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Generative Spectrogram Factorization Models
for Polyphonic Piano Transcription
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Abstract—We introduce a framework for probabilistic genera-
tive models of time–frequency coefficients of audio signals, using
a matrix factorization parametrization to jointly model spectral
characteristics such as harmonicity and temporal activations and
excitations. The models represent the observed data as the super-
position of statistically independent sources, and we consider vari-
ance-based models used in source separation and intensity-based
models for non-negative matrix factorization. We derive a gener-
alized expectation-maximization algorithm for inferring the pa-
rameters of the model and then adapt this algorithm for the task
of polyphonic transcription of music using labeled training data.
The performance of the system is compared to that of existing dis-
criminative and model-based approaches on a dataset of solo piano
music.

Index Terms—Frequency estimation, matrix decomposition,
music information retrieval (MIR), spectral analysis, time–fre-
quency analysis.

I. INTRODUCTION

N UMEROUS authors have focused on the problem of
the transcription of solo recordings of polyphonic piano

music, using a wide variety of techniques and approaches.
There is some growing consensus on suitable evaluation criteria
to assess the performance of these systems, which is forming
within the MIREX community,1 particularly the “Multiple
Fundamental Frequency Estimation and Tracking task.” How-
ever, as a subset of these approaches, there also exist systems
which are capable of performing multiple-pitch classification
on individual time-localized frames of audio data, a task
known as frame-level transcription. In a data-driven approach,
frame-level transcription can be viewed as a preprocessing step,
whereas in a Bayesian approach, the frame-level transcription
is due to the signal source model, over which priors for the
transitions of note pitches between frames can be introduced.
Frame-level transcription can therefore be used to assess the
performance in isolation of the source model in a music tran-
scription system.
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A useful comparative study of three varied approaches has
been carried out by Poliner and Ellis in [1]. A dataset with
ground-truth of polyphonic piano music has been provided to
assess the performance of a support vector machine (SVM) clas-
sifier, [1], further improved with regards to generalization in
[2], which is provided as an example of a discriminative based
approach, having favorable performance in classification accu-
racy; a neural-network classifier [3], known as SONIC2; and an
auditory-model based approach [4].

Generative models, which rely on a prior model of musical
notes, which for example include [5]–[8], have not been com-
prehensively evaluated in such a framework, as Poliner and Ellis
pursue the insight that a prior model based on harmonics was
unnecessary for transcription.

Another class of techniques that have recently become pop-
ular for transcription are based on non-negative matrix factor-
ization, factorizing a matrix of time–frequency coefficients into
a codebook of spectral templates and an activation matrix from
which the transcription can be inferred. These approaches do not
typically have a prior model of musical notes, but this is readily
learned by supplying training data. Bayesian approaches allow
the inclusion of priors and more powerful inference techniques,
and these have been applied in the field of polyphonic music
transcription in [9]–[12].

The contribution of this paper is to extend the comparative
study in [1] to include non-negative matrix factorization ap-
proaches. The difficulty in applying these approaches to classifi-
cation is the joint problem of choosing the number of single rank
matrices (sources) to perform the approximation, and labeling
the activation matrix in terms of the active notes. However, by
adopting a prior structure conditioned on the pitch and velocity
of notes, and by adopting the generative interpretation of ma-
trix factorization as the superposition of independent sources,
we are able to address this in our inference scheme. We will
show that transcription is a result, or by-product, of inferring the
model parameters. Our emphasis will therefore be in designing
suitable models for the spectrogram coefficients in polyphonic
piano music and using transcription to assess the suitability of
such models, rather than selecting the optimum hyperparame-
ters in the prior for transcription performance.

The overview of the paper is as follows. In Section II,
we describe the non-negative matrix factorization (NMF)
model as applied to matrices of time–frequency coefficients
(spectrograms). This section includes a general formulation
of the model, and then two specific choices of signal model:
first, the commonly used NMF divergence measure, which
can be interpreted as a Poisson distribution with parametrized

2http://lgm.fri.uni-lj.si/SONIC
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intensity; second, a source separation model using the normal
distribution with zero mean and parametrized variance as the
source model, and finally derives the expectation-maximization
(EM) algorithm for finding the maximum a posteriori (MAP)
estimate of the parameters. In Section III, we describe how the
EM algorithm can be adapted to infer polyphonic frame-level
transcription, and describe a particular prior structure that
can be placed over the activation matrix. In Section IV, we
compare the performance of the matrix factorization models to
previously evaluated approaches, and in Section V we comment
on the implications of the comparison and how the inference
and prior structure can be improved further in the frame-level
transcription setting.

II. SPECTROGRAM FACTORIZATION MODELS

A. General Formulation

We construct a matrix of time–frequency coeffi-
cients, which is drawn from a probability distribution
parametrized by the product of a matrix of spectral templates

and an excitation or activation matrix .
The matrix product can be viewed as separating the observation
into conditionally independent sources
where each source matrix of time–frequency coefficients is pa-
rametrized by the rank-one product of the th column
vector of and the th row vector of . Each individual
source has the same probability distribution

and so the observed matrix is the superposition of the sources

(1)

The joint probability distribution of the observed matrix and
the sources model can be equivalently expressed as

which we will express more succinctly, by grouping the sources
together , as

The joint probability of the spectrogram factorization model is
thus

(2)

B. Expectation-Maximization Algorithm

For appropriate choices of probability distributions and con-
jugate priors, we can find a local maximum of the log likelihood
of the generative spectrogram factorization model efficiently by

the EM algorithm [13]. The log likelihood is approximated with
an instrumental distribution as follows:

The lower bound becomes tight when the instrumental distribu-
tion is the posterior distribution

which for posterior distributions in the exponential family, can
be calculated and represented solely in terms of its sufficient sta-
tistics. We can thus maximize the log likelihood iteratively by
means of coordinate ascent. Calculating the instrumental distri-
bution by means of its sufficient statistics is known as the expec-
tation step, and then the maximization step refers to the maxi-
mization of the bound by coordinate ascent. The EM algorithm
can be expressed as follows at iteration : the expectation step is

(3)

and the maximization step is

(4)

The expectation in (4) is with respect to the instrumental distri-
bution calculated in the previous expec-
tation step (3). The maximization step for these matrix factor-
ization models typically cannot be computed in a single step. It-
erative solutions are required, and it has been shown by Neal and
Hinton [14] that replacing the maximization step with a step that
merely increases the likelihood, rather than maximizing the like-
lihood, is sufficient for convergence. In the following sections,
we will describe two probabilistic source models with conjugate
priors in the exponential family. We derive the conditional pos-
terior distributions of the and parameters, and are able to
then increase the log likelihood in (4) by updating these param-
eters to be equal to the modes of the conditional posterior distri-
butions. We are permitted to perform as many updates of and

within the maximization step as desired, before computing
the expectations of the sources again, provided we confirm that
the log likelihood has indeed increased with each iteration.

The EM algorithm is partly Bayesian in that it maintains dis-
tributions over the sources and point estimates over the param-
eters. We can instead adopt a fully Bayesian approach, which
additionally maintains distributions over the parameters, by ap-
proximating the posterior distribution with a factored instru-
mental distribution . This type
of approximation is known as the mean-field approximation or
Variational Bayes (VB) [15]. In terms of implementing the al-
gorithm, we calculate the sufficient statistics of the parameters
in the VB method, rather than calculating the mode in the EM
method.
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C. Gaussian Variance Model

This model assumes that each element of the observation ma-
trix is distributed zero-mean normal, with the variance given
by the elements of . This source model has been applied in
audio source separation in [29] and time–frequency estimation
previously in [16]. An EM algorithm for the Gaussian variance
model has been presented in [30]. The likelihood is

As the elements of the template and excitation matrices are used
as the variance parameters of a normal distribution, we find it
convenient to represent prior information concerning these pa-
rameters using inverse-gamma distributions, which is the con-
jugate prior for the variance of a normal distribution. We use

to denote that has an inverse-gamma distribution
with shape and scale . The priors we use for the template
and excitation matrices are

To derive the expectation step, we require the conditional distri-
bution of the sources given the parameters. The posterior distri-
bution of the sources can be factorized into independent distri-
butions over the vector of source coefficients for each individual
time–frequency bin:

(5)

where the th element of the vector is , is the th
column vector of , and is the th row vector of . Note
that . Each vector has a multivariate
normal distribution, for which the sufficient statistics can be ex-
pressed compactly. Define the vector of responsibilities as

... (6)

then the mean value of under (5) is simply the observation
weighted by the responsibilities

and the correlation matrix of under (5) is

The maximization rules are most conveniently derived by
considering the conditional distributions of the posterior. As the

Fig. 1. Gaussian Variance: algorithm for polyphonic transcription.

priors are conjugate, these conditional distributions are them-
selves inverse-gamma. Collecting the terms of the joint distri-
bution dependent on the templates we have

and collecting the excitation terms we have

where the expectations in the above expressions are with respect
to the instrumental distribution . It can be
seen that these expectations are inverse-gamma distributions,
and we can update the parameters to be equal to the mode of
these distributions. A full algorithmic description is provided in
Fig. 1.

D. Poisson Intensity Model

In the previous section, we placed a variance parameter on
the coefficients of the spectrogram. The Poisson model on the
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other hand assigns an intensity parameter to the (non-negative)
magnitude of the spectrogram. This is a probabilistic interpre-
tation of the divergence measure

where in this section we use to refer to the squared magni-
tude of the spectrogram coefficients . This measure has be
shown by Smargadis and Brown [10] to have better properties
for music transcription in appropriately distributing the energy
of the signal into the correct sources than when using the Frobe-
nius norm measure. A simple algorithm involving iterative ap-
plication of matrix update rules has been described in [17] to
minimize this divergence measure, and this has been shown in
[11], [18], [19] to be equivalent to the EM algorithm for maxi-
mizing the likelihood, as mentioned in the original NMF papers
[17], [20]

where denotes that has a Poisson distribution with
intensity . In order to satisfy (1), it can be verified that

.
In an analogous manner to the variance model, we can put

gamma prior distributions on the parameters in a Bayesian set-
ting. We use to denote that has a gamma distribution
with shape and rate . The priors we use for the template and
excitation matrices are

To derive the expectation rule, we use the result that the poste-
rior distribution of the latent sources is multinomial [19], and
the mean value is again the observation weighted by the respon-
sibilities

where the responsibilities are defined the same as for the
Gaussian model (6). This particular result highlights both the
similarity in the construction of the variance and intensity
models, but also a weakness in the generative model with the
Poisson assumption. Both models construct the sources by
weighting the observations according to their relative energy,
however the variance model weights the coefficients them-
selves, which means the sources themselves have a physical
interpretation, while the intensity model weights the magnitude
of the coefficients, which is not physically realistic as the
magnitudes of the sources do not superimpose in practice to
result in the observations. Hence, the variance model is able to
model effects such as cancellation.

Fig. 2. Poisson Intensity: algorithm for polyphonic transcription.

The maximization rules result again from the conditional dis-
tributions of the posterior, which are gamma. Collecting the
terms for the templates in the joint distribution, we have

and collecting the excitation terms we have

where the expectations are with respect to .
These expectations are gamma distributions, and we can update
the parameters to be equal to the mode of these distributions. A
full algorithmic description is provided in Fig. 2.

III. PRIOR MODEL FOR POLYPHONIC PIANO MUSIC

In this section, we extend the prior model for the excitation
matrix to include MIDI pitch and velocity of the notes that are
playing in a piece of solo polyphonic piano music.
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A. Model Description

In this paper, we have chosen to rely on deterministic ap-
proaches to solve the transcription inference problem, as op-
posed to more expensive Monte Carlo approaches [21]. In this
section, we describe a quite general approach which lends itself
to any form of music for which the MIDI format is an admis-
sible representation of the transcription.

We select the maximum number of sources to be the total
number of pitches represented in the MIDI format. Each source

corresponds to a particular pitch. Then we have a single set
of template parameters for all sources, which
are intended to represent the spectral, harmonic information of
the pitches. For polyphonic transcription, we are typically inter-
ested in inferring the piano roll matrix which owing to the
above assumption of one source per pitch has the same dimen-
sions as the excitation matrix . For note at time we set

to be the value of the velocity of the note, and
if the note is not playing. We use the NOTE ON velocity, which
is stored in the MIDI format as a integer between 1 and 128.
Thus, we model note velocity using our generative model. This
contrasts with previous approaches which infer a binary-valued
piano roll matrix of note activity, essentially discarding poten-
tially useful volume information. The prior distribution
is a discrete distribution, which can incorporate note transition
probabilities and commonly occurring groups of note pitches,
i.e., chords and harmony information.

Our intuition is that a note with a larger velocity will have a
larger corresponding excitation. The magnitude of the excitation
will depend on the pitch of the note as well as its velocity. We
will represent this information as a set of a priori unknown pos-
itive-valued random vectors . In words, the values of

represent a mapping from the MIDI pitch and velocity to the
excitation matrix. For music transcription, we extend the prior
model on to include and . We
have

and the mapping itself is given by

otherwise.

As is a mapping to the excitation matrix, we place an inverse-
gamma prior (for the Gaussian variance model) or a gamma
prior (for the Poisson intensity model) over each element of .
The resulting conditional posterior over is of the same family
as the prior, and is obtained by combining the expectations of
the sources corresponding to the correct pitch and velocity.

The full generative model for polyphonic transcription is
given by

One advantage of this model is that minimal storage is re-
quired for the parameters which can be estimated offline from
training data, as we demonstrate in Section IV-B. The two sets
of parameters are intuitive for musical signals. This model also

allows closer modeling of the excitation of the notes that the
MIDI format allows.

B. Algorithm

The algorithm we use is a generalized EM algorithm. We it-
erate towards the maximum a posteriori solution of the marginal
likelihood

by marginalizing the latent parameters which has been cov-
ered in Section II-B, and which is straightforward given that

is deterministic. The posterior distribution of is
inverse-gamma as it is formed by collecting the estimates of
corresponding to each note pitch/velocity pairing.

To maximize for the piano roll we first note that each frame
of observation data is independent given the other parameters

. For each we wish to calculate

However, as each has possible values, an exhaustive
search to maximize this is not feasible. Instead, we have found
that the following greedy search algorithm works sufficiently
well: for each frame calculate

where differs from by at most one element, and is the
corresponding excitation matrix. There are possible set-
tings of for which we evaluate the likelihood at each stage of
the greedy search. This can be carried out efficiently by noticing
that during the search the corresponding matrix products
differ from the existing value by only a rank-one update of .

The resulting algorithm has one update for the expectation
step and three possible updates for the maximization step. For
the generalized EM algorithm to be valid, we must ensure that
any maximization step based on parameter values not used to
calculate the source expectations is not guaranteed to increase
the log likelihood, and therefore must be verified.

IV. RESULTS

A. Comparison

To comprehensively evaluate these models, we use Poliner
and Ellis training and test data [1] and compare the performance
against the results provided in the same paper, which are re-
peated here for convenience. The ground truth for the data con-
sists of 124 MIDI files of classical piano music, of which 24
have been designated for testing purposes and 13 are designated
for validation. In a Bayesian framework there is no distinction
between training and validation data: both are considered la-
beled observations. Here we have chosen to discard the vali-
dation data rather than include it in the training examples for
a fairer comparison with the approaches used by other authors.
Only the first 60 s of each extract is used.

The observation data is primarily obtained by using a soft-
ware synthesizer to generate audio data. In addition, 19 of
the training tracks and ten of the test tracks were synthesized
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Fig. 3. ���� templates (upper row) and ���� excitation (lower row) param-
eters estimated from training data for the Gaussian variance and Poisson inten-
sity models, with flat prior distributions. Both models capture the harmonicity
present in musical pitches in the spectral templates, and the excitation mapping
increases with increasing note velocity. For the excitation parameters, white
areas denote pitch/velocity pairs that are not present in the training data and
are thus unobserved.

and recorded on a Yamaha Disklavier. The audio, sampled at
8000 Hz, is then buffered into frames of length 128 ms with
a 10 ms hop between frames, and the spectrogram is obtained
from the short-time Fourier transform of these frames. Poliner
and Ellis subsequently carry out a spectral normalization step
in order to remove some of the timbral and dynamical variation
in the data prior to classification. However, we omit this pro-
cessing stage as we rather wish to capture this information in
our generative model.

B. Implementation

Because of the copious amount of training data available,
there is enough information concerning the frequencies of the
occurrence of the note pitches and velocities that it is not nec-
essary to place informative priors on these parameters.

It is not necessary to explicitly carry out a training run to
estimate values of the model parameters before evaluating
against the test data. However, the EM algorithm does converge
faster during testing if we first estimate the parameters from
the training data. Fig. 3 shows the parameters under the two
models after running the EM algorithm to convergence on the
training data only. The templates clearly exhibit the harmonic
series of the musical notes, and the excitations contain the
desired property that notes with higher velocity correspond to
higher excitation, hence our assumption of flat priors on these
parameters seems appropriate.

For each of the matrix factorization models we consider two
choices of the prior . The first assumes that each frame of data
is independent of the others, which is useful in evaluating the
performance of the source models in isolation. The second as-
sumes that each note pitch is independent of the others, and be-
tween consecutive frames there is a state transition probability,
where the states are each note being active or inactive, i.e.,

Fig. 4. Transcription with independent prior on �. The generative model has
not only detected the activity of many of the notes playing, but also has at-
tempted to jointly infer the velocity of the notes. Each frame has independently
inferred velocity, hence there is much variation across a note, however there is
correlation between the maximum inferred velocity during a note event and the
ground truth velocities.

Fig. 5. Transcription with Markov prior on �. The Markov prior on � has
eliminated many of the spurious notes detected, which are typically of a short
duration of a few frames.

The state transition probabilities are estimated from the training
data. It is possible and more correct to include these transition
probabilities as parameters in the model, but we have not carried
out the inference of note transition probabilities in this work.

C. Evaluation

Following training, the matrix of spectrogram coefficients is
then extended to include the test extracts. As the same two in-
struments are used in the training and test data, we simply use
the same parameters which were estimated in the training phase.
We transcribe each test extract independently of the others, yet
note that in the full Bayesian setting this should be carried out
jointly; however, this is not practical or typical of a reasonable
application of a transcription system. An example of the tran-
scription output for the first ten seconds of the synthesized ver-
sion of Burgmueller’s The Fountain is provided for the Gaussian
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Fig. 6. Ground truth for the extract transcribed in Figs. 4 and 5. We have used
only the information contained in note pitches, but the effect of resonance and
pedaling can be clearly seen in the transcriptions. This motivates the use of a
note onset evaluation criteria.

Fig. 7. Detection assessment. True positives are in light gray, false positives in
dark gray, and false negatives in black. Most of the difficulties encountered in
transcription in this particular extract were due to the positioning of note onsets
and offsets, rather than the detection of the pitches themselves.

variance model, both with independent ( Fig. 4) and Markov
priors ( Fig. 5) on , compared to the MIDI ground truth (
Fig. 6). The transcription is graphically represented in terms of
detections and misses in Fig. 7. We follow the same evaluation
criteria as provided by Poliner and Ellis. As well as recording
the accuracy ACC (true positive rate), the transcription is error
is decomposed into three parts: SUBS the substitution error rate,
when a note from the ground truth is transcribed with the wrong
pitch; MISS the note miss rate, when a note in the ground truth
is not transcribed, and FA the false alarm rate beyond substitu-
tions, when a note not present in the ground truth is transcribed.
These sum to form the total transcription error TOT which cannot
be biased simply by adjusting a threshold for how many notes
are transcribed.

Table I shows the frame-level transcription accuracy for the
approaches studied in [1]. We are using the same data sets and
features dimensions selected by the authors of this paper to com-
pare our generative models against these techniques. This table

Fig. 8. Number of errors for the Gaussian variance Markov model, categorized
by number of notes in a frame and by error type.

TABLE I
FRAME-LEVEL TRANSCRIPTION ACCURACY

TABLE II
FRAME-LEVEL TRANSCRIPTION RESULTS

expands the accuracy column in Table II by splitting the test
data into the recorded piano extracts and the MIDI synthesized
extracts.

Table II shows the frame-level transcription results for the
full synthesized and recorded data set. Accuracy is the true pos-
itive rate expressed as a percentage, which can be biased by
not reporting notes. The total error is a more meaningful mea-
sure which is divided between substitution, note misses, and
false alarm errors. This table shows that the matrix factorization
models with a Markov note event prior have a similar error rate
to the Marolt system on this dataset, but has a greater error rate
than the support vector machine classifier. Fig. 8 shows how the
error varies with different numbers of notes in a frame.

V. CONCLUSION AND FURTHER IMPROVEMENTS

We have compared the performance of generative spectro-
gram factorization models with three existing transcription sys-
tems on a common dataset. The models exhibit a similar error
rate as the neural-network classification system of [3]. However,
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the support vector machine classifier of [1] achieves a lower
error rate for polyphonic piano transcription on this dataset. In
this conclusion, we principally discuss the reasons for the dif-
ference in error rate of these systems, and how the generative
models can be improved in terms of inference and prior struc-
ture to achieve an improved performance.

The support vector machine is purely a classification system
for transcription, for which the parameters have been explic-
itly chosen to provide the best transcription performance on
a validation set; while the spectrogram factorization models,
being generative in nature, are applicable to a much wider range
of problems: source separation, restoration, score-audio align-
ment, and so on. For this reason, we have not attempted to select
priors by hand-tuning in order to improve transcription perfor-
mance, but rather adopt a fully Bayesian approach with an ex-
plicit model which infers correlations in the spectrogram coeffi-
cients in training and test data, and thus as a product of this infer-
ence provides a transcription of the test data. The differences in
this style of approach, and the subsequent difference in perfor-
mance, resemble that of supervised and unsupervised learning in
classification. Thus, in light of this, we consider the performance
of the spectrogram factorization models to be encouraging, as
they are comparable to an existing polyphonic piano transcrip-
tion system without explicitly attempting to improve the tran-
scription performance by tuning prior hyperparameters. Vincent
et al. [22], for instance, demonstrate the improvement in perfor-
mance for polyphonic piano transcription that can be achieved
over the standard NMF algorithm by developing improved basis
spectra for the pitches, and achieve a performance mildly better
than the neural-network classifier: a similar result to what has
been presented here, and conclude that an NMF-based system
is competitive in the MIREX classification task.

To improve performance for transcription in a Bayesian
spectrogram factorization, we can first improve initialization
using existing multiple frequency detection systems for spec-
trogram data, and extend the hierarchical model for polyphonic
transcription using concepts such as chords, keys. We can also
jointly track tempo and rhythm using a probabilistic model; for
examples of this see [23]–[25], where the model used could
easily be incorporated into the Bayesian hierarchical approach
here.

The models we have used have assumed that the templates
and excitations are drawn independently from priors; however,
the existing framework of gamma Markov fields [26]–[28] can
be used as replacements of these priors, and allows us to model
stronger correlations, for example, between the harmonic fre-
quencies of the same musical pitch, which additionally contain
timbral content, and also model the damping of the excitation of
notes from one frame to the next. It has qualitatively shown that
using gamma Markov field priors results in a much improved
transcription, and in future work we will use this existing frame-
work to extend the model described in this paper, expecting to
see a much improved transcription performance by virtue of a
more appropriate model of the time–frequency surface.

On this dataset, the Gaussian variance model has better per-
formance for transcription than the intensity-based model, and
we suggest that this is due to the generative model modeling
the weighting of the spectrogram coefficients directly, and thus

being a more appropriate model for time–frequency surface es-
timation. However, most of the literature for polyphonic music
transcription systems using matrix factorization models has fo-
cused on the KL divergence and modifications and enhance-
ments of the basic concept. Therefore, it would be useful to
first evaluate such variants of NMF against this dataset and other
systems used for comparing and evaluating music transcription
systems. Second, it would also be useful to replace the implicit
Poisson intensity source model in these approaches with the
Gaussian variance model, to the advantage of the better gen-
erative model.

In this paper, we have derived a generalized expectation-max-
imization algorithm for generative spectrogram factorization
models. However, with such schemes we experience slow
convergence to local maxima. Performance can be improved
using Monte Carlo methods [21] to generate samples from the
posterior distribution, using proposal distributions designed
from multiple frequency detector algorithms. Furthermore, in-
ference can be performed in an online manner for applications
that require this.

In summary, we have presented matrix factorization models
for spectrogram coefficients, using Gaussian variance and
Poisson intensity parametrization, and have developed in-
ference algorithms for the parameters of these models. The
suitability of these models has been assessed for the polyphonic
transcription of solo piano music, resulting in a performance
which is comparable to some existing transcription systems.
As we have used a Bayesian approach, we can extend the prior
structure in a hierarchical manner to improve performance and
model higher-level features of music.
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