imposes
spectral smoothness by modeling amplitudes of harmonics as a
weighted sum of fixed basis functions having smooth spectral
envelopes. However, for real instrument sounds, the spectral
smoothness assumption is often violated.

Another way to deal with overlapping harmonics is to use
instrument models that contain the relative amplitudes of har-
monics [3]. However, instrument models of this nature are lim-
ited because harmonic amplitude relationships are not consis-
tent between recordings of different pitches, playing styles, and
even different builds of the same instrument type.

Although in general, the absolute value of the amplitude of
a harmonic with respect to its neighboring harmonics is diffi-
cult to model, the amplitude envelopes of different harmonics

of the same source tend to be similar. This is known as common
amplitude modulation (CAM) and it is an important organiza-
tional cue in human auditory perception [5] and has been used
in CASA-based systems [35]. It also has a long history in mu-
sical instrument synthesis [27]. Although it has been utilized
for stereo musical sound separation [34], [38], to our knowl-
edge, this cue has not been applied in existing monaural mu-
sical sound separation systems. In this paper, we demonstrate
how CAM can be used to resolve overlapping harmonics. In the
proposed separation system, we use CAM within a sinusoidal
model and show that both the amplitudes and phases of overlap-
ping harmonics can be accurately estimated in a least-squares
framework. Non-overlapping harmonics are estimated using a
binary masking approach that directly distributes mixture en-
ergy.

This paper is organized as follows. In Section II, we present
the sinusoidal model of harmonic instruments, provide empir-
ical evidence for the CAM assumption, and discuss how pitch
information is used to estimate the change in phase of sinusoidal
parameters. Section III presents the detailed description of the
proposed separation system. In Section IV, we provide quanti-
tative evaluation of our system. Section V concludes the paper.

II. BACKGROUND

A. Sinusoidal Modeling

Sinusoidal modeling is a well established technique in audio
synthesis and signal processing [23], [28]. It models a sound
source as the summation of individual sinusoidal components.
Specifically, within an analysis frame with index where the
frequencies and amplitudes of the sinusoids are assumed con-
stant, the sinusoidal model of a signal can be written as

(1)

where and are the amplitude and frequency,
respectively, of sinusoidal component of source within time
frame , and is the phase of sinusoidal component
of source at the beginning of time frame . denotes the
number of sinusoidal components in source and denotes
the sampling period in seconds. The sinusoidal model of
can be transformed to the time-frequency domain by the discrete
Fourier transform (DFT) using an analysis window . The
DFT of , windowed by , at frequency bin is

(2)

where is the discrete-time Fourier transform (DTFT) of the
analysis window, or

(3)
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In (2), is the frequency resolution of the DFT,
where denotes the sampling frequency and is the length of
the DFT.

For a perfectly harmonic sound, , where
denotes the pitch of source at time frame . If we

assume that for , where is a threshold in
Hz, then provided that for
all sources and time frames . Further, if , then

for at most one harmonic of each
source, allowing us to drop the summation over harmonics from
(2). We discuss how is set in Section III-B, but for now let us
assume that harmonic is the only harmonic with appreciable
energy in frequency bin . Given the above assumptions, we can
simplify (2) as

(4)

Assuming that the mixing process is linear, the sinusoidal
model of a mixture of harmonic sound sources in the time–fre-
quency domain can be written as

(5)

This model treats a polyphonic mixture as a collection of
harmonic components from multiple sound sources. Given the
pitch contour of each source, the task of musical sound sepa-
ration is to estimate for all the harmonic
components of the sources. As discussed in Section I, this
is a challenging problem for harmonics that are overlap in the
mixture.

B. Common Amplitude Modulation

CAM assumes that the amplitude envelopes of spectral com-
ponents from the same source are correlated. In this section,
we show empirical evidence that suggests this assumption holds
most of the time for harmonics, especially the ones with strong
energy, of many instrument sounds. We calculate the correla-
tion between harmonics of 100 individual instrument note sam-
ples selected at random from the University of Iowa instrument
database [1]. Instruments contained in the selected portion of
the database were alto saxophone, bassoon, b-flat clarinet, e-flat
clarinet, flute, French horn, oboe, soprano saxophone, trom-
bone, and trumpet. Because the onset times of different har-
monics from the same instrument note are likely to be sim-
ilar, we first remove the attack portion of each note before per-
forming the correlation analysis. This removes the possibility of
an upward bias in correlation values for cases where harmonics
start at the same time, but otherwise do not exhibit similar mod-
ulation trends.

To remove the attack and isolate the sustained portion of each
note we employ a simple method of onset detection on the time-
domain waveform by searching for the maximum value in the
derivative of the signal’s envelope, where the envelope is cal-
culated by squaring and low-pass filtering the signal. We mea-
sure correlation of harmonics at the time frame level because
as Section III describes, the CAM assumption is utilized at the

Fig. 1. Box plots of correlation coefficients [see (6)] measured between the
strongest harmonic and other harmonics of individual instrument notes for the
sustained portions of each note, plotted as a function of amplitude difference
between harmonics. Results are calculated using 100 note samples. The upper
and lower edges of each box represent the upper and lower quartile ranges, the
middle line shows the median value and the whiskers extend to the most extreme
values within 1.5 times the interquartile range.

STFT frame level in our proposed system. We consider the sus-
tained portion of the signal to be all time frames after the frame
that contains the onset to the final frame of the signal. After
transforming each individual instrument signal to the STFT do-
main (where all parameters are set as described in Section IV-A)
we associate frequency bins with each harmonic according to
(9) and calculate each harmonic’s amplitude values using (16).

As will be shown in Section III-E, we utilize the CAM prin-
ciple to estimate the ratio between amplitude values in different
time frames of an overlapped harmonic from the ratio between
amplitude values of a non-overlapped harmonic. Accordingly,
let us introduce the notation . Thus,

is the amplitude change (in terms of a ratio) of harmonic
from frame to . Given this definition, we calculate the

correlation coefficient between the strongest harmonic, denoted
by , and another harmonic over a note segment with time
frames from to as

(6)

where . We select
using this method to avoid scaling distortions when

.
Fig. 1 shows box plots of the correlation coefficients between

harmonics for the sustained portions of the notes. The plots are
shown as a function of the difference in average amplitude be-
tween harmonics (rounded to 3-dB increments), where ampli-
tude values are averaged over all time frames being used in the
correlation measure. The upper and lower edges of each box
represent the upper and lower quartile ranges, the middle line
shows the median value and the whiskers extend from each end
of the box to the most extreme values within 1.5 times the in-
terquartile range.

We can see that the correlation is very high for harmonics with
energy close to that of the strongest harmonic and tapers off as
the energy in a harmonic decreases. At roughly 30 dB below the

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15, 2009 at 09:26 from IEEE Xplore.  Restrictions apply. 



1364 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 7, SEPTEMBER 2009

Fig. 2. System diagram. LS stands for least squares.

strongest harmonic, the median correlation value of 0.74 is still
relatively high. The data shown in Fig. 1 suggests that strong
harmonics are highly correlated with one another, and thus the
amplitude envelope of relatively strong harmonics can be ap-
proximated by that of another strong, non-overlapped harmonic
of the same source. Approximation of a low-energy harmonic
using a non-overlapped harmonic of the same source may be less
accurate during sustained portions of a note, but the perceptual
degradation of the signal should be less severe than poor approx-
imation of a strong harmonic. Correlation scores were slightly
higher when the attack of each note was not removed (a 95%
confidence interval for improvement in correlation coefficient
is using a two-sided, paired test), suggesting that
correlation during the onset portion of harmonics is also quite
high.

C. Phase Change Estimation Using Pitch

As discussed in the introduction, both the amplitudes and
phases of the harmonics must be considered for good estima-
tion. The CAM assumption allows us to estimate how the am-
plitudes of overlapping harmonics change over time. With an
estimate of the harmonics’ change in phase over time, we show
in Section III-E how the observed mixture can be used to resolve
the overlapping harmonics in an efficient least squares frame-
work. A harmonic’s change in phase is related to the instanta-
neous frequency of a sinusoid as follows:

(7)

or equivalently

(8)

Here, denotes the hop size of the STFT in seconds and
. The relationship gives us

the progression of a harmonic’s phase from the signal’s pitch
contour, provided the signal adheres to the harmonic sinusoidal
model, the frequency is stable over the duration of the time
frame and the pitch estimate is accurate. Similar to the CAM
assumption, the signals will not adhere to these constraints ab-
solutely, but performance suggests that the assumptions are re-
liable enough to provide good separation.

III. SYSTEM DESCRIPTION

A. System Overview

Our proposed separation system is illustrated in Fig. 2. The
input to the system is a polyphonic, single-channel mixture and

rough pitch estimates of each source. The pitch contour infor-
mation can be in the form of a time-aligned MIDI score or
from a multipitch detection algorithm. In the first stage, after
the input is decomposed using the short-time Fourier transform
(STFT), the pitch estimates are used to derive a harmonic mask
for each source and identify T–F regions containing non-over-
lapped or overlapped harmonics. In the pitch refinement stage,
we utilize the phase information in the T–F regions of non-over-
lapped harmonics to obtain more accurate pitch estimates. Using
the refined pitch estimates, the system derives a new harmonic
mask for each source and reidentifies T–F regions containing
non-overlapped or overlapped harmonics. For T–F regions con-
taining non-overlapped harmonics, the values in the mixture
STFT are retained and passed to the resynthesis stage via a bi-
nary mask. The system also estimates the amplitude envelopes
of the non-overlapped harmonics from these regions. For T–F
regions containing overlapped harmonics, the system uses the
refined pitch data to estimate the instantaneous frequency of
overlapped harmonics, which yields the time dynamics of the
phase parameters. The amplitude and phase contours (dynamics
over time) are then used in a least-squares framework to estimate
the amplitude and phase values of the overlapped harmonics.
The resulting amplitude and phase parameters are used to es-
timate the STFT values for each source in the overlapped T–F
regions and these values are passed to the resynthesis stage and
added to the STFT values distributed from the binary masks. Fi-
nally, the overlap-add method is used to convert the estimated
STFT of each signal to a time-domain estimate of each instru-
ment.

B. Harmonic Mask Estimation

As mentioned in Section III-A, the first processing stage
takes as input a polyphonic mixture and pitch estimates for each
source. This stage first transforms the input using the STFT
and uses pitch estimates to generate a harmonic mask for each
source by identifying the frequency bins associated with each
harmonic at each time frame. A frequency bin at time frame

is associated with harmonic if

(9)

where is a threshold. We denote the set of frequency bins as-
sociated with as . We can define overlapped and non-
overlapped harmonics similarly. Harmonic is overlapped by
some other harmonic of source at time frame if

(10)
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where is also a threshold. If no other harmonic has a fre-
quency within of harmonic , we call non-overlapped
and denote the set of non-overlapped harmonics for source
in frame as . A harmonic mask is simply a collec-
tion of T–F units associated with non-overlapped harmonics. In
Section III-G, we describe how this set of time-frequency units
can be used to directly distribute energy from the mixture to a
signal estimate as a binary mask would, hence the decision to
describe this set of T–F units as a “mask.”

We set both and using the magnitude spectrum of the
windowing function . We associate frequency bins with a har-
monic rather liberally and set as half of the bandwidth at
which has dropped by 40 dB. We require more source inter-
action to label a harmonic as overlapped and set as the more
traditional bandwidth at which has dropped by 6 dB. As dis-
cussed in Section II-A, the choice of restricts the range of
instrument pitches for which the approximation in (4) is valid.
In our implementation, with parameters listed in Section IV-A,
the instrument pitches are restricted to be above about 40 Hz.
Of course, and can be tuned as necessary.

It should be noted that setting means that a fre-
quency bin could be assigned to multiple harmonics. We set
these parameters as described with a simple idea in mind. When
a harmonic is not close to any other harmonic, we would like to
distribute as much of the mixture energy as possible. As a result,
we need to take some care in how we assign frequency bins to
the different harmonics. Thus, we define the set of frequency
bins associated with harmonic as

(11)

The condition that is only

necessary when .

C. Pitch Refinement

With the harmonic mask of each source generated using the
initial pitches, we use frequency bins associated with non-over-
lapped harmonics to refine the pitch estimates. For each source,
we first estimate the instantaneous frequency of each non-over-
lapped harmonic using the phase information from the mixture.
Consider a non-overlapped harmonic at frame and its ini-
tial frequency estimate given by , where
is the initial pitch estimate. For a bin , denote the
observed mixture phases at frame and as and

, respectively. The observed phases have the same
relationship to instantaneous frequency as the true phases of the
underlying harmonic, as shown in (7), except that the observed
phases are constrained between and . As a result, the term

, where is an integer, is included in the instantaneous fre-
quency estimate as

(12)

In [23], it is shown that the integer that correctly unwraps the
phases can be calculated as

(13)

where rounds the value inside the brackets to the nearest in-
teger.

We select the strongest frequency bin associated with each
harmonic to calculate . Formally, for each time frame

, and for each , we select

(14)

and replace with in (12) to estimate the instantaneous fre-
quency. Finally, we calculate the refined pitch estimate as the
weighted average of the instantaneous frequencies of the har-
monics divided by their harmonic number

(15)

where .

D. Harmonic Mask Re-Estimation

Using the refined pitch estimate , we derive a new har-
monic mask for each source by finding a new set of frequency
bins associated with each harmonic using (11) and rei-
dentify T–F regions for all the harmonics. We then estimate the
amplitudes for all the non-overlapped harmonics by finding the
amplitude that minimizes the following:

(16)
The minimization of the above equation is

(17)
In (17), and then in (23) and (27), we use the DTFT of

shown in (3) to calculate the value of .

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15, 2009 at 09:26 from IEEE Xplore.  Restrictions apply. 



1366 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 7, SEPTEMBER 2009

E. Least-Squares Estimation

In many applications, the hop size of the STFT is in the tens
of milliseconds (23 ms in our implementation), which tends to
be shorter than the length of individual notes in many music
recordings. As a result, overlap between harmonics often occurs
in sequences of time frames as well as a series of frequency bins.
Accordingly, we extend the idea of an overlapped harmonic to
an overlapped T–F region. Let be a set of
harmonics that overlap during time frames from to . The
overlapped T–F region for this set of harmonics is defined as

(18)

where is the smallest and is the
largest. In other words, the overlapped region is the bounding
box that includes the frequency bins associated with all of the
overlapping harmonics. As a simple example, assume that
and overlap during time frames 10 through 18, and that

and . Then
the overlapped T–F region is .

According to the model developed in (4) and (5), the observed
STFT value can be written as

(19)

(20)

The first term in (19) represents the amplitude and the phase
of harmonic of source at the starting frame of the
region. The second term models the amplitude and the phase
change of the same harmonic from frame to frame . As
in Section II-B, denotes the amplitude ratio between
the two frames. Since is unknown, we use the CAM

principle to approximate by , where denotes
a non-overlapped harmonic with strong energy from source .
A discussion of how to select is provided in Section III-F.
The last term in (19) accounts for the effect of the analysis
window. The summation is over all the sources that have a
harmonic contributing energy to the region .
Note that with the approximation of by , and
the relationship between instantaneous frequency and change
in phase shown in (8), only the first term of (19) is unknown.
Therefore, we can express (19) more concisely as in (20),
where is term 1 and is the multiplication of
term 2 and 3.

We can write (20) for all the T–F units within the region
. We define matrix and vectors , as

...
...

...
...

...
...

...
...

...

...

...

...

...

(21)

where

(22)

Thus, we have a set of matrix equations with the initial states
(amplitude and phase) of each harmonic as the only unknowns.
The coefficient matrix can be constructed using the estimated
amplitude envelope and phase change information, is a vector
of unknowns and is a vector with the observed STFT values.
The least-squares estimation of is given by

(23)

where denotes conjugate transpose. After is estimated, the
complex sinusoidal parameter of each harmonic contributing to
the overlapped region can be estimated as

(24)

Fig. 3 shows the effectiveness of the least-squares estimation
in recovering two overlapping harmonics. In this case, the third
harmonic of one source overlaps with the fourth harmonic of a
second source. Fig. 3(c) shows the magnitude spectrum of the
mixture in the overlapped region. Note that the amplitude mod-
ulation results from the relative phase of the two harmonics.
The estimated magnitude spectra of two sources are shown in
Fig. 3(d) and (e). For comparison, the magnitude spectra of
the two sources obtained from premixed signals are shown in
Fig. 3(a) and (b).
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Fig. 3. Least-squares estimation of overlapping harmonics. (a) The magnitude
spectrum of a harmonic of the first source in the overlapped T–F region. (b)
The magnitude spectrum of a harmonic of the second source in the same T–F
region. (c) The magnitude spectrum of the mixture. (d) The estimated magnitude
spectrum of the harmonic from the first source. (e) The estimated magnitude
spectrum of the harmonic from the second source.

F. Selection of a Non-Overlapping Harmonic

The previous section described how the amplitude envelopes
of non-overlapped harmonics are used in the least squares
framework to estimate the sinusoidal parameters of overlapped
harmonics from the same source. Numerous approaches could
be employed within the proposed framework to approximate

. In this paper, we take a simple approach. For each
harmonic that is overlapped in a T–F region, we select as
the strongest harmonic of source that is non-overlapped for
the entire sequence of frames to . Formally, we select

as follows:

(25)

Some alternatives that were explored include selection of a
harmonic that is both non-overlapped during the entire sequence
of frames and closest in frequency to , taking an average
of nearby harmonics or an average of all non-overlapped har-
monics. We found average separation performance to be best
with selection of according to (25).

An attractive aspect of the proposed estimation approach is
that one could easily substitute a note model for a particular
instrument or devise an alternative scheme for approximating

. The approximation chosen in the proposed system is
attractive because no prior knowledge is needed. A shortcoming
is that if there are no non-overlapped harmonics available for the
duration to , then the overlapped harmonic cannot be
estimated using the proposed approach. In the current study, we
simply ignore reconstruction in this case.

G. Resynthesis

In the final estimation of the STFT of each source signal,
we combine estimates from the non-overlapped and overlapped
regions. First, let be the set
of frequency bins associated with non-overlapped harmonics in
time frame , and let be the
set of frequency bins associated with overlapped harmonics in
time frame . For the bins associated with non-overlapped har-
monics we directly distribute the mixture STFT to the source
estimate

(26)

For the bins associated with overlapped harmonics, we utilize
the sinusoidal model and calculate the STFT using

(27)
Finally, the overall source STFT is and we

use the overlap-add method to obtain the time domain estimate
for each source.

IV. EVALUATION AND COMPARISON

A. Database and Parameter Settings

We test the proposed system on a database of 20 Bach quar-
tets. Audio signals are generated from four-part MIDI files (so-
prano, alto, tenor, bass) by first selecting instrument parts (e.g.,
alto and tenor). Each part is randomly assigned one of four in-
struments: clarinet, flute, violin, or trumpet. For each note event
in the parts we select an audio sample of the specified instru-
ment that matches the specified pitch and place it at the specified
onset time. In the case where the audio sample is longer than the
MIDI event (as it typically is), we truncate the audio sample to
match the length of the note event. When the MIDI note event is
longer than the available audio sample, we use the audio sample
as is and alter the length of the note event in the MIDI data. In-
strument samples are drawn from the RWC music instrument
database [14]. Mixtures are formed with either two instruments,
where we select the alto and tenor musical parts, or three instru-
ments, where we select the soprano, alto, and tenor parts. In all
cases, instruments are mixed with equal average power over the
duration of the signals. More details about the procedure can be
found in [21].

Although the mixtures formed are at best an approximation of
a real performance, they exhibit realistic pitch variations due to
both vibrato and instances where the audio samples are slightly
sharp or flat. This characteristic better tests our pitch refinement
stage and is perhaps more true to real recordings than the use
of a synthesizer or sampler to generate signals from the MIDI
data, which have their own drawbacks.

In our implementation, we use a frame length of 4096 samples
with sampling frequency 44.1 kHz. No zero-padding is used in
the DFT. The hop size is 1024 samples. We choose ,
about half of the 40-dB bandwidth of the Hamming window,
and , which is approximately the 6-dB bandwidth
of the Hamming window [15]. The number of harmonics for
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each source is chosen such that for all time
frames, where denotes the sampling frequency.

B. Pitch Refinement

We first evaluate the effectiveness of the pitch refinement
stage. Evaluation is performed on 5-s excerpts from the 20 two-
instrument mixtures described above. We consider three dif-
ferent categories of rough pitch estimates. First is when a time-
aligned MIDI score is available. The second and third cases are
when pitch contours are detected from the multi-pitch detection
algorithm by Klapuri [19]. Since Klapuri’s system does not se-
quentially group detected pitch values from the same source,
the second case assumes ideal sequential grouping of the de-
tected pitches (i.e., each detected pitch is matched to the source
with the closest ground truth pitch). In the third case, we group
the detected pitch values sequentially using a heuristic grouping
rule that states that pitch contours of different instrument lines
should not cross each other. This rule has theoretical foundation
in music composition and perception [16]. Studies have shown
that this simple sequential grouping rule works very well for
Bach’s work [10], [17] and is likely a reasonable choice for
a large body of musical works. In our evaluation, we simply
arrange the pitch values at any given frame from high to low
and then group the detected pitch values for separation. The re-
sults for this final case indicate the performance our system can
achieve when applied to real recordings.

In the analysis, we consider two types of pitch errors, gross
pitch errors and fine pitch errors. We define a gross pitch error as
a frequency deviation from ground truth pitch greater than half
of a semitone. We obtain ground truth pitch contours from the
clean source signals prior to mixing using a program based on
Praat [4]. In Table I, we show the percentage of time frames that
contain gross pitch errors for the three cases, where “MIDI” de-
notes the MIDI pitch contour case, “DPI” denotes the detected
pitch with ideal sequential grouping case, and “DP” denotes the
detected pitch with heuristic grouping rule case. The first row
of the table shows the gross error percentages of the rough pitch
estimates prior to pitch refinement, while the second shows the
error percentages after pitch refinement. We include this table
to show that the pitch refinement stage does not significantly
increase the number of gross pitch errors. While the refinement
stage is not able to reduce gross errors since the initial harmonic
masks must align with at least some of the instrument’s har-
monics in order to be successful, it is possible that the refine-
ment could introduce gross pitch errors. Only when MIDI pitch
contours are used, which have 0 gross pitch errors to begin with,
are a handful of gross pitch errors introduced. On closer anal-
ysis, these cases primarily occur on note transitions when the
assumption of stable instantaneous frequency over a time frame
is violated.

An analysis of fine pitch errors is provided in Fig. 4. To gen-
erate these box plots, where mid-line, box edges and whiskers
are defined as in Fig. 1, we first ignore all gross pitch errors
and measure the fine pitch error in terms of musical semitones.
Since the primary difference between the ideally grouped de-
tected pitches and the heuristically grouped detected pitches has
to do with gross errors, we only show results for the MIDI pitch

TABLE I
PERCENTAGE OF GROSS PITCH ERRORS. THE COLUMNS DENOTE THE

CASES WHEN MIDI PITCH CONTOURS ARE AVAILABLE (MIDI), DETECTED

PITCHES ARE IDEALLY GROUPED (DPI), AND DETECTED PITCHES

ARE HEURISTICALLY GROUPED (DP)

Fig. 4. Box plots of fine pitch error in semitones relative to ground truth pitch.
Results are shown for pitch contours provided by MIDI (MIDI), MIDI with
pitch refinement �MIDI � R�, detected pitches grouped heuristically (DP) and
detected pitches with refinement �DP � R�.

contours and the heuristically grouped detected pitch contours.
In order to provide more detail on refined cases, the plot does
not show the full extent of the MIDI pitch errors without refine-
ment, but the whisker extends to 0.47 semitones in that case.
In this figure, we again denote the MIDI contours with “MIDI”
and the heuristically grouped detected pitches with “DP.” The
notation “ ” indicates the cases in which pitch refinement has
been used. As can be seen, the refined pitch estimates are sub-
stantially more accurate than the rough pitch estimates. Median
error (in semitones) drops from 0.14 to 0.01 for the MIDI case,
and from 0.03 to 0.005 in the detected pitch case. In both cases,
we can see that the spread of the accuracy is also much smaller
when refinement is included.

C. Sound Separation

In this section, we provide the sound separation performance
of the proposed system and compare it to existing sinusoidal-
model based monaural separation systems. We first define the
signal-to-noise ratio (SNR)

SNR (28)

SNR (29)

Here, is the clean source signal prior to mixing, is the
estimated signal and is the mixture signal. The SNR gain is
then SNR SNR SNR . Evaluation is performed on
the two-source condition where, as in Section IV-B, the tenor
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TABLE II
AVERAGE �SNR OF THE PROPOSED SYSTEM AND EXISTING SYSTEMS

ON 40 FIVE-SECOND INSTRUMENT SIGNALS FROM TWO-INSTRUMENT

MIXTURES. RESULTS ARE SHOWN FOR THE PROPOSED SYSTEM WITH

ONLY NON-OVERLAPPING HARMONICS INCLUDED (NON-OVER) AND THE

FULL SYSTEM (PROPOSED), AND WITH ���� AND WITHOUT ���� PITCH

REFINEMENT, AND FOR EXISTING SYSTEMS

and alto musical parts are selected from the 20 Bach quartets
and signals are mixed with equal energy (i.e., SNR ).

Overall separation performance is a factor of estimation
of both non-overlapped harmonics and overlapped har-
monics. Accordingly, we show results for cases in which
the signal estimates only include non-overlapped harmonics

and results using the entire reconstructed signal

, both overlapped and non-overlapped har-
monics. Table II shows the average SNR of the 40 five-second
instrument signals (two for each mixture in the database of
20) for the proposed system and a recent musical separation
system [31], denoted by “Virtanen (2006),” as well as a classic
separation system “Parsons (1976)” [26]. Signal estimates for
the system in [31] were generated by the author. We provided
the mixture database and pitch contours to him and he returned
the separated instrument signals. The results for the system in
[26] were generated using our own implementation. Results
for the proposed system are shown with only non-overlapping
harmonics included, “Non-Over,” and the full system, “Pro-
posed,” and with “ ” and without “ ” pitch refinement.
The separate columns are for the four different cases of pitch
contours used: ground truth pitch “GTP,” “MIDI,” ’DPI,” and
“DP.”

Results show the effectiveness of both novel aspects of the
proposed system, the pitch refinement stage and reconstruction
of overlapping harmonics. As one would expect from the re-
sults presented in Section IV-B, the pitch refinement greatly im-
proves the average SNR in all cases of rough pitch estimates.
Comparing the third and fourth rows of Table II, the average
improvement achieved by pitch refinement of rough estimates
is over 4.6 dB. The results also show that, provided the pitch
refinement has been enabled, reconstruction of the overlapping
harmonics improves the estimation of the signal. Comparing the
second and fourth rows of Table II, the average improvement
through inclusion of the overlapping harmonics is 3.8 dB over
all four pitch cases. We can also see that the estimation of over-
lapping harmonics is more strongly effected by pitch inaccura-
cies than the estimation of non-overlapping harmonics.

The performance of the full system on the ground truth pitch
condition is 14.7 dB, while it degrades to 12.1 dB when we use
detected pitches and simply group the higher ones with the alto
line and the lower ones with the tenor line. When the detected

TABLE III
AVERAGE SDR, SIR, AND SAR OF THE PROPOSED SYSTEM AND EXISTING

SYSTEMS ON 40 FIVE-SECOND INSTRUMENT SIGNALS FROM TWO-INSTRUMENT

MIXTURES. RESULTS ARE SHOWN FOR THE PROPOSED SYSTEM USING GROUND

TRUTH PITCH (GTP), MIDI PITCH (MIDI), IDEALLY GROUPED DETECTED

PITCH (DPI) AND HEURISTICALLY GROUPED DETECTED PITCH (DP)

pitches are ideally grouped with the correct instrument, the per-
formance is 13.7 dB, indicating that the majority of the degrada-
tion is due to cases that violate the heuristic grouping rule. We
found that 3 of the 20 mixtures violated this rule, and signals
from those mixtures had an average SNR of 5.1 dB.

In comparison to the existing separation systems, we can see
that the proposed system provides an improvement in all cases.
The improvement in SNR over the most competitive system
is 3.7 dB for the ground truth pitch case and 3.3 dB for the
detected pitch and heuristic grouping case. It should be noted
that results for the Virtanen system presented in [31] are given
for single-note polyphonies (mixtures of multiple instruments
each simultaneously playing only one note) rather than for note
sequences, as are used in the test database presented here. It
is possible that tuning of the Virtanen system on sequences of
notes from multiple instruments gives better performance than
the results presented here.

Alternative measures to SNR have been proposed [30] for
evaluation of sound separation algorithms. The source-to-dis-
tortion ratio (SDR), source-to-interference ratio (SIR), and
source-to-artifacts ratio (SAR) measure overall distortion,
energy from interfering sources, and artifacts introduced by the
separation algorithm, respectively. Results from a preliminary
study indicate that these measures may correlate more closely
with human perception of signal similarity than SNR-based
measures [12]. The results using these metrics are given in
Table III. We show performance for the full proposed system
(including overlapping harmonics and pitch refinement) on the
four different pitch cases, and again for comparison, results
using the existing systems with ground truth pitch, “GTP,”
Again, we see that the proposed system provides a significant
improvement over the other systems.

We also test our system on ten 15-s mixtures of three instru-
ments. Again, each instrument is mixed so that all three sources
have equal average power over the duration of the signal. Using
the ground truth pitch information, the average SNR achieved
was 14.2 dB, where SNR was 11.2 dB and SNR was

. Additionally, we test the proposed system on rever-
berant recordings by generating impulse responses with 0.54-s
reverberation time using the Roomsim package [8]. The
estimated signals for the two-instrument reverberant mixtures
using the ground truth pitch contours yield an average SNR
of 13.6 dB, only 1.1 dB lower than in the anechoic case.
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Sound demos of the proposed separation system can be found
at http://www.cse.ohio-state.edu/~woodrufj/mmssTASLP.html.

V. CONCLUSION

In this paper, we have proposed a monaural musical sound
separation system that explicitly resolves overlapping har-
monics. Our approach is based on CAM and phase change
estimation using pitch contours. Quantitative results show
that when pitches can be estimated accurately, the separation
performance is excellent. Even with rough pitch estimates, the
proposed system still achieves good separation. In addition to
a large increase in SNR, the perceptual quality of the separated
signals is satisfactory in most cases. We have also shown that
rough pitch estimates can be refined from a subset of a signal’s
harmonics, and that the proposed mechanism for refinement
achieves decreased deviation from ground truth pitch and leads
to improved signal separation.
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