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1 INTRODUCTION

The use of posterior probabilities for improving Automatic Speech Recognition (ASR) systems has
become popular and frequently investigated in the past decade. Posterior probabilities have mainly
been used either as local acoustic scores (measures) or as acoustic features in ASR systems. Hybrid
Hidden Markov Model / Artificial Neural Network (HMM/ANN) approaches [1] were among the first
ones to make use of posterior probabilities as local scores. In these approaches, ANNs and more
specifically Multi-Layer Perceptrons (MLPs) are used to estimate the emission probabilities required
in HMMs. Hybrid HMM/ANN method allows for discriminant training, as well as for the possibility of
using small acoustic context by presenting few frames at MLP input. Posterior probabilities have also
been used as local scores for word lattice rescoring [2], beam search pruning [3] and confidence measures
estimation [4]. Regarding the use of posterior probabilities as features, one successful approach is
Tandem [5]. In Tandem, a trained MLP is used for estimating local phone posteriors. These posteriors,
after some transformations (usually logarithm and Karhunen-Loeve transform), are used as acoustic
feature inputs to a HMM /GMM module. Tandem takes the advantage of discriminative acoustic model
training, as well as being able to use the techniques developed for standard HMM/GMM systems.

In both hybrid HMM/ANN and Tandem approaches, posteriors are estimated using ANNs (more
specifically MLLPs), based only on the acoustic information in a local frame or a limited number of local
frames. In this paper, we call these posteriors “MLP posteriors” or “regular posteriors”. However,
a limited window of spectral features is not the only source of knowledge available about phones.
Information about phones are spread over time, and there are no sharp boundaries between phones
[6, 7]. Phonemes have specific duration constraints (phonetic knowledge), follow specific sub-lexical
and lexical rules (lexical knowledge), etc. These long contextual and prior sources of knowledge can
help in providing better phone posterior estimates, however they are not usually taken into account
in the MLP based phone posterior estimation. There have been few recent studies with the goal of
integrating context and prior knowledge in the posterior estimation [8, 9, 10]. In these studies, different
methods for estimating posterior probability of a word hypothesis, given all acoustic observations of
the utterance is proposed. These posteriors are estimated on HMMs or word graphs by the forward-
backward (Baum-Welch) algorithm [11], and used for word confidence measurement. These studies are
mainly focused on estimating word posteriors for the purpose of hypothesis confidence measurement.

In this paper, we present a principled framework for enhancing the estimation of posteriors (par-
ticularly phone posteriors) by integrating long acoustic context, as well as prior phonetic and lexical
knowledge. However, as opposed to the above approaches, the goal here is to provide enhanced pos-
teriors which can be used in frame synchronous posterior based ASR applications. The input in our
approaches is regular phone posteriors estimated by an MLP, and the outcome is the “enhanced pos-
teriors” of phones' at the frame level. Many posterior based ASR algorithms are based on phone
evidences at the frame level. Therefore, the resulting frame based enhanced posteriors can be used in
a wide range of posterior based ASR systems (e.g. Tandem and hybrid HMM/ANN), as replacement
or in combination with the regular MLP posteriors in a straightforward manner.

We propose two approaches for estimating these posteriors. The first approach uses a HMM to
integrate the prior phonetic and lexical knowledge. The phonetic and lexical knowledge is encoded in
the topology of the HMM. The integration is realized by using the regular MLP posteriors as emission
probabilities in the HMM forward and backward recursions (Baum-Welch approach) [11]. This yields
new enhanced posterior estimates taking into account the encoded knowledge in the topology of the
HMM. The second approach uses a secondary neural network (MLP) to post-process a temporal
context of regular phone posteriors, and learn long term intra and inter dependencies between regular
phone evidences (posteriors) estimated initially by the first MLP. These long term dependencies can
be interpreted as prior phonetic knowledge. The learned prior phonetic knowledge is integrated in
the phone posterior estimation, during the inference (forward pass) of the second MLP, resulting in
enhanced posteriors.

The proposed methods provide a general framework for integrating acoustic context and different

I Although as it is shown in Section 6, we can also use our approach for word posterior estimation.
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Figure 1: Standard approach for deriving and using Tandem features. The phone posterior vectors
p(qi|z:) are estimated using MLP. p(g|x;) is a vector of phone posterior probabilities at time t.
These posteriors are gaussianized and decorrelated using log and KLT transforms. The result of
the transformation is used as acoustic features for training and inference in a standard HMM/GMM
back-end.

prior knowledge for improving posterior estimation in ASR, from phone up to the word units. In this
paper, we mainly focus on phone posteriors. We present different aspects and applications of these
enhanced posterior estimates for improving ASR systems. We show that they can be used as features,
or as complementary features to regular phone posteriors in Tandem configuration. We have achieved
consistent word recognition improvement with the new Tandem configuration on Numbers’95 [12]
and Conversational Telephone Speech (CTS) [13] databases. The enhanced posteriors are also used
as local scores for decoding in hybrid HMM/MLP configuration. We have again observed improved
recognition performance on these databases (plus TIMIT database [14]), and also interesting results
on the robustness of the performance with respect to ad-hoc tuning parameters (e.g. phone and word
insertion penalties). Simply stated, we propose to replace or complement the use of regular MLP
posteriors by the new enhanced estimates of these posteriors, and we show some important practical
cases. One can think of other frame synchronous posterior based ASR systems, and simply use the
enhanced posteriors as replacement or in combination with the regular MLP posteriors.

The paper is organized as follows: Section 2 reviews different approaches for estimating and using
phone posterior probabilities in ASR. In Section 3, we present two approaches for integrating context,
phonetic and lexical knowledge in the posterior estimation. In Section 4, we discuss the usage of the
enhanced posteriors as features in Tandem configuration. Section 5 studies the usage of the enhanced
posteriors as local scores in a hybrid HMM/MLP decoder. Section 6 discusses about other possible
usages of the enhanced posteriors in ASR. Summary and conclusions will appear in Section 7.

2 POSTERIORS IN SPEECH RECOGNITION SYSTEMS

Sub-word (phone) posterior probabilities have been mainly estimated using Artificial Neural Networks
(ANNS), and particularly Multi-Layer Perceptrons (MLPs). In these approaches, a limited number of
spectral feature frames is presented at the input of the MLP. Each output of the MLP is associated
with a particular phone. The MLP is discriminatively trained to find a mapping between the spectral
features at the input, and the phone targets at the output. The MLP estimates p(qi|z;), where x; is
a spectral feature frame at time ¢, ¢¢ € Q = {¢*,...,¢",...,¢"¢} (N, total number of MLP outputs)
is the i'" MLP output associated with phone i, and ¢! represents the event of having phone i at
time ¢. Although ANNs have been the most dominant tool for estimating phone posteriors in ASR,
some other principled approaches have also been studied [15, 16]. In [15], a method based on using
Gaussian Mixture Models (GMMs) for estimating posteriors has been proposed. In this method, a
large number of Gaussians are pooled from an acoustic model trained with maximum likelihood (ML)
criterion. The likelihoods estimated using these Gaussians are normalized (assuming equal priors)
to obtain a sparse set of posteriors. The dimensionality of this set is reduced by a transformation
learned along with Minimum Phone Error (MPE) training [17]. In [16], likelihoods estimated by
GMMs (trained on acoustic data) are turned into posteriors through conditional random fields. In
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this work, we are mainly concerned about the approaches using ANNs for posterior estimation.

2.1 Posteriors As Local Classifiers (scores)

Hybrid HMM/ANN approaches were probably among the first ones to make extensive use of posterior
probabilities in speech recognition. In these approaches, ANNs and more specifically MLPs are used
to estimate the emission probabilities required in HMM systems [1]. It has been shown that if each
output unit ¢* € Q = {q¢*,...,¢", ...,¢"e} of an MLP is associated with a particular state of the set of
possible HMM states, it is possible to train the MLP in a discriminative way, to generate posterior
probabilities of the output classes conditioned on the input, i.e., p(g}|z;), where ; is a spectral feature
frame at time ¢, and ¢! represents the event of having phone i at time ¢. Usually more than one frame
of acoustic features (small context) is presented at the input of the MLP, thus it estimates p(q}|x}%)
where c is typically equal to 4. 2!"¢ represents a short temporal context obtained by concatenating
acoustic feature vectors in {a;_c, ..., T¢, ..., Trycp- This is in fact very limited context?.

Posterior probabilities have also been used as local measures for different ASR purposes, such
as (1) estimating confidence measures [4, 10, 18], (2) beam search pruning [3], or (3) word lattice
rescoring [2].

2.2 Posteriors As Features

The properties described above were also extended by using the MLP-generated posterior probabilities
as acoustic features, which (after some transformations) can be used alone or appended to other sets
of (more traditional) features as inputs to HMMs. In this case, the MLP is considered as performing
some kind of “optimal” feature extraction (using nonlinear discriminant analysis). One of the earlier
and most successful approaches based on using posteriors as features is Tandem [5]. For every speech
instant (i.e. about every 10 ms in a typical ASR system), the Tandem technique derives a vector of
posterior probabilities of sub-word speech events from any relevant evidence presented to its input.
Posteriors of classes form a particularly convenient smallest set of features since the highest posterior
determines the class assignment. Typically, a properly trained MLP, trained in one-hot encoding
paradigm [1], is used for estimating posterior probabilities of context-independent phones. Alternatives
such as GMM-derived posteriors were also investigated [19]. Hierarchical classification schemes in
Tandem estimator were also investigated [20].

As illustrated in Fig. 1, the MLP phone posterior estimates p(¢:|z:) are gaussianized by a static
nonlinearity (usually logarithm) and whitened by the Karhunen-Loeve transform (KLT) derived from
training data. p(qi|x¢) is a vector of phone posterior probabilities at time ¢ with the components
p(gi|xe) for i € {1,...,i,...,Ny}. Such gaussianized and whitened posterior probabilities form the
feature vector for the subsequent HMM/GMM training/inference back-end. Thus, the conventional
features derived from a spectral density vector representing the spectral envelope are replaced by
the transformed posteriors of acoustic events (context-independent phones). If the targeted events
are independent, the output of the trained Tandem MLP could represent an estimate of the efficient
low-entropy statistically-independent code, hypothesized in perceptual processing [21, 22].

Input to Tandem can be any data that are believed to provide a relevant evidence for the clas-
sification. In its simplest form, Tandem takes as an input a super frame of typical speech features
such as 9 frames of concatenated PLP static and dynamic features [23]. Often, Tandem inputs are
concatenated outputs from other sub-band classifiers (TRAP [24] or HATS [25]). TRAP has been
reported to be efficient in alleviating irrelevant information [26] [27].
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Figure 2: General idea: First, regular phone posteriors are estimated using an MLP, then these poste-
riors are post-processed in a secondary module to integrate context, phonetic and lexical knowledge.
This results in enhanced phone posterior estimates.
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Figure 3: HMM-based enhanced posterior estimation: First, regular phone posterior vectors p(q;|x¢)
are estimated using an MLP. These posteriors are used as emission probabilities in HMM recursions
to estimate state posteriors. The HMM state posteriors are then integrated into enhanced phone
posterior vectors p(q¢|z1.7, M).

3 ENHANCING POSTERIOR PROBABILITY ESTIMATION

In the previous section, we have studied the estimation and usage of posterior probabilities in speech
recognition systems. Typically, the estimation of posteriors is based only on a local or limited number
of spectral feature frames. In this paper, we call these posteriors as “MLP posteriors” or “regular
posteriors”. However, the time limited spectral information is not the only source of knowledge avail-
able about phones. There are other sources of knowledge which can help to provide more informative
estimates of phone posteriors. Information about phones are spread over time in the speech signal and
there are no sharp boundaries between phones [6, 7], therefore taking into account long contextual
information can be useful. Moreover, some prior knowledge such as duration of phones (phonetic
knowledge) and the lexical usage of phones in a word can be useful for improving posterior estimates.

In this section, we study how these extra sources of knowledge (acoustic context and prior phonetic
and lexical knowledge) can be integrated in the posterior estimation to improve the posterior estimates.
The general idea is illustrated in Fig. 2. The regular phone posteriors estimated by a neural network
(MLP) are post-processed by a secondary module to integrate context, phonetic, and lexical knowledge.
We propose two different approaches for integrating these higher level knowledge in the posteriors
estimation. The first approach is based on estimating posteriors through a HMM, to integrate the
phonetic and lexical knowledge encoded in the HMM topology in the posterior estimation. The second
one is based on using a secondary neural network (MLP) to post-process a long temporal context of
regular phone posteriors. In the following, we study these approaches.

2In the sequel of this paper, and for simplicity sake, we will often write MLP posterior outputs as p(qﬂxt), though
t+c

keeping in mind that they are often estimating p(qﬂxtic) if small acoustic context is provided at the input.
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3.1 HMM-based Integration of Prior and Contextual Knowledge

Topological constraints in a HMM encode specific prior phonetic and lexical knowledge. This knowl-
edge can be integrated in the regular MLP posteriors to get an enhanced version of these posterior
estimates. This objective can be formulated as turning the regular estimate of phone posteriors
p(qi|x;) obtained by MLP, to a more informative posterior p(gt|z1.7, M), where ¢! is the event of
having phone ¢ at time ¢, 1.7 = {1, ..., ¥4, ..., £} is the acoustic context as available possibly in the
whole utterance, and M is HMM model encoding specific prior knowledge. We have used HMM/ANN
formalism for integrating HMM topological constraints in the MLP posterior estimates. The integra-
tion is done by using phone posteriors p(gi|z;) as state emission probabilities in the HMM. Each state
sk of the set of HMM states S = {s',...,s* ..., SN} (N total number of HMM states) is associated
with one of MLP outputs representing a phone posterior probability. The state emission probabilities
are used in HMM forward-backward recursions [11] to integrate HMM topological constraints (encod-
ing specific prior knowledge). This gives the estimates of HMM state posteriors p(s¥|x1.7, M), where
sk is the event of having state k at time ¢t. The state posteriors will then integrated to enhanced
phone posteriors p(qi|z1.7, M) by accumulating posteriors of all the states modeling phone i in the
HMM. In the forward-backward recursions and state posterior estimation, we have the contribution
of the HMM topological constraints (prior knowledge) in addition to the MLP posteriors (emission
probabilities). Therefore, the state posteriors (and consequently phone posteriors) can be interpreted
as the integration of topological constraints (prior knowledge) in the MLP posteriors. Here we first
review the forward-backward recursions for conventional likelihood based HMM systems, then we
study forward-backward recursions for the case of modeling state probability distributions with MLP
outputs.

According to the standard HMM formalism, the state posterior is defined as the probability of
being in state k at time ¢, s¥, given the whole observation sequence z1.7 and the HMM model M
encoding specific prior knowledge (topological/temporal constraints):

v(k,t) = p(sf |1, M) (1)

where x; is a feature vector at time ¢, x1.7 = {x1,...,27} is an acoustic observation sequence, s; is
the HMM state at time ¢, which value can range from 1 to N (total number of HMM states), and
sk shows the event “s; = k”. In the following, we will often drop the M, keeping in mind that all
recursions are processed through some prior (Markov) model M. We call v(k,t) as “state posterior”.

The state posteriors (i, t) can be estimated using forward « and backward 3 recursions (as referred
to in HMM formalism) [11] using local emission likelihoods p(z¢|sf)

Oé(k,t) = p(xlztvsf)
NS

planlsh) S plstlst-1)ati, i~ 1) @)
B(k.t) = p(zegrrlst)
= Zp(l't+1 5] )p(sT o [s5)B(. t+1) (3)

thus yielding the estimate of p(s¥|z1.7, M):

a(k,t)B(k,t)
Zj a(j,T)

Similar recursions, also yielding to “state posteriors”, can also be developed for systems based
on local posterior probabilities, such as hybrid HMM/ANN systems using MLPs to estimate HMM
emission probabilities [1]. Each HMM state k is associated with one MLP output p(q!|z;) representing
posterior probability for phone i at time ¢. In standard HMM /ANN systems, these local posteriors are

v(k,t) = p(sf|z1r, M) = (4)
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usually turned into “scaled likelihood” by dividing MLP outputs by their respective a priori probability
p(ql), as estimated on the training data, i.e. © (pq(tq‘"L)t) The scaled likelihoods are used as state emission

probabilities in HMM/ANN ASR. For HMM state k at time ¢ associated with the phone i we have:
pladst) _ p(silze)

plz) — p(sh)

(5)

The scaled likelihood at the left hand side of (5) is used in standard HMMs since, during recognition,
1/p(z;) is simply a normalization factor independent of the state s¥.

In [28], it was shown that these scaled likelihoods can be used in “scaled alpha” a*¢@¢(k,t) and
“scaled beta” 3°°@€(k,t) recursions to yield state posterior estimates:

To use scaled likelihoods, we start by defining scaled « as:

ascale k, _ p(x’i,sf)
B pte) o

We note here that this is simply a definition. Thus, the product in the denominator does not
imply that we have made any explicit temporal independence assumption. In fact, all the recursions
used below, will never make any additional temporal independence assumption than the usual state
conditional independence assumption.

Starting from (5), we can express the scaled « recursion as follows:

Cuscale k _ p(mt|sf) (xlt 175‘2{ 1)
) = P St P

k .
_ p(welsi) Zp(sﬂsi_l)ascale(j’ t—1)
J

scate S :1: scalte .
e (k1) = t‘tzp Flsd_yasee(j, ¢ — 1) (7)

Similarly, we can define the “scaled” 3 and (3 recursion as follows:

geeale( ¢y = P(rirrlst)
Hf:t+1p(x7)

p(sj Ixt+1) j scale :
= Y (sl DB (it + 1)
J P(sit1)
(8)

Given that all values required in (7) and (8) are available from the MLP output, another estimate
of the state posteriors p(s¥|x1.7, M), denoted here as y*¢¢(k,t), can thus be obtained as:

vk, t) = p(stlerr, M)
p(st, 1.r)
p(z17)
_ p(@es1: T|5t )p(s ; T1:t)
p(r17)
_ p(@errrlsf)p(st, 1. ) I, plar)
( 1T) Zzlp(z‘r)
p(@es1: T|St )p(s¢, T1:t) HT:1 p(x-)

k
p($1T)H p( )H'r t+1p( -)
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Figure 4: (top) MLP estimated phone posteriors, and (bottom) corresponding enhanced phone poste-
riors. The y-axis is showing phone labels and x-axis is showing frames. Intensity of each block shows
the posterior value. The enhanced posteriors look more confident.

5cale(k t)ﬁscale(]{/, t) HT 1]9(.%'7—)
p(z1.1)
asenle (e, 1) 3% (e, 1) 17, p(ar)
Zj p(xlzTaSt)
ascale(k7 t)ﬁscale (k‘, t)
Zj ascale(j’ T)

9)

Again, in theory, we have:
V(kat) = ,yscale(k_7t) :p(sﬂxl:TvM) (10)

In this work, we always use hybrid HMM/ANN configuration for the estimation of HMM state
posterior probabilities. This means that the MLP posteriors (after turning to scaled likelihoods), are
used as emission probabilities in the forward-backward recursions.

The estimated state posteriors are then used to estimate phone posteriors. The enhanced phone
posteriors p(g;|z1.7,a) can be expressed in terms of state posteriors v(k,t) as follows:

platlrvr) = ZP (gt st w1r)
Ns
_ ik k
- Zp(qt|st ) xl:T)p(st |x1:T)
k=1

= Z Qt|st7x1T (kat) (11)

where p(qi|z1.7, M) is the enhanced phone posterior for phone i at time ¢. Probability p(¢:|s¥, z1.7)
represents the probability of being in a given phone ¢ at time ¢ knowing to be in the state k at time ¢. If
there is no parameter sharing between phones, this is deterministic and equal to 1 or 0. Otherwise, this
can be estimated from the training data. In this work, we assume that there is no parameter sharing
between phones, thus a phone posterior is estimated by adding up all state posteriors associated with
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the phone in the whole model. This way, the new enhanced phone posterior estimates p(qt|z1.7, M)
integrating context and prior knowledge is obtained. In the reminder of the paper, we call them as
“HMM-based enhanced posteriors”.

Figure 3 is showing the configuration for the HMM-based integration of prior and contextual
knowledge. As it is shown, the regular phone posterior vectors p(g:|x;) are initially estimated using
an MLP. p(q:|z;) is a vector of phone posteriors at time ¢ with the components p(gi|z;) for i €
{1,...,4, ..., Ng}. These phone posteriors are turned into scaled likelihoods (by dividing them by the
corresponding priors), and used as emission likelihoods in the HMM. The HMM state posteriors
are estimated using HMM forward-backward recursions. The state posteriors are then integrated to
enhanced phone posteriors p(q:|z1.7, M). p(qe|z1.7, M) is a vector of enhanced phone posteriors at
time ¢. The obtained phone posteriors are more informative (enhanced) than regular MLP posteriors,
since the prior knowledge (encoded in the topology of the HMM), and long acoustic context (as
available in the whole utterance) is additionally taken into account to estimate them. In fact, the
second module (the HMM) gets phone initial evidences (MLP posteriors) as input, and acts as a
corrective filter by introducing context and prior knowledge. The corrective filter suppresses the effect
of evidences not matching with prior knowledge or contextual information, and magnifies the effect
of evidences matching them. The output of this corrective filter is enhanced evidences in the form of
posteriors.

Figure 4 is showing a sample of regular MLP posteriors and corresponding enhanced posteriors
obtained by integrating phone duration information. The enhanced posterior estimates look more
confident. The MLP posteriors at the top are used as local estimators (emission probabilities) in the
HMM estimating enhanced posteriors (bottom).

The HMM module used for enhanced posterior estimation can have different topologies, thus
encoding different types of prior knowledge. As the simplest case, phones can be modeled with a
minimum number of states, and be connected using ergodic uniform transition probabilities. In this
case, only the prior phonetic knowledge about minimum duration of phones is introduced in the
posterior estimation. Next step is using non ergodic phone transitions estimated from a labeled data,
instead of ergodic transitions. Finally, we can have a fully constrained model composed of connected
word models and phone models. The parameters of this model are estimated from the training set.
This topology integrates full phonetic and lexical knowledge in the posterior estimation.

Although in this paper we only study phone level posteriors, this posterior estimation/integration
approach provides a theoretical framework for hierarchical estimation, integration and use of posteri-
ors, from the state level up to the phone and word levels. Word posteriors can be estimated basically
in the same way as state posteriors are integrated into phone posteriors. For more details please refer
to [29].

Besides the advantages of integrating prior knowledge for enhancing posterior estimates, it should
be noticed how and to what extent the knowledge is reliable. Although the prior knowledge is assumed
to be correct, but as the name “prior” suggests, there can be few cases in which the true data is not
matching the prior knowledge. For example, the assumed lexical knowledge may not include some rare
but truly existing pronunciation variants for a word, while such cases may appear in data. In these
cases, the enhanced posteriors start deviating from the MLP posteriors and they may not represent
the data correctly. Therefore, although prior knowledge helps to improve the estimation of posteriors,
there can be some cases that the resulting posteriors are not matching the data. This means there
is a trade off between the smoothness obtained by integrating prior knowledge, and deviation from
data. Considering this potential risk, as it is studied in Section 4.1, we propose to use HMM-based
enhanced posteriors in combination with the original MLP posteriors. In this way, information in
both posterior streams are preserved. A more detailed explanation will be given in Section 4.1.

3.2 MLP-Based Integration of Prior and Contextual Knowledge

In 3.1, we have studied the integration of phonetic and lexical knowledge (encoded in HMM topology)
in the posterior estimation. The HMM topology specifies the prior knowledge based on the solid prior
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Figure 5: MLP-based enhanced phone posterior estimation: The first MLP is transforming acoustic
(cepstral) features to regular phone posteriors. A temporal context of phone posteriors is made by
concatenating posterior vectors in {p(qi—c|Tt—c), oos D(qe|Tt), ooy D(Qete|Tire) b P(G—c|lxi—c) 18 @ vector
of phone posteriors at time ¢ — ¢. The second MLP processes the temporal context of regular phone
posteriors, and learns long term dependencies between phone evidences. These dependencies are prior
phonetic knowledge. During the inference (forward pass of the second MLP), the learned knowledge
is integrated in the posterior estimation, resulting in enhanced posteriors.

assumptions about phones duration and the lexical usage of phones in the words. The alternative
to this solid prior assumptions is learning the prior knowledge from data. In this section, we study
a second approach for integrating prior knowledge which realizes the idea of learning priors form
data. We use a secondary neural network to learn long term inter and intra dependencies between
phone evidences (posteriors) in the training data. The configuration is shown in Figure 5. We
have two MLPs in this configuration. The first MLP performs the regular phone posterior probability
estimation by transforming a small context of acoustic features (cepstral features) to phone posteriors.
The input to the second MLP is a temporal context of phone posteriors estimated by the first MLP,
ie. {p(qi—clzi—c), ., p(qt|xt), ..., P(Gt+c|Ti+c)}, where '¢’ shows a temporal context (typically 6-9).
To form this input, the posterior vectors in the mentioned temporal context are concatenated. The
output of the second MLP is enhanced phone posteriors for the same set of phones as the first MLP.
The phonetic class is defined with respect to the center of the temporal context. The first MLP is
typically trained with the cepstral features as input and phone targets as output, while the second
MLP is trained with a long context of phone posteriors as input and the same phone targets as output.
The same database is used for training the two MLPs. The first MLP learns the transformation form
acoustic features to phone evidences, while the second MLP gets the phone evidences as input and
learns long term dependencies between phone evidences. This long term phone dependencies can be
interpreted as prior phonetic information, such as phone trajectory shape, co-articulation between
phones, and phone duration information. Therefore, the second MLP learns prior phonetic knowledge
from data, and integrates these knowledge in the phone posterior estimation during the inference
(forward pass). This leads to enhancement of phone posteriors. The rational behind this is that at
the output of every MLP, the information stream gets simpler (converging to a sequence of binary
posterior vectors), and can thus be further processed (using a simpler classifier) by looking at a larger
temporal window. In the reminder of this paper, we call the posteriors at the output of the second
MLP as “MLP-based enhanced posteriors”.

We have experimentally analyzed the role of the second neural network in the hierarchy. The
mapping function which is learned by the MLP is nonlinear, thus the analysis of second MLP role is not
straightforward. A single layer perceptron (SLP) can be a reasonable approximation for investigating
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Figure 6: (top) Initial posteriors estimated by the first MLP, and (bottom) enhanced phone posteriors
estimated by the second MLP, integrating phonetic prior knowledge. The y-axis is showing phone
labels and x-axis is showing frames. The intensity inside each block is showing the posterior value.
The new enhanced posteriors look more confident.

the role of the second MLP, and can be considered as a multi-dimensional linear matched filter [30].
Therefore, we replace the second MLP with a SLP, in order to analyze the role of the second neural
network in the configuration shown in Fig. 5. The single layer perceptron can be viewed as a multi-
dimensional matched filter derived jointly for all the phonemes by minimizing an error criteria. The
analysis of the matched filters obtained after training the SLP shows that the matched filter for a
specific phoneme (e.g. /iy/) captures the contribution of different regular phone posteriors at the input
of SLP to estimate the posterior probability of the phone /iy/. These contributions are consistent with
the production of this phoneme. The analysis indicates that the second neural network has learned
the long term inter an intra dependencies between the regular posteriors. These dependencies are
mostly prior phonetic information such as phone posterior trajectory shape, co-articulation between
phones, and phone duration information.

Figure 6 is showing an example of initial and corresponding enhanced posteriors. The enhanced
(second MLP) posteriors are more confident than the initial (first MLP) posteriors. The second MLP
acts as a filter which smooth out evidences not matching the learned prior phonetic knowledge. Ideally,
this approach can be used for post-processing the output of any posterior estimator to integrate higher
level knowledge (e.g. prior phonetic knowledge).

In the MLP-based integration of the phonetic and lexical knowledge, the risk of using prior knowl-
edge which is not matching the reality of data is less than HMM-based integration. It is due to the
fact that the prior knowledge is learned from the data, instead of being obtained form solid prior
assumptions. This leads to some differences in the way we use HMM-based and MLP-based enhanced
posteriors for speech recognition systems. It will be studied in more detail in Sections 4 and 5.

In this work, the second MLP has been trained on the same database as the first MLP. An
alternative (although not experimented here) will be to use the second MLP for (task) adaptation
purposes. For instance, the first MLP can be trained on a general English database, while the second
MLP is trained on a second database of specific accent or dialect. In this case, the first MLP acts
as a general phone posterior estimator, and the second MLP adapts the posterior estimation for the
specific task.
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4 USING ENHANCED PHONEME POSTERIORS AS FEA-
TURES

As discussed in Section 2.2, posterior probabilities have been used as more discriminant features in
speech recognition systems. The most well known sample of these systems is Tandem [5]. In Tandem
approach, posterior probabilities are used as features for training and inference in a HMM /GMM back-
end module. In this section, the use of the enhanced posteriors as features in Tandem configuration is
investigated. We propose new Tandem configurations for HMM-based and MLP-based enhanced phone
posteriors. We show that using the enhanced posteriors as features, or as complementary features can
improve the performance of Tandem system. Since HMM-based and MLP-based enhanced posteriors
have different properties, we study their cases separately.

4.1 HMM-Based Enhanced Posteriors

In Section 3.1, we have studied the integration of prior and contextual knowledge using a HMM.
This integration leads to estimating more informative posteriors. We also mentioned to the issue of
integrating partially incorrect prior knowledge leading to deviation form the data. Considering this,
a safe compromise is using the enhanced posteriors as complementary features along with the original
MLP posteriors. In the other words, the enhanced posteriors should be combined with the MLP
posteriors. Considering a configuration similar to Tandem, the combined evidences are then used as
features for training and inference. In this way, the raw evidences (MLP posteriors) representing the
data are preserved, while there is also access to the posteriors enriched by the prior knowledge and
context.

Fig. 7 is showing a diagram of the normal Tandem system using MLP posteriors as features, and
Tandem system using enhanced posteriors as complementary to the MLP posteriors. The emission
probabilities in the HMM module which integrates prior knowledge are provided by the MLP. The
enhanced posteriors are obtained by post-processing MLP posteriors in the HMM to integrate prior
and contextual knowledge. In our experiments, we have used phone duration information (modeling
phones with few number of states) as the prior knowledge. Normal Tandem configuration uses only
the MLP estimated posteriors as features, while in our method, the enhanced posteriors are combined
with the MLP posteriors. The combined evidence is then used as features for training/inference in
the HMM/GMM back-end.

We have studied addition (average) and concatenation as the combination rules. In case of addition
(average), the combined evidence is written as:

(qr = ilxt) + plgr = ilxr.7, M)
2

Comb, = b (12)
where Combi shows the combined evidence for phone i at frame ¢. In case of concatenation rule, the
MLP and enhanced posterior vectors at frame ¢ are concatenated. The dimension of the resulting
vector is reduced by applying KLT transform. The performance of normal Tandem system, and
Tandem system with complementary features will be compared later in this section.

We have used OGI Numbers’95 database [12], and a reduced vocabulary version of the DARPA
Conversational Telephone Speech-to-text (CTS) task (1’000 words) [13] for the experiments. For
the OGI Numbers’95 database, the training set contains 3’233 utterances spoken by different speakers
(approximately 1.5 hours) and the validation set consists of 357 utterances (used during MLP training).
The test set contains 1’206 utterances. The vocabulary consists of 31 words (including silence) with a
single pronunciation for each word. There are 27 context-independent phones including silence. The
acoustic vector x; is the PLP cepstral coefficients [23] extracted from the speech signal using a window
of 25 ms with a shift of 12.5 ms, followed by cepstral mean subtraction. At each time frame t, 13
PLP cepstral coefficients, their first-order and second-order derivatives were extracted, resulting in
39 dimensional acoustic vector. For the estimation of regular MLP phone posteriors, we trained an
MLP with 351 input nodes (9 frames of acoustic features), 1200 hidden units and 27 output units
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Figure 7: (top) Usual Tandem, and (bottom) Tandem system using enhanced posteriors as com-
plementary features. Usual Tandem uses MLP posteriors (after some transformations) as features.
The new Tandem system uses a combination of the MLP and enhanced posteriors as features. In
the new Tandem configuration, enhanced posteriors are estimated using a HMM module integrating
phone duration information. The enhanced posteriors are then combined with the MLP posteriors,
some transformations applied, and the resulting features are used for training and inference in a
HMM/GMM back-end.

corresponding to the 27 context-independent phones. After training, the phone posteriors for the
training set and test set were estimated and scaled by their respective priors (estimated from the
training segmentation) to obtain scaled-likelihoods.

The idea was also evaluated on conversational telephone speech (CTS) task. There are 1000
words and 46 phones in this task. The training set contains 16 hours of male CTS speech randomly
selected from the Fisher Corpus and the Switchboard Corpus. The tuning set consists of 1.2 hours
of data and the test set consists of 1.3 hours of data. The acoustic features are 13 PLP coefficients
concatenated with their first two derivatives. It was computed with vocal tract normalization (VTLN)
[31], and mean and variance normalization. For the estimation of regular posteriors, an MLP was
trained with 14.6 hours of speech with the remaining 1.4 hours of speech used as a cross-validation
set to prevent over-training. The input layer of the MLP had 351 nodes containing 9 frames of PLP
features, together with their first and second order derivatives. The hidden layer had 1300 nodes and
the output layer had 46 outputs. After training, the phone posteriors for the training set and the test
set were estimated.

For both databases, the MLP posteriors obtained were then used to estimate the enhanced phone
posteriors as explained in Section 3.1. The prior knowledge used to obtain enhanced posteriors is the
phonetic duration knowledge. This was achieved by considering 3 states per phone model in the HMM
module integrating prior knowledge.

We first start with the comparison of the enhanced and MLP posteriors at the frame level. Table
1 is showing the fame recognition results for the enhanced and regular MLP posteriors (for the two
databases). For both databases, the enhanced posteriors show lower frame error rates than the MLP
posteriors. In addition, we also study the entropy for each type of posteriors. The entropy can provide
a measure of consistency/confusion in the posteriors. The entropy of phone posteriors is measured at
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each frame, and averaged over the whole database:

B, = =) plgilerr, M)logy plg|ar.r, M) (13)
T
AvE:# (14)

where FE; is the entropy of posteriors at frame ¢, and 7 is the total number of frames in the
database. The obtained average entropy values AvFE for the enhanced and MLP posteriors are shown
in Table 2. Lower entropy of the enhanced posteriors shows that they have more consistency than
regular MLP posteriors.

’ Database \ MLP posteriors \ Enhanced posteriors ‘

CTS 35.2% 33.3%
Numbers 17.6% 16.2%

Table 1: Frame error rates (FER) on Numbers’95 and CTS tasks, for regular MLP posteriors and HMM-based
enhanced phone posteriors. Enhanced posteriors have lower FER than the regular MLP posteriors. Frame
error rates are obtained on cross-validation partition of the databases.

’ Database \ MLP posteriors \ Enhanced posteriors

CTS 1.64 0.33
Numbers 0.67 0.18

Table 2: Average entropy of enhanced and regular MLP posteriors for different databases. The measures
are obtained by computing the entropy of posteriors at each frame, and averaging over the whole database.
Enhanced posteriors have lower average entropy indicating higher consistency than the regular posteriors.

After the frame level studies, we investigate the performance of enhanced posteriors for word
recognition. As discussed before, for word recognition studies in Tandem configuration, the enhanced
phone posteriors at each frame ¢ are combined with the original MLP posteriors®. Two combination
rules which are summation (average) and concatenation have been tried. The resulting combined
evidences are processed by Log and KLT transforms, as done for normal Tandem feature extraction.
For comparison purpose, we have also extracted the regular Tandem features by performing Log and
KLT transforms on the regular MLP posteriors at each frame.

For each type of features (regular Tandem and combined evidence), we trained a HMM/GMM
system using HTK toolkit [32]. In case of Numbers database, 80 context-dependent phone models with
12 mixtures per state, and 3 states per phone is used. In case of CTS database, models were trained
through 40 iterations: 5 iterations for the context-independent models, 5 iterations for the context-
dependent models, 5 iterations for the clustered context-dependent models, and then 5 iteration each
for incrementing mixtures from 1 to 32 (2, 4, 8, 16, 32). During the recognition, a bi-gram language
model is used.

We compare the results of recognition studies for the normal Tandem, which uses only MLP
posteriors as features, and the Tandem system which uses combined evidence (MLP and enhanced
posteriors) as features. Table 3 is showing the results in terms of word error rate for the two databases,
and different combination rules. As illustrated in the table, the combined evidences obtained from the
two streams of posteriors consistently perform better than the MLP posterior features alone. Using
enhanced posteriors (encoding prior and contextual knowledge) in combination with MLP posteriors
has helped to provide better evidences for Tandem.

3In practice, using HMM-based enhanced posteriors alone in the Tandem configuration did not improve word recog-
nition performance.
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’ Database \ MLP posteriors H MLP + Enh \ MLP & Enh ‘

CTS 44.2% 43.8% 41.3%
Numbers 4.7% 4.3% 4.3%

Table 3: Word error rates (WER) on Numbers and CTS tasks, for MLP posteriors, and MLP posteriors
combined with the enhanced posteriors, using addition (MLP+Enh) and concatenation (MLP & Enh)
as combination rules. The combined evidences perform better than regular MLP posteriors in Tandem
configuration.

4.2 MLP-Based Enhanced Posteriors

The enhanced posteriors obtained by a secondary MLP can be also used as features in Tandem configu-
ration. In this case, unlike HMM-based enhanced posteriors, the integrated prior knowledge is learned
from the data. Therefore, there is less risk of being biased by partially wrong prior assumptions. This
allows using the enhanced posteriors as features directly (without the need for combination with the
regular posteriors). In this way, the configuration for using the MLP-based enhanced posteriors would
be similar to the normal Tandem configuration. The only difference is that the regular phone poste-
riors are replaced with the enhanced phone posteriors. We compare the performance of regular and
enhanced posteriors as features in the Tandem configuration. The databases, specifications of spec-
tral features extraction, and regular MLP posterior estimation is the same as the case of HMM-based
posterior experiments (see Section 4.1).

In order to enhance phone posterior estimates for the Numbers database, a second MLP for post-
processing 19 frames of regular posteriors is used (as explained in Section 3.2). It has 513 (19x27)
input nodes, 1000 hidden nodes and 27 output nodes. For enhancing phone posteriors in the CTS
database, a second MLP with 690 (15x46) input nodes, 2000 hidden nodes and 46 output nodes is
used to post-process 15 frames of regular posteriors. The size of the temporal posterior context, and
the structure of the second MLP is obtained empirically for all the experiments.

As before, we start with frame level performance study of enhanced posteriors. Table 4 is showing
frame error rates of the regular and enhanced posteriors, for Numbers and CTS databases (cross
validation portion). Again, lower error rates can be observed for the enhanced posteriors in both
databases.

The same as Section 4.1, we do entropy studies on the MLP-based enhanced posteriors. Table 5
shows the average entropies for the enhanced and regular posteriors. Enhanced posteriors have less
entropy than the regular posteriors. This indicates that there is more consistency in the enhanced
posteriors, as compared to the regular posteriors.

’ Database \ Regular posteriors | Enhanced posteriors ‘

CTS 35.2 31.5%
Numbers 17.6 15.4%

Table 4: Frame error rates (FER) on Numbers’95 and CTS tasks, for regular (first MLP) and enhanced
(second MLP) phone posteriors. Enhanced posteriors have lower FER than the regular posteriors. Frame
error rates are obtained on cross-validation partition of the databases.

In the word recognition studies, we compare the performance of regular and enhanced posteriors as
features in the Tandem configuration. Unlike the case of HMM-based posteriors, MLP-based enhanced
posteriors can be used directly as features, without being necessarily combined with regular posteriors.
As the usual case of Tandem approach, the enhanced and regular posteriors are gaussianized and
decorrelated using Log and KLT transforms. The result of the transformation is used as features for
training and inference in a HMM/GMM back-end. Details of implementation for the HMM/GMM
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’ Database \ Regular posteriors \ Enhanced posteriors ‘

CTS 1.64 1.29
Numbers 0.67 0.40

Table 5: Average entropy of enhanced and regular phone posteriors for different databases. The measures are
obtained by computing the entropy of posteriors at each frame, and taking average over the whole database.
Enhanced posteriors have lower entropy indicating higher consistency than the regular posteriors.

back-end is the same as Section 4.1.

Table 6 is showing the word recognition performances for regular and enhanced posteriors. It
can be observed that the enhanced posteriors are consistently performing better than the regular
posteriors for the two databases.

’ Database \ Regular posteriors \ Enhanced posteriors ‘

CTS 44.2% 42.5%
Numbers 4.7% 4.3%

Table 6: Word error rates (WER) on Numbers’95 and CTS tasks, for regular and enhanced phone poste-
riors. Enhanced posteriors are obtained by post-processing regular posteriors using a secondary MLP. The
phone posteriors are used in Tandem configuration for the recognition. Enhanced phone posteriors perform
consistently better than the regular posteriors for the two databases.

In addition to the use of MLP-based enhanced posteriors as a replacement for the regular MLP
posteriors, we have investigated their usage as complementary features to the regular MLP posteriors
(as done for HMM-based enhanced posteriors). The configuration for using the combined evidences
is the same as shown in Figure 7, except that the HMM-based enhanced posteriors are replaced with
the MLP-based enhanced posteriors. The same addition and concatenation rules have been tried.
Table 7 is showing the word recognition results when the MLP-based enhanced posteriors are used
as complementary features. As illustrated in Table 7, usage of the MLP-based enhanced posteriors
as complementary features improves the performance even more than using them instead of regular
posteriors. Therefore, they perform best when they are used in combination with the regular MLP
posteriors.

’ Database \ MLP posteriors H MLP + Enh \ MLP & Enh ‘

CTS 44.2% 41.2% 42.3%
Numbers 4.7% 4.2% 4.2%

Table 7: Word error rates (WER) on Numbers and CT'S tasks, for MLP posteriors, and MLP posteriors
combined with enhanced posteriors using addition (MLP+Enh) and concatenation (MLP & Enh) as
combination rules. Enhanced posteriors are obtained at the output of the second MLP. Combined
evidences perform better than regular MLP posteriors.

We also further studied the strategies and possibilities of optimizing and using a simpler structure
for the second MLP. This will provide the possibility of processing longer temporal context. Phoneme
posteriors have simpler and possibly more linearly separable patterns, as compared to the acoustic
features. Therefore, it is potentially possible to use a relatively simpler MLP for post-processing the
phone posteriors. In our study, initially we tried to reduce the complexity of the second MLP in
terms of the number of hidden nodes. The optimum complexity is obtained empirically. Reducing the
complexity below this optimum slightly degrades the performance of enhanced posteriors, however
they still perform better than the regular posteriors. The degradation in the performance of enhanced
posteriors is very small even for large decrease in the complexity of the second MLP. In addition,
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we have studied using a Single Layer Perceptron (SLP) as the second ANN. Although the obtained
enhanced posteriors are performing better than the regular posteriors, their performance is slightly
lower than the case of using MLP as the second ANN. It implies that there is still nonlinearly separable
patterns at the output of the first MLP (regular posteriors) which can not be learned by the SLP.

Building upon the same idea of ANN hierarchy, a third MLP has also been tried in order to post-
process the output of the second MLP. Using a third MLP, the frame error rate and entropy results
are improved, but no considerable improvement in phone and word recognition is observed.

5 USING ENHANCED PHONEME POSTERIORS AS LO-
CAL SCORES

Another conventional usage of posteriors in ASR is as local scores for decoding (e.g. hybrid HMM/ANN
method). In this section, we investigate the use of the enhanced posteriors as scores for decoding,
and we compare them with the regular MLP posteriors. Since HMM-based and MLP-based enhanced
posteriors have different properties, we study them separately.

5.1 HMM-Based Enhanced Posteriors

HMM-based enhanced posteriors can be used as local scores for decoding, in the same way as regular
posteriors are used in HMM/ANN configuration. Unlike the case of using HMM-based enhanced
posteriors as features, there are few issues regarding the use of these posteriors as local scores for
decoding. The main issue is the fact that the knowledge which is integrated in the enhancement
process is the same as the knowledge which is taken into account in the topological constraints of
the decoder. For instance, the same duration knowledge as integrated in the enhancement process,
is taken into account in the hybrid decoder configuration. This means that we should not expect
performance improvement when the HMM-based enhanced posteriors are used for decoding, since no
additional knowledge is integrated in the enhancement process. The experiments also confirm that
the performance of the enhanced and regular posteriors for decoding are the same. However, there is
a side advantage in using enhanced posteriors for decoding.

The advantage is revealed when we compare the sensitivity to ad-hoc tuning factors (e.g. phone
deletion penalty) for the decoder using the enhanced posteriors, and the decoder using regular pos-
teriors [33]. Phoneme deletion penalty is a tuning factor and an engineering trick which is used for
numerical compensation of scores for different paths during decoding [32]. It can significantly affect
the recognition performance of standard HMM/ANN and HMM /GMM systems®*. We have setup some
experiments to investigate this issue.

We have used OGI Numbers’95 database for the experiments. Specifications of the database, spec-
tral features and regular MLP posteriors estimation is the same as mentioned in Section 4.1. We have
used a fully constrained model (as explained in Section 3.1) to get estimates of enhanced posteriors.
This means that we integrate full lexical and phonetic knowledge in the posterior estimation. The
obtained enhanced posteriors are then used as local scores for decoding. We have used NOWAY [34]
as the hybrid decoder. For comparison, regular phone posteriors are also used in the same decoder.
In order to compare the sensitivity of the systems (one using regular posteriors, and the other one
using enhanced posteriors), we vary the phone deletion penalty value in the decoder and observe the
change of performance for the two systems. Figure 8 shows the results. Comparing the two curves,
we can conclude that the decoder using enhanced posteriors is much less sensitive to tuning than the
one using regular posteriors (standard hybrid HMM/MLP system). HMM-based enhanced posteriors

4Usually this factor is tuned using a development set to get maximum performance, which does not guarantee the
same improvement on the test set, specially if the conditions (e.g. noise level, task, etc.) change. Sometimes it is even
tuned over the test set which is an incorrect practice as it shows optimistically biased results! In any case, there is no
strong theoretical explanation for tuning, it makes the system less robust against changes and it is time consuming.
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Figure 8: Comparing the sensitivity to tuning phone deletion penalty, for the decoder using enhanced
posteriors and the one using MLP posteriors. Phoneme deletion penalty is varied for the two decoders
and the performances are observed (on OGI Numbers’95 database). The inside diagram is a zoom
of performance curves for small values of phone deletion penalty (fine tuning). The decoder using
enhanced posteriors is much less sensitive to tuning ad-hoc parameters than the one using regular
MLP posteriors.

tend to have very close to binary values (similar to a decision), because they are estimated by inte-
grating some extra knowledge, while the MLP posteriors can change more smoothly between 0 and
1. Therefore, the accumulated scores obtained by enhanced posteriors during decoding tend to be
discrete, while it is continuous for the case of regular MLP posteriors. The tuning operation which
slightly changes the scores, affects the decision made based on continuous scores more than the one
made based on discrete scores. This means that the decoder using enhanced posteriors is much less
sensitive to tuning ad-hoc parameters.

5.2 MLP-Based Enhanced Posteriors

The MLP-based enhanced posteriors can also be used in the same way as regular posteriors for de-
coding. In this case, they are used as local scores instead of the regular posteriors in the hybrid
HMM/MLP configuration. We compare the performance of regular and enhanced posteriors for de-
coding. The comparison is done for the OGI Numbers and CTS databases. The specifications of
databases, regular MLP posteriors, and enhanced posterior estimation are the same as mentioned in
Section 4.2. We have used JUICER [35] as the hybrid decoder. In case of Numbers database, phones
are modeled with 5 states in the decoder. In case of CTS database, phones are modeled with 5 states,
and a bi-gram language model is used. Table 8 is showing the word recognition performances for
regular and enhanced posteriors. It can be observed that the enhanced posteriors are performing
significantly better than the regular posteriors for the two databases.

We have also done phone recognition experiments to compare the enhanced and regular posteriors
for phone recognition in a hybrid decoder. For the experiments, TIMIT database [14] is used. The
training data set consists of 3000 utterances from 375 speakers, cross validation data set consists of
696 utterances from 87 speakers and the test data set consists of 1344 utterances from 168 speakers.
There are 39 context independent phones. The acoustic features are PLP, delta and double delta
features. For estimating regular posteriors, we have used an MLP with 351 input nodes (9 frames of
PLPs), 1000 hidden nodes and 39 (corresponding to the number of phones) output nodes.
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’ Database \ Regular posteriors \ Enhanced posteriors

CTS 53.6% 49.2%
Numbers 9.9% 8.8%

Table 8: Word error rates (WER) on Numbers’95 and CTS tasks, for regular and enhanced phone posteriors.
The phone posteriors are used in hybrid HMM/MLP configuration for decoding. Enhanced posteriors perform
significantly better than the regular posteriors.

’ Error rates \ Regular posteriors \ Enhanced posteriors

FER 29.9% 27.4%
PER 31.2% 28.5%

Table 9: Frame error rates (FER) and phone error rates (PER) for regular and enhanced phone posteriors, on
TIMIT database. Lower FER and PER can be observed for enhanced posteriors as compared to the regular
posteriors.

In order to estimate enhanced posteriors, 19 frames temporal contexts of the regular posteriors are
post-processed by a secondary MLP (as explained in Section 3.2). This MLP has 741 (39x19) input
nodes, 1000 hidden nodes and 39 output nodes (corresponding to the number of phones). For the
phone recognition, we have used NOWAY [34] which is a hybrid HMM/ANN decoder. In this decoder,
each phone is modeled with 5 states, and a bi-gram phone level language model is used. Frame and
phone recognition results are shown in Table 9. The enhanced posteriors perform significantly better
than the regular posteriors for frame and phone recognition.

6 OTHER USAGES OF THE ENHANCED POSTERIORS

In this paper, the most conventional usages of the posteriors, i.e. as features for Tandem, and as local
scores for decoding was investigated for the case of enhanced posteriors. However, the usage of the
enhanced posteriors is not limited to these cases. In this section, we briefly study some other related
works:

6.1 Higher Level Posteriors

In [29], we have shown how the HMM-based posterior estimation approach can be used to estimate
higher level (e.g. word) posteriors at every frame. Basically, the same as phone posteriors, word
posteriors can be obtained by integrating posteriors of states belonging to a word in the HMM model:

p(wi|zy.r, M) = p(wi, s|zy.r, M)

p(w“sf, x1.T, M)p(sfh:l:Ta M)

= I 117

= p(’LU“Sf,SL‘lT,M)’Y(k7t)

=
Il
—

(15)

where w; is a word at time ¢t and w! represents the event “w; = i”. p(wi|s¥,z1.7, M) represents
the probability of being in a given word ¢ at time ¢ knowing to be in the state k at time ¢. Assuming
that there is no parameter sharing between words, it is deterministic and equal to 1 or 0.
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In this way, a word posterior at each frame p(w!|z.7, M) encoding phonetic and lexical knowledge
can be obtained. In [29], we have shown the application of these frames based word posteriors in
keyword spotting. At each frame ¢, we estimate a posterior for the keyword and a posterior for the
garbage unit. Comparing the two posteriors at each frame, we can have frame based decisions on
detecting the keyword. Counting the number of these decisions provides a score which is related
to the detected length of the keyword. This score is compared with a length based threshold to
enable the final decision on detecting the keyword. The main advantage of this techniques is simple
relation between thresholds and keyword characteristics such as length. This allows to predetermine
thresholds for new keywords (with no corresponding development set), which can be important in
practical keyword spotting systems. In the conventional keyword spotting approaches, the threshold
is an ad-hoc parameter which is not related to characteristics of the keyword in a simple way, and
should be tuned using a relatively huge development set. Therefore, it is not simple to predetermine
the threshold for a new keyword.

6.2 Out-Of-Vocabulary Word Detection

Another application of the enhanced posteriors is revealed when we measure the divergence between
the regular and enhanced posteriors [36]. The MLP posteriors p(g:|z:) can be interpreted as sensory
information representing data as a sequence of phone evidences. On the other hand, the HMM-based
enhanced posteriors p(q¢|z1.7, M), can be interpreted as the MLP phone posteriors enriched by the
M (phonetic and lexical knowledge), and context xi.p. Therefore, the difference between the two
posteriors can indicate cases that data (represented by MLP posteriors) does not match the assumed
prior phonetic and lexical knowledge. Since the two posteriors are estimated for every frame, we can
have a frame level measure of deviation, thus a frame level measure of match/mismatch (consistency)
between data and phonetic/lexical knowledge. The deviation can be measured using Kullback-Leibler
divergence:

o ) g
KL(S:, Cy) = 255109253

q: | T
Zp Qt‘x log ( |( j_Tt)ZW)
t 9

(16)

Where S; is the regular MLP posterior vector at frame t, and C; is the enhanced posterior vector at
frame t. S} and C} show the i'" element of the posterior vectors at frame ¢.

One of the applications of measuring this inconsistency is detecting Out-Of-Vocabulary (OOV)
words [36] in posterior based ASR. In case of an OOV word, the lexical knowledge does not match an
existing sample of data, resulting in large values of divergence between the two posteriors. In general,
the difference between the two posteriors can be used to detect any inconsistency in data or model.

7 SUMMARY AND CONCLUSION

In this paper, we first briefly discussed current approaches for estimating phone posteriors, and using
them as local scores or as features in ASR systems. Indeed, several approaches in that direction
have been shown to have a potential for improving state-of-the-art ASR systems. However, we also
believe that further progress in that direction will critically depends on improving the quality of these
posterior estimates.

Considering this fact, we proposed and discussed two approaches for enhancing phone posterior es-
timates, by integrating context and prior (phonetic and lexical) knowledge. The first approach uses an
HMM module to integrate this additional knowledge. The prior knowledge is encoded in the topology
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of the HMM. The regular MLP posteriors are used in HMM forward-backward recursions to integrate
context and prior knowledge, yielding enhanced phone posterior estimates. In the second approach,
a secondary MLP is used to post-process a temporal context of regular MLP posteriors, and learn
long term dependencies between these posteriors. These long term dependencies are prior phonetic
knowledge. During the inference (forward pass of the second MLP), the learned prior knowledge is
integrated in the phone posterior estimation, resulting in enhanced phone posteriors at the output of
the second MLP.

We have compared these enhanced posteriors with the regular MLP posteriors. The entropy studies
indicate that there is more consistency in the enhanced posteriors. Frame recognition studies show
consistently lower error rates for the enhanced posteriors. In the word recognition studies, again we
have observed that the enhanced posteriors perform consistently better than the regular posteriors
as complementary features in Tandem configuration, as well as local scores in hybrid HMM/MLP
configuration. The HMM-based enhanced posteriors should be used in combination with the regular
posteriors for improving the performance, while the ML P-based enhanced posteriors can be used as a
replacement to regular posteriors.

We believe that the present paper introduced a principled general framework for enhancing pos-
terior estimates in ASR systems. Based on this work, we can estimate a more informative phone
(or even higher level) posterior at every frame. Some of the advantages and applications of the new
posteriors were investigated. Many ASR algorithms get phone evidences at the frame level as input.
The new enhanced posteriors can thus be widely general purpose since they are estimated for phones
at every frame. One can think of other applications of regular MLP posteriors in ASR, and use the
new enhanced posteriors instead or in combination with the regular posteriors.
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