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Abstract
This paper presents a novel probabilistic approach to speech enhancement. Instead of a
deterministic logarithmic relationship, we assume a probabilistic relationship between the
frequency coefficients and the log-spectra. The speech model in the log-spectral domain is a
Gaussian mixture model (GMM). The frequency coefficients obey a zero-mean Gaussian whose
covariance equals to the exponential of the log-spectra. This results in a Gaussian scale mixture
model (GSMM) for the speech signal in the frequency domain, since the log-spectra can be
regarded as scaling factors. The probabilistic relation between frequency coefficients and log-
spectra allows these to be treated as two random variables, both to be estimated from the noisy
signals. Expectation-maximization (EM) was used to train the GSMM and Bayesian inference was
used to compute the posterior signal distribution. Because exact inference of this full probabilistic
model is computationally intractable, we developed two approaches to enhance the efficiency: the
Laplace method and a variational approximation. The proposed methods were applied to enhance
speech corrupted by Gaussian noise and speech-shaped noise (SSN). For both approximations,
signals reconstructed from the estimated frequency coefficients provided higher signal-to-noise
ratio (SNR) and those reconstructed from the estimated log-spectra produced lower word
recognition error rate because the log-spectra fit the inputs to the recognizer better. Our algorithms
effectively reduced the SSN, which algorithms based on spectral analysis were not able to
suppress.

Index Terms
Gaussian scale mixture model (GSMM); Laplace method; speech enhancement; variational
approximation

I. Introduction
Speech enhancement improves the quality of signals corrupted by the adverse noise, channel
distortion such as competing speakers, background noise, car noise, room reverberations,
and low-quality microphones. A broad range of applications includes mobile
communications, robust speech recognition, low-quality audio devices, and aids for the
hearing impaired.

Although speech enhancement has attracted intensive research [1] and algorithms motivated
from different aspects have been developed, it is still an open problem [2] because there are
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no precise models for both speech and noise [1]. Algorithms based on multiple microphones
[2]–[4] and single microphone have also been successful in achieving some measure of
speech enhancement [5]–[13].

In spectral subtraction [5], the noise spectrum is subtracted to estimate the spectral
magnitude which is believed to be more important than phase for speech quality. Signal
subspace methods [6] attempt to find a projection that maps the signal and noise onto
disjoint subspaces. The ideal projection splits the signal and noise, and the enhanced signal
is constructed from the components that lie in the signal subspace. This approach has been
applied to single microphone source separation [14]. Other speech enhancement algorithms
have been based on audio coding [15], independent component analysis (ICA) [16] and
perceptual models [17].

Statistical-model-based speech enhancement systems [7] have proven to be successful. Both
the speech and noise are assumed to obey random processes and treated as random variables.
The random processes are specified by the probability density function (pdf) and the
dependency among the random variables is described by the conditional probabilities.
Because the exact models for speech and noise are unknown [1], speech enhancement
algorithms based on various models have been developed. The short-time spectral amplitude
(STSA) estimator [8] and the log-spectral amplitude estimator (LSAE) [9] use a Gaussian
pdf for both speech and noise in the frequency domain, but differ in signal estimation. The
STSA minimizes the minimum mean square error (MMSE) of the spectral amplitude, while
the LSAE minimizes the MMSE of the log-spectrum, which is believed to be more suitable
for speech processing. Hidden Markov models (HMMs) that include the temporal structure
has been developed for clean speech. An HMM with gain adaptation has been applied to the
speech enhancement [18] and to the recognition of clean and noisy speech [19]. Super-
Gaussian priors, including Gaussian, Laplacian, and Gamma densities, have been used to
model the real part and imaginary part of the frequency components [10], and the MMSE
estimator used for signal estimation. The log-spectra of speech has often been explicitly and
accurately modeled by the Gaussian mixture model (GMM) [11]–[13]. The GMM clusters
similar log-spectra together and represents them by a mixture component. The family of
GMM has the ability to model any distribution given a sufficient number of mixtures [20],
although a small number of mixtures is often enough. However, because signal estimation is
intractable, MIXMAX [11] and Taylor expansion [12], [13] are used. Speech enhancement
using the log-spectral domain models offers better spectral estimation and is more suitable
for speech recognition.

Previous models have estimated either the frequency coefficients or the log-spectra, but not
both. The estimated frequency coefficients usually produced better signal quality measured
by the signal-to-noise ratio (SNR), but the estimated log-spectra usually provided lower
recognition error rate, because higher SNR may not necessarily give a lower error rate. In
this paper, we propose a novel approach to estimating both features at the same time. The
idea is to specify the relation between the log-spectra and frequency coefficients
stochastically. We modeled the log-spectra using a GMM following [11]–[13], where each
mixture captures the spectra of similar phonemes. The frequency coefficients obey a
Gaussian density whose covariances are the exponentials of the log-spectra. This results in a
Gaussian scale mixture model (GSMM) [21], which has been applied to the time-frequency
surface estimation [22], separation of of the sparse sources [23], and musical audio coding
[24]. In a probabilistic setting, both features can be estimated. An approximate EM
algorithm was developed to train the model and two approaches, the Laplace method [25]
and the variational approximation [26], were used for signal estimation. The enhanced
signals can be constructed from either the estimated frequency coefficients or the estimated
log-spectra, depending on the applications.
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This paper is organized as the follows. Section II introduces the GSMM for the speech and
the Gaussian for the noise. In Section III, an EM algorithm for parameter estimation is
derived. Section IV presents the Laplace method and a variational approximation for the
signal estimation. Section V shows the experimental results and the comparisons to other
algorithms applied to enhance the speeches corrupted by speech shaped noise (SSN) and
Gaussian noise. Section VI concludes the paper.

Notation
We use x[t], y[t], and n[t] to denote the time domain signal for clean speech, noisy speech,
and noise, respectively. The upper cases Xkt, Ykt, and Nkt denote the frequency coefficients
for frequency bin k at frame t. The ξkt is the log-spectrum. The (ξk|μks, νks) is a Gaussian
density for ξkt. with mean μks and precision νks which is defined as the inverse of the
variance 1/νks = E{|ξk − μks|2|s}, where s is the mixture.

II. Gaussian Scale Mixture Model
A. Acoustic Model

Assuming additive noise, the time domain acoustic model is y[t] = x[t] + n[i]. After fast
Fourier transform (FFT) it becomes

(1)

where k denotes the frequency bin.

The noise is modeled by a Gaussian

(2)

with zero mean and precision 1/γk = E{|Yk − Xk|2}. Note this Gaussian is of a complex
variable, because the FFT coefficients are complex.

B. Improperness of the Log-Normal Distribution for Xk
If the log-spectra xk = log (|Xk|2) are modeled by a GMM, for each mixture s,

(3)

is a Gaussian with mean μks and precision νks. Express  by its real and imaginary
parts. Then  and , where θk is the phase. If the phase is uniformly
distributed, p(θk) = (1/2π), the pdf for Xk is , where Jk

is the Jacobian . We have
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(4)

as plotted in Fig. 1. This is a log-normal pdf because log (|Xk|2) is normally distributed. Note
that it has a saddle shape around zero. In contrast, for real speech, the pdf of the FFT
coefficients is super-Gaussian and has a peak at zero.

C. Gaussian Scale Mixture Model for Speech Prior
Instead of assuming xk = log (|Xk|2), we model this relation stochastically. To avoid
confusion, we denote the random variable for the log-spectra as ξk. The conditional
probability is

(5)

This is a Gaussian pdf with mean zero and precision e−ξk. Note that ξk controls the scaling of
Xk. Consider log p(Xk|ξk) = −ξk − e−ξk|X|2 − log π, and its maximum is given by

(6)

Thus, we term ξk the log-spectrum.

The phonemes of speech have particular spectra across frequency. To group phonemes of
similar spectra together and represent them efficiently, we model the log-spectra by a GMM

(7)

(8)

where s is the mixture index. Each mixture presents a template of log-spectra, with a
corresponding variability allowed for each template via the Gaussian mixture component
variances. The mixture may correspond to particular phonemes with similar spectra. Though
the precision for ξ is diagonal, p(ξ1,…, ξK) does not factorize over k, i.e., the frequency bins
are dependent. The pdf for Xk is

(9)
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which is the GSMM because ξk controls the scaling of Xk and obeys a GMM [21]. Note that
{X1,−, XK} are statistically dependent because of the dependency among {ξ1, −, ξK}.

The GSMM has a peak at zero and is super-Gaussian [21]. It is more peaky and has heavier
tails than Gaussian, as shown in Fig. 1. The GSMM, which is unimodal and super Gaussian,
is a proper model for speech and has been used in audio processing [22]–[24].

III. EM Algorithm for Training the GSMM
The parameters of the GSMM, θ = {μks, νks, p(s)}, are estimated from the training samples
by maximum likelihood (ML) using EM algorithm [27]. The log-likelihood is

(10)

The inequality holds for any choice of distribution q due to Jensen’s inequality [28]. The
EM algorithm iteratively optimizes (q, θ) over q and θ. When q equals the posterior
distribution q(ξ1t, … ξKt, st) = p(ξ1t, …, ξKt, st|X1t, …, Xkt), the lower bound is tight, {q, θ)
= (θ). The details of the EM algorithm are given in the Appendix.

IV. Two Signal Estimation Approaches
To recover the signal, we need the posterior pdf of the speech. However, for sophisticated
models, the closed-form solutions for the posterior pdf are difficult to obtain. To enhance the
tractability, we use the Laplace method [25] and a variational approximation [26].

Each frame is independent and processed sequentially. The frame index t is omitted for
simplicity. We rewrite the full model as

(11)

where p(Yk|Xk) is given by (2), p(Xk|ξk) is given by (5), p(ξk|s) is a GMM given in (8) and
p(s) is the mixture probability.

A. Laplace Method for Signal Estimation
The Laplace method [25] computes maximum a posteriori (MAP) estimator for each s. We
estimate Xk and ξk by maximizing

(12)

For fixed ξk, the MAP estimator for Xk is
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(13)

For fixed Xk, the optimization over ξk can be performed using Newton’s method.

(14)

where (∂hs(Xk, ξk)/∂ξk) = −1 + e−ξk|Xk|2 − νks{ξk − μks) and
. This update rule is initialized by both ξks = μks, the

means of GSMM and ξks = log|Yk|2, the noisy log-spectra. After iterating to convergence, the
ξks that gives higher value of hs(Xk, ξk) is selected. Note that because hs(Xk, ξk) is a concave
function in ξk, , Newton’s method works efficiently.

Denote the convergent value for ξks from (14) as ξ ̄ks and compute X̄ks using (13). We obtain
the MAP estimators

(15)

Because the true s is unknown, the estimators are averaged over all mixtures. The posterior
mixture probability is

(16)

where p(Xk|s) = ∫p(Xk|ξk)p(ξk|s)dξk. This integral is intractable. The p(Xk|s) has zero mean
and variance βks = ∫|Xk|2p(Xk|s)dXk = eμks+1/(2νks), and is approximated by p(Xk|s) ≈ (Xk|0,
1/βks). Under this approximation, we have

(17)

The estimated signal can be constructed from the average of either X̄ks or ξ ̄ks, weighted by
the posterior mixture probability

(18)
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(19)

(20)

where the phase of the noisy signal ∠Yk is used. The time domain signal is synthesized by
applying inverse fast Fourier transform (IFFT).

B. Variational Approximation for Signal Estimation
Variational approximation [26] employs a factorized posterior pdf. Here, we assume the
posterior pdf over Xk and ξk conditioned on s factorizes

(21)

The difference between q and the true posterior is measured by the Kullback–Leibler (KL)-
divergence [28], D, defined as

(22)

where Eq is the expectation over q. Choose the optimal q that is closest to the true posterior
in the sense of the KL -divergence, q = arg minq D(q||p).

Following the derivation in [26], the optimal q(Xk|s) satisfies

(23)

As shown later in (28), we can use q(ξk|s) = (ξk|ξ ̄ks, ψks). Because the above equation is
quadratic in Xk, q(Xk|s) is Gaussian

(24)

(25)

(26)

The optimal q(ξk|s) that minimizes D(q||p) is
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(27)

Because this pdf is hard to work with, we use the Laplace method to approximate it by a
Gaussian

(28)

(29)

(30)

The ρks is chosen to be the posterior mode, ρks = ξ ̄ks, the update rule is

(31)

(32)

The ψks > 0 indicates log q(ξk|s) is a concave function in ξk, thus Newton’s method is
efficient.

The variational algorithm is initialized with ξks = log(|Yk|2) and ϕks = γk + exp(−ξks). Note
that X̄ks in (25) can be substituted into (31) and (32) to avoid redundant computation. Then
the updates over ψks, ξks and ϕks iterate until convergence.

To compute the posterior mixture probability, we define

(33)

The posterior mixture probability is
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(34)

(35)

The function log(Z) = log p(Y1, …, YK) − D(q||p) increases when D(q||p) decreases. Because
we use a Gaussian for q(ξk|s), log(Z) is not theoretically guaranteed to increase, but it is used
empirically to monitor the convergence.

With the estimated log-spectra ξ ̄ks, FFT coefficients X̄ks, and posterior mixture probability
q(s), signals are constructed in two ways given by (18) and (20). Time domain signal is
synthesized by applying IFFT.

V. Experiments
The performances of the algorithms were evaluated using the materials provided by the
speech separation challenge [29].

A. Dataset Description
The data set contained six-word segments of 34 speakers. Each segment was 1–2 seconds
long sampled at 25 kHz. The acoustic signal followed the grammar, 〈$command〉 〈$color〉
〈$preposition〉 〈$letter〉 〈$number〉 〈$adverb〉. There were 25 choices for letter (A–Z except
W), ten choices for number and four choices for others. The training set contained segments
of clean signals for each speaker, and the test set contained speeches corrupted by noise. The
spectra of speech and noise averaged over one segment are shown in Fig. 2. In the plot, the
speech and noise have the same power, i.e, 0-dB SNR. Because the spectrum of noise has
the similar shape to that of speech, it is called speech shape noise (SSN). The test data
consisted of noisy signals at four different SNRs, −12 dB, −6 dB, 0 dB, and 6 dB. There
were 600 utterances for each SNR condition from all 34 speakers who contributed roughly
equally. The task is to recover the speech signals corrupted by SSN. The performances of
the algorithms were compared by the word recognition error rate using the provided speech
recognition engine [29].

To evaluate our algorithm under different types of noise, we added the white Gaussian noise
to the clean signals at SNR levels of −12 dB, −6 dB, 0 dB, 6 dB, 12 dB, to generate noisy
signals.

The signal is divided into frames of length 800 with half over-lapping, and a Hanning
window of size 800 is applied to each frame. Then a 1024-point FFT is performed on the
zero-padded frames to extract the frequency components. The log-spectral coefficients were
obtained by taking the log magnitude of the FFT coefficients. Due to the symmetry of FFT,
only first 513 components were kept.

B. Training the Gaussian Scale Mixture Model
The GSMM with 30 mixtures was trained using 2 min of signal concatenated from the
training set for each speaker. We applied the k-mean algorithm to partition the log-spectra
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into k = 30 clusters. They were used to initialize the GMM which was further trained by
standard EM algorithm. Initialized by the GMM, we ran the derived EM algorithm in
Section III to train the GSMM. After training, the speech model was fixed and served as
signal prior. It was not updated when processing the noisy signals.

C. Benchmarks for Comparison
The benchmark algorithms included the Wiener filter, STSA [8], the perceptual model [17],
the linear approximation [12], [13], and the super-Gaussian model [10]. The spectrum of
noise was assumed to be known and estimated from the noise.

1) Wiener Filter—The time varying Wiener filter makes use of the power of the signal and
noise, and assumes they are stationary for a short period of time. In the experiment, we first
divided the signals into frames of 800 samples long with half overlapping. The power of
speech and noise was constant within each frame. To estimate them, we further divided each
frame into sub-frames of 200-sample long with half overlapping. The sub-frames are zero-
padded to 256 points, Hanning windows were applied and a 256-points FFT was performed.
The average power of FFT coefficients over all sub-frames belong to frame t gave the
estimation of the signal power, denoted by . The same method was used to compute the
noise power denoted by . The signal was estimated as  where j is
the sub-frame index and k denotes the frequency bin. Applying IFFT on Xtjk, each frame can
be synthesized by overlap-adding the sub-frames, and the estimated speech signal was
obtained by overlap-adding the frames.

The performance of the Wiener filter can be regarded as an experimental upper bound. The
signal and noise power was derived locally for each frame from the clean speech and noise.
So the Wiener filter contained strong detailed speech priors.

2) STSA—After performing the 1024-point FFT on the zero-padded frames of length 800.
The STSA models the FFT coefficients of the speech and noise by a single Gaussian,
respectively, whose variances are estimated from clean signal and noise. The amplitude
estimator is given by [8, Eq. (7)].

3) Perceptual Model—Because we consider the SSN, it is interesting to test the
performance of the perceptually motivated noise reduction technique. The spectral similarity
may pose difficulty to such models. For this purpose, we included the method described in
[17]. The algorithm estimated the spectral amplitude by minimizing the cost function

(36)

where âk is the estimated spectral amplitude and ak is the true spectral amplitude. This cost
function penalizes the positive and negative errors differently, because positive estimation
errors are perceived as additive noise and negative errors are perceived as signal attenuation
[17]. Because of the stochastic property of speech, âk minimizes the expected cost function

(37)
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where αk is the phase and p(αk, ak|Yk) is the posterior signal distribution. Details of the
algorithm can be found in [17]. The MATLAB code is available online [30]. The original
code adds synthetic white noise to the clean signal, we modified it to add SSN to corrupt a
speech at different SNR levels.

4) Linear Approximation—This approach was developed in [12], [13] and worked in the
log-spectral domain. It assumed a GMM for the signal log-spectra and a Gaussian for the
noise log-spectra. So the noise had a log-normal density, in contrast to Gaussian noise. The
relationship among the log-spectra of the signal x, the noisy signal y and the noise n is given
by

(38)

where εk is an error term.

However, this nonlinear relationship causes intractability. A linear approximation was used
in [12], [13] by expanding (38) around z̃ks = (xk̃s, ñks)T linearly. This approximation provided
efficient speech enhancement. The choice for z̃ks can be iteratively optimized.

5) Super-Gaussian Prior—This method was developed in [10]. Let XR = Re{X} and XI =
Im{X} denote the real and the imaginary part of the signal FFT coefficients. They were
processed separately and symmetrically. We consider the real part and assume XR obey
double-sided exponential distribution

(39)

Assume the Gaussian noise N with density . Here,  and  are the means
of |X|2 and |N|2, respectively. Let  be the a priori SNR, YR = Re{Y} be the real part
of the noisy signal FFT coefficient. Define , and . It
was shown in [10, Eq. (11)] that the optimal estimator for the real part is

(40)

where erfc(x) denotes the complementary error function. The optimal estimator for the
imaginary part X̂I was derived analogously in the same manner. The FFT coefficient
estimator was given by X̂ = X̂R + iX̂I.

D. Comparison Criteria
We employed two criteria to evaluate performance of all algorithms: SNR and word
recognition error rate. In all experiments, the estimated time domain signals x̂[t] were
normalized such that they have the same power as the clean signals.

1) Signal-to-Noise Ratio (SNR)—SNR is defined in the time domain as
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(41)

where x[t] is the clean signal and x̂[t] is the estimated signal.

2) Word Recognition Error Rate—The speech recognition engine based on the HTK
package was provided on the ICSLP website [29]. It extracts 39 features from the acoustic
waveforms, including 12 Mel-frequency cepstral coefficients (MFCC) and the logarithmic
frame energy, their velocities (Δ MFCC) and accelerations (ΔΔ MFCC). The HMM with no
skipover states and two states for each phoneme was used to model each word. The emission
probability for each state was a GMM of 32 mixtures, of which the covariance matrices are
diagonal. The grammar used in the recognizer is the same as the one shown in Section V-A.
More details about the recognition engine are provided at [29].

To compute the recognition error rate, a score of {0, 1, 2, 3} was assigned to each utterance
depending on how many key words (color, letter, digit) were incorrectly recognized. The
average word recognition error rate was the average of the scores of all 600 testing
utterances divided by 3, i.e., the percentage of wrongly recognized key words. This was
carried out for each SNR condition.

E. Results
1) Speech Shaped Noise—We applied the algorithms to enhance the speech corrupted
by SSN at four SNR levels and compared them by SNR and word recognition error rate. The
Wiener filer was regarded as an experimental upper bound, because it incorporates detailed
signal prior from the clean speech.

The spectrograms of female speech and male speech are shown in Figs. 3 and 4,
respectively. Fig. 5 shows the output SNR as a function of input SNR for all algorithms. The
output SNR is averaged over the 600 test segments. Fig. 6 plots the word recognition error
rate.

The Wiener filter outperformed other methods in low SNR conditions. This is because the
power of noise and speech was calculated locally, and it incorporated detailed prior
information. The perceptual model and STSA failed to suppress the SSN because of the
spectral similarity between the speech and the noise. The linear approximation gave very
low word recognition error rate, but not superior SNR. The reason is that, using a GMM in
the log-spectral domain as speech model, it reliably estimated the log-spectrum which is a
good fit to the recognizer input (MFCC). Because the super-Gaussian prior model treated
the real and imaginary parts of the FFT coefficients separately, it provided less accurate
spectral amplitude estimation and was inferior to the linear approximation. Both the Laplace
method and variational approximation, based on GSMM for the speech signal, gave superior
SNR for signals constructed from the estimated FFT coefficients and lower word
recognition error rate for signals constructed from the estimated log-spectra. This agreed
with the expectation that frequency domain approach gave higher SNR, while log-spectral
domain method was more suitable for speech recognition. In comparing the two methods,
the variational approximation performed better than the Laplace method in the high SNR
range. It is hard to compare them in the low SNR range, because speech enhancement was
minimal.

Hao et al. Page 12

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2011 February 25.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



Perceptually, the Wiener filter gave smooth and natural speeches. The signals enhanced by
STSA, perceptual model, and supper-Gausian prior model, contained obvious noise, because
such techniques are based on spectral analysis and failed to remove the SSN. The linear
approximation removed the noise, but the output signals were discontinuous. For the
algorithms based on Gaussian scale mixture models, the signals constructed from the
estimated FFT coefficients were smoother than those constructed from the log-spectra. The
reason was that the perceptual quality of signals was sensitive to the log-spectra, because the
amplitudes were obtained by taking the exponential of the log-spectra. The discontinuity in
the log-spectra was more noticeable than that in the FFT coefficients. Because the phase of
the noisy signals was used to synthesize the estimated signals, the enhanced signals
contained reverberation. Among all the algorithms, we found GSMM with Laplace method
gave the most satisfactory results, the noise was removed and the signals were smooth. The
examples are available at http://chord.ucsd.edu/~jiucang/gsmm.

2) White Gaussian Noise—We also applied the algorithms to enhance the speeches
corrupted by the white Gaussian noise. For this experiment, we tested them under five SNR
levels: −12 dB, −6 dB, 0 dB, 6 dB, and 12 dB. The algorithms were the same as the
previous section. Fig. 7 shows the output SNRs and Fig. 8 plotts the word recognition error
rate.

We noticed that all the algorithms were able to improve the SNR. The signals constructed
from the FFT coefficients estimated from the GSMM with Laplace method gave the best
output SNR for all SNR inputs. The spectral analysis models, like STSA and perceptual
models, were able to improve the SNR too, because of the spectral difference between the
signal and noise. The algorithms that estimated the log-spectra (Linear, GSMM Lap LS, and
GSMM VarLS) gave the lower word recognition error rate, because the log-spectra
estimation was a good fit to the recognizer. For the GSMM, the FFT coefficients estimation
offered better SNR and log-spectra estimation offered lower recognition error rate, as
expected.

Although STSA, perceptual model and super-Gaussian prior all increased SNR, the residual
noise was perceptually noticeable. Signals constructed from the estimated log-spectra
sounded less continuous than signals constructed from the estimated FFT coefficients.
However, the signals sounded like being synthesized, because the phase of the noisy signal
was used. The examples are available at http://chord.ucsd.edu/~ji-ucang/gsmm.

VI. Conclusion
We have presented a novel Gaussian scale mixture model for speech signal and derived two
methods for speech enhancement: the Laplace method and a variational approximation. The
GSMM treats the FFT coefficients and log-spectra as two random variables, and models
their relationship probabilistically. This enables us to estimate both the FFT coefficients,
which produce better signal quality in the time domain, and the log-spectra, which are more
suitable for speech recognition. The performances of the proposed algorithms were
demonstrated by applying them to enhance speech corrupted by SSN and the white noise.
The FFT coefficients estimation gave higher SNR, while the log-spectra estimation
produced lower word recognition error rate.
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Appendix EM Algorithm for Training the GSMM
We present the details for the EM algorithm here. The parameters are estimated by
maximizing the log-likelihood which is given by (10).

Expectation Step
When q(ξkt|st)q(st) equals to the posterior distribution, the cost (q, θ) equals to (θ) and is
maximized. The q(ξkt|st) is computed as

(42)

where c is a constant. There is no closed-form density, we use Laplace method [25]
approximate q by a Gaussian

(43)
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(44)

(45)

where ξ ̂ktst is chosen to be the mode of the posterior and is iteratively updated by

(46)

This update rule is equivalent to maximizing log q(ξkt|st) using the Newton’s method

(47)

Take the derivative of (q, θ) with respect to q(st) and set it to zero, we can obtain the
optimal q(st). Define

(48)

Then q(st) can be obtained as

(49)

(50)

Maximization Step
The M-step optimizes (q, θ) over the model parameters θ
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(51)

(52)

(53)

The cost  is computed as  = Σt log(Zt) which can be used empirically to monitor the
convergence, because the  is not guaranteed to increase due to the approximation in the E-
step.

The parameters of a GMM trained in the log-spectral domain are used to initialize the EM
algorithm. The E-step and M-step are iterated until convergence, which is very quick
because ξk simulates the log-spectra.
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Fig. 1.
Distributions for the real part of Xk, with its imaginary part fixed at 0. The log-normal
(dotted) has two modes. The GSMM (solid) is more peaky than Gaussian (dashed).
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Fig. 2.
Plot of spectra of noise (dotted line) and clean speech (solid line) averaged over one
segments under 0-dB SNR. Note the similar spectral shape.
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Fig. 3.
Spectrogram of a female speech “lay blue with e four again.” (a) Clean speech; (b) noisy
speech of 6-dB SNR; (c–j) enhanced signals by (c) Wiener filter, (d) STSA, (e) perceptual
model (Wolfe), (f) linear approximation (Linear), (g) super Gaussian prior (SuperGauss), (h)
FFT coefficients estimation by GSMM using Laplace method, see (18), (i) log-spectra
estimation by GSMM using Laplace method, see (20), (j) FFT coefficients estimation by
GSMM using variational approximation, (k) log-spectra estimation by GSMM using
variational approximation.
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Fig. 4.
Spectrogram of a male speech “lay green at r nine soon.” (a) Clean speech; (b) noisy speech
of 6-dB SNR; (c–i) enhanced signal by various algorithms. See Fig. 3.
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Fig. 5.
Output SNRs as a function of the input SNR for nine models (inset) for the case that the
speeches are corrupted by SSN. See Fig. 3 for description of algorithms.
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Fig. 6.
Word recognition error rate as a function of the input SNR for nine models (inset) for the
case that the speeches are corrupted by SSN. See Fig. 3 for description of algorithms.
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Fig. 7.
Output SNRs as a function of the input SNR for nine models (inset) for the case that the
speeches are corrupted by white Gaussian noise. See Fig. 3 for description of algorithms.

Hao et al. Page 26

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2011 February 25.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



Fig. 8.
Word recognition error rate as a function of the input SNR for nine models (inset) for the
case that the speeches are corrupted by white Gaussian noise. See Fig. 3 for description of
algorithms.
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