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Abstract—The synthesis of child speech presents challenges both
in the collection of data and in the building of a synthesizer from
that data. We chose to build a statistical parametric synthesizer
using the hidden Markov model (HMM)-based system HTS, as
this technique has previously been shown to perform well for
limited amounts of data, and for data collected under imperfect
conditions. Six different configurations of the synthesizer were
compared, using both speaker-dependent and speaker-adap-
tive modeling techniques, and using varying amounts of data.
For comparison with HMM adaptation, techniques from voice
conversion were used to transform existing synthesizers to the
characteristics of the target speaker. Speaker-adaptive voices
generally outperformed child speaker-dependent voices in the
evaluation. HMM adaptation outperformed voice conversion style
techniques when using the full target speaker corpus; with fewer
adaptation data, however, no significant listener preference for
either HMM adaptation or voice conversion methods was found.

Index Terms—Children, hidden Markov models (HMMs),
speech synthesis.

I. INTRODUCTION

T HE synthesis of child speech presents special difficul-
ties for data-driven speech synthesis systems due to the

type of child speech corpus typically available. Unit selection
speech synthesis (e.g., [3]), which has come to be the dominant
approach to data-driven speech synthesis over the last decade,
produces waveforms for arbitrary novel utterances by directly
reusing existing sections of waveform from a database. One of
the major strengths of this approach is that in ideal conditions,
natural waveforms are reused directly with no need for manip-
ulation of spectrum or fundamental frequency and the degrada-
tion of speech quality that this manipulation entails. However,
some of the major drawbacks of unit selection stem from the
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same source: if the database is imperfect, this will have a direct
impact on the quality of the speech synthesized. Imperfections
include speaker inconsistency, background noise, and poor pho-
netic coverage, all problems typically associated with available
child speech data.

Statistical parametric approaches to speech synthesis (such
as hidden Markov model (HMM)-based speech synthesis)
have grown in popularity over the last few years [4]. These
approaches have been shown to be less sensitive than unit
selection to imperfect training data [5]. In HMM-based speech
synthesis, use of parameter sharing techniques allows the
synthesis of models for speech units unseen in the training
corpus; this contrasts with the corresponding strategy that
must be used in unit selection where the system must select a
substitute unit, typically on the basis of heuristics. Unlike unit
selection synthesis, already-trained HMM-based systems can
be adapted to the voice characteristics of a target speaker with
small amounts of adaptation data. The fact that it is possible
to use HMMs that have been trained on cleanly recorded data,
rich in phonetic contexts, as the basis for adaptation means
that high-quality speech can be synthesized even when the
adaptation data is noisy and sparse.

Adaptation has been used to impose various types of char-
acteristics onto existing statistical parametric synthesizers,
for example, characteristics associated with dialect [6] and
speaking style [7]. In [1], we applied adaptation techniques
(among others) to the creation of what (to our knowledge) is
the first data-driven synthesizer of child speech. We present
this work here with fuller analysis and with a comparison be-
tween HMM adaptation techniques and techniques from voice
conversion for the transformation of an existing synthesizer to
a child speaker.

This paper is organized as follows. Section II describes
a corpus of child speech data collected especially for this
research and compares its suitability for use in training speech
synthesizers with that of a purpose-built speech synthesis
corpus. Section III describes the systems built with the child
speaker as target speaker, and Section IV reports evaluation of
these systems. We conclude the paper by briefly summarizing
our findings in Section V.

II. CHILD SPEECH DATA

The training of data-driven synthesis systems for child voices
presents difficulties due to the type of data which it is gener-
ally feasible to collect from child speakers. Data-driven speech
synthesizers are conventionally trained on corpora that are pho-
netically balanced, consistently read, and cleanly recorded. A
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good example of such a corpus is the CMU Arctic database, de-
signed and recorded by several adult speakers specifically for
the purpose of speech synthesis [8]. The type of child speech
typically available, on the other hand, more closely resembles
“found” data in that it does not give good coverage of the pho-
netic/prosodic units of the language, is inconsistently read, and
is imperfectly recorded. An example of such a child speech
corpus is the one collected and prepared in the work described
here. A comparison of this corpus with one part of the CMU
Arctic database (the data of speaker SLT, which will here be re-
ferred to simply as SLT) will be made in order to highlight the
problems inherent in the sort of child speech data corpus typi-
cally available. We begin with a brief overview of the collection
of what will here be called the Child corpus before moving on
to make the comparison with the more conventional database.

A. Child Database: Overview

The North American-accented English speech of a 7-year
old tri-lingual (Spanish, English, German) female was collected
using a headset microphone in an informal setting at the home
of one of the authors over the course of several months. The sub-
ject was very familiar with parts of the story book text, which
she was allowed to read without interruption. A total of just over
100 minutes (after processing) of speech data were collected.

B. Recording Conditions

A database to be used for speech synthesis should ideally be
well recorded, free from reverberation and background noise
and have consistent acoustic quality. This is the case with SLT,
which was recorded in a purpose-built studio. As noted above,
the Child corpus—on the other hand—was recorded using a
headset microphone in the home of one of the authors: it is more
difficult to get a child into the studio than a paid voice talent.
Consequently, the recordings contain considerable background
noise, including the sounds of traffic and wildlife, and rever-
beration. The speech was collected without interruption and so
utterances were interspersed with sighs, page turns, and other
non-speech sounds which it was not possible in all instances
to remove without also excising valuable speech data. Fig. 1
shows spectrograms of three short excerpts from the recordings
showing background noise fairly typical of these data.

C. Speaker Variability

Children do not typically have the vocal and emotional con-
trol necessary to minimize inconsistency during and between
recording sessions. Use of a coherent “script” (storybook text)
enjoyable to the speaker increases the effects of emotional en-
gagement with what is being read, which may be problematic
from a speech synthesis perspective. In the present case, it led
at times to fluctuations in speech quality and a variable reading
style very different from that which can be heard in the SLT
data, with the child speaker screaming, singing, and chanting
at appropriate points in the story and deliberately altering voice
quality to act out characters’ parts. Children can only be per-
suaded to record data in short sessions, with the result that the
recordings of the Child corpus were made over several months,
an additional cause of inter-session variation.

Fig. 1. Spectrograms of portions of the collected child data, showing over-
lapping speech and background noise. The North American-accented English
speech of a seven-year old trilingual (Spanish, English, German) female was
collected using a headset microphone in an informal setting at the home of one
of the authors over the course of several months. Consequently, the recordings
contain considerable nonspeech sounds, including the sounds of hammering,
page turning, traffic, and wildlife, and reverberation.

Artistic engagement with the recording script and short
recording sessions aside, a high degree of innate variability is a
well-known characteristic of children’s speech, in comparison
with the speech of adults (e.g., [9]). Fig. 2 plots of values,
power, and duration of a single phone type (/aa/) from the Child
and SLT databases. It can be seen that not only does the child
speech have generally higher fundamental frequency values,
lower power, and longer duration values than that of the adult,
but all these factors have wider ranges.

D. Database Coverage

An established way to create prompts for speech synthesis
databases is to select utterances from a large corpus of text
according to some criterion of phonetic coverage (e.g., [8]).
Recording scripts resulting from this type of procedure, while
phonetically well-balanced, are not coherent texts that a seven-
year-old child could be persuaded to read. It is more feasible to
use, for example, story books familiar to the child, as was done
in the work presented here. This results in a corpus with compar-
atively poor phonetic coverage. Table I gives figures for triphone
and quinphone coverage of four corpora. The information given
for each corpus includes number of tokens, number of triphone
and quinphone types, along with Type-Token Ratios (TTR) for
triphones and quinphones. TTRs are a measure of the richness
of the content of the corpora, a TTR of 1.0 indicating that a
each token of a corpus is of a different type, thus representing
the maximum coverage a corpus of that size could provide. The
first two corpora are the Child corpus and SLT. SLT2 denotes a
large subset taken from the beginning of the SLT corpus which
contains the same number of tokens as the Child corpus. This
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Fig. 2. Plots of � , power and duration of phone /aa/ for Child and SLT corpora. Medians are shown as red bars across boxes indicating quartiles, and whiskers
extend to 1.5 times the inter-quartile range. It can be seen that not only does the child speech have generally higher fundamental frequency values, lower power,
and longer duration values than that of the adult, but all these factors have wider ranges.

TABLE I
COVERAGE OF VARIOUS DATABASES. SLT WAS COMPILED FOR SPEECH SYNTHESIS USING A PHONETIC COVERAGE CRITERION, SLT2 IS A SUBSET

OF SLT OF THE SAME SIZE AS CHILD INCLUDED HERE FOR FAIR COMPARISON OF TYPE-TOKEN RATIOS. SNARK WAS COMPILED FROM TEXT

OF THE SAME DOMAIN AS SLT BUT WITHOUT THE PHONETIC COVERAGE CRITERION. THE TOP HALF GIVES COUNTS AND RATIOS OVER ALL

UNITS IN THE CORPORA. THE BOTTOM HALF GIVES INFORMATION EXCLUDING TOKENS CONTAINING THE PAU TOKEN (EITHER AS CENTRAL

PHONE OR ANY OF THE FOUR POSSIBLE LEFT AND RIGHT CONTEXTS). THE CHILD CORPUS COLLECTED USING CHILDREN’S STORIES HAS

WORSE COVERAGE NOT ONLY THAN THE PURPOSE-BUILT RECORDING SCRIPT, BUT ALSO THAN NORMAL LITERATURE FOR ADULTS WITH

NO SELECTION CRITERION APPLIED. (a) ALL TYPES/TOKENS COUNTED. (b) TYPES/TOKENS CONTAINING PAUSE NOT COUNTED

subset was included because corpus size influences the magni-
tude of type-token ratios; a subset of the same length, however,
allows fair comparison of TTRs. Finally, Snark is a corpus com-
piled especially for this analysis. A story (Jack London’s Voyage
of the Snark) from the same domain as the Arctic texts (and in
fact included among them) was split into sentences, which in
turn were turned into linguistic specifications with the front end
of the Festival synthesizer and finally context-dependent labels.
A subset was taken from the beginning having the same number
of tokens as the Child corpus. The Snark corpus was assembled
to provide a midway point for comparison: the fact that it was

taken from the same domain as Arctic but that utterances were
taken sequentially from the story rather than being selected ac-
cording to a criterion of phonetic coverage means that the figures
for this corpus allow us to assess in isolation the influence of the
selection procedure on the coverage of the resulting corpora.

The top half of Table I gives counts and ratios over all units
in the corpora. It was noted that Child contains a much greater
number of pauses (represented by the “phone” pau) than the
other databases, including a great number of consecutive pause
tokens due to relatively long hesitations and disfluencies. Al-
though these pauses are one of the factors which strongly char-
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acterize the Child corpus, it was thought informative to com-
pute similar information, discounting tokens containing the pau
token (either as central phone or any of the four possible left and
right contexts). This information is given in the bottom half of
the table.

The coverage statistics computed here (triphones and quin-
phones) reflect some of the contextual factors considered during
HMM-based voice building (see Section III below). There are a
great many other phonetic, prosodic, and syntactic factors con-
sidered during voice building that have been ignored in this anal-
ysis. Note also that although the criterion used in the construc-
tion of the SLT corpus (diphone coverage) is related only in-
directly to triphone and quinphone coverage, the triphone and
quinphone coverage are improved by prompt selection using
the diphone criterion. That is, both when pauses are counted
and when they are ignored, for both triphone and quinphone,
SLT2’s TTRs are higher than Snark’s. The Child database has
lower TTRs than those of either SLT2 or Snark in all cases. That
is, the corpus collected using children’s stories has worse cov-
erage not only than the purpose-built recording script, but also
than normal literature for adults with no selection criterion ap-
plied.

Although monophone coverage is not shown in Table I, it
should be noted that all corpora studied give complete coverage
of the set of monophones except Child, where one phone of the
phoneset used (/zh/) is absent entirely from the corpus.

Table II lists the ten most common quinphones (excluding
quinphones containing the pau token) of Child, SLT2, and
Snark, which give clues about the reasons for the worse cov-
erage of Child. Eight of the SLT2 quinphones come from
sequences of function words or function words and verbs (“it
was,” “there was,” “he was,” “he had,” etc.); only 1 comes
from a person’s name (“Phillip”). On the other hand, seven of
the Child quinphones come from people’s names (“Pickle,”
“Mrs.,” “Dragon,” “Christy,” “Greg”), and only 1 quinphone
from a function word-verb sequence (“he said”) occurs among
the most frequent ten. One of the reasons for Child’s relatively
poor phonetic coverage, then, is its repetition of proper names.
We note that repetitiveness is also seen more generally in the
corpus. Note the following utterances from the corpus which
exemplify the sort of repetition found extensively in these
children’s stories.

(1) She knew how to set up a tent, she knew how to build a
camp fire, she knew how to cook camp food.

(2) The car began to roll. Faster and faster and faster and
faster.

This section has outlined some of the differences between the
target speaker data available to us and a conventional speech
synthesis database. Despite the imperfect nature of the Child
corpus, we wished to produce a text-to-speech system with the
voice characteristics of the child target speaker. The measures
taken to overcome the difficulties presented by the data con-
sisted firstly of especially careful preparation of the data and
secondly of choice of synthesis methods appropriate to this data.
We conclude Section II with an account of the front-end pro-
cessing involved in preparing the Child corpus before turning to
synthesis methods employed in the following section.

TABLE II
MOST FREQUENT QUINPHONE TYPES IN THREE CORPORA. EIGHT OF THE

SLT2 QUINPHONES COME FROM SEQUENCES OF FUNCTION WORDS OR

FUNCTION WORDS AND VERBS (“IT WAS,” “THERE WAS,” “HE WAS,” “HE

HAD,” ETC.); ONLY ONE COMES FROM A PERSON”S NAME (“PHILLIP”).
SEVEN OF THE CHILD QUINPHONES COME FROM PEOPLE’S NAMES

(“PICKLE,” “MRS.,” “DRAGON,” “CHRISTY,” “GREG”), AND ONLY ONE

QUINPHONE FROM A FUNCTION WORD–VERB SEQUENCE (“HE SAID”)
OCCURS AMONG THE MOST FREQUENT TEN

E. Data Preparation

The data were recorded without interruption and so had to
be split into shorter fragments in order to exclude disfluencies,
screaming, singing, sighs, page turns, and other nonspeech
sounds. We did not attempt to incorporate these elements
into the synthetic voice. The data were hand-transcribed in
standard orthography. Special care was taken to deal with
mispronunciations and word-fragments in such a way that
the final phonetic transcription would accurately reflect the
contents of the audio files. Where there was a word in the
lexicon that matched the speaker’s mispronunciation, this
word was used in the transcription (e.g., the speaker often
read “cells” as “seals,” and so the second word was used in
the transcription). Where there was no existing lexical item to
match the speaker’s pronunciation of a word or fragment, an
invented word was used in the normal spelling transcription,
and then this invented word was added to the lexicon with
the speaker’s pronunciation before the phonetic transcription
was generated. A phone transcription was produced for the
rest of the data with the Multisyn voice-building tools [3]. An
initial phone transcription was produced by performing lexical
look-up from the augmented lexicon. This initial transcription
was then refined by forced alignment with the audio, in which
vowel reduction and the insertion of pauses between words are
allowed where supported by the audio data. Pause insertion is
particularly important in the case of such hesitantly read data.

III. THE SYSTEMS

A. Speaker Dependent and Speaker Adapted HTS Voices

HMM-based synthesis was our chosen method for building
voices because of its robustness to imperfect recording con-
ditions [5], its integrated data-driven method for synthesizing
units missing from the training corpus, and the possibility of
speaker adaptation which it offers. We initially built two types
of HMM-based speech synthesizer—speaker dependent and
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TABLE III
IDENTIFYING LETTERS USED FOR EACH SYSTEM. TRANSFORMATIONS ARE

TO THE TARGET SPEAKER IN ALL CASES EXCEPT FOR THE DURATION

ADAPTATION OF SYSTEM I. HMM: HMM ADAPTATION (CSMAPLR + MAP),
VC: VOICE CONVERSION. FIRST GROUP (A–F) IS DESIGNED FOR COMPARISON

OF SPEAKER-DEPENDENT AND SPEAKER-ADAPTIVE TECHNIQUES WITH

THREE TARGET SPEAKER CORPUS SIZES, THE SECOND GROUP IS DESIGNED

FOR COMPARISON OF VOICE CONVERTED UNIT SELECTION SYSTEMS WITH

HMM-BASED ONES AND TO ASSESS THE IMPACT TRANSFORMING DURATION

TO TARGET SPEAKER IN BOTH CASES, AND THE LAST TWO GROUPS ARE

DESIGNED FOR MORE CONTROLLED COMPARISON OF HMM ADAPTATION AND

VOICE CONVERSION METHODS WITH TWO SIZES OF TARGET SPEAKER CORPUS

speaker adaptive—using three different size subsets of the Child
corpus as the target speaker corpus. These six systems (A–F)
are listed at the top of Table III. The systems were built using
HTS version 2.1 [10], and their construction is outlined here.
To build Systems A, C, and E (speaker dependent) we followed
the procedure used for the HTS entry in the Blizzard Challenge
2005 [11]. Systems B, D, and F (speaker adaptive) were based
on a gender-mixed average voice from the HTS entry in the
Blizzard Challenge 2007 [12]. Adaptation of this existing
average voice to the child speaker data followed the procedure
used for the same HTS entry in the Blizzard Challenge. An
account of these procedures is given below, beginning with
details of parameter extraction and model structure common to
all six systems.

1) Parameter Extraction: For both types of system built,
the speech was parameterized as 40 mel-cepstral coefficients,

and the energy of aperiodic components in five frequency
bands, and the dynamic and acceleration features derived from
all of these, to yield a 138-dimension observation vector for the

HMMs. was extracted using a three-stage procedure. First,
the ESPS tool was used to extract for all the speech
data. These preliminary values were then plotted as a his-
togram, from which a rough range for the speaker was de-
termined. values were then re-extracted within the deter-
mined range using a voting method based on , ,
and , the final for each frame being the median of the
three extracted values for that frame. Spectral analysis was per-
formed with the high quality vocoder STRAIGHT [13], and the
STRAIGHT spectra were converted to mel-cepstral coefficients.

2) Model Structure and Context Clustering: For both types
of system built, speech units were modeled with HMMs of five
emitting states in a left-to-right topology. For state emission
probability density functions (pdfs), single mixture component
Gaussian distributions with diagonal covariance matrices were
used. In all cases, the same set of units was used: phones de-
pendent not only on neighboring phones, but on an extensive
list of phonetic, linguistic, and prosodic contexts (see [14] for
the list). The rich context-dependency of the speech units re-
sults in a very large number of models. This in turn means that
almost all models will be sparsely represented in the training
data (typically we find just one example of each in the training
data!) and that, at synthesis time, models of missing units will
certainly need to be created. Both of these problems are solved
by the use of decision-trees. In the construction of these trees
during training, model parameters are pooled and then repeat-
edly divided by the application of yes–no questions relating to
the contextual features that define the models (e.g., “Is the state
part of a nasal consonant phone?”, “Is the state part of a phone
that occurs at the end of a word?”, etc.). Questions are selected
and ordered in the trees during training so that acoustically sim-
ilar states end up pooled in the same leaf nodes of the trees. This
solves the problem of data sparsity during training by allowing
the parameters of acoustically similar states in a leaf node of
the tree to be “tied” (re-estimated as a single distribution with
the pooled training data). The trees solve the problem of un-
seen models at synthesis time by allowing the creation of these
models: for each state of an unseen model, the relevant trees are
traversed by answering the questions appropriately until a leaf
node is reached. The probability distributions pointed to by this
leaf node are then used to populate the relevant state of the un-
seen model. Separate trees are made for spectral, and aperi-
odicity measure distributions of each emitting state, and a single
tree for duration is made for all states, resulting in 16 trees in
the present setup. This allows the clustering of units for spectral
quality, , duration and aperiodicity measures with different
trees using different context questions; as we would expect, dif-
ferent aspects of context affect spectral quality than those af-
fecting . Although tree-building starts with a set of contexts
(or yes-no context questions) which are handcrafted to specify
the phonetic and linguistic contexts which we think will have
an effect on the acoustics of speech units in a given language,
tree-building itself proceeds automatically. That is, questions
are selected one by one according to some criterion and added
to the tree until a stopping condition is met. In the current proce-
dure, nodes associated with context questions are added to the
trees until the minimum description length (MDL) criterion is
met. The MDL criterion is a well-known information criterion
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for avoiding over-fitting of models to the training data and can
specify an appropriate size for the decision tree [15].

3) Speaker-Dependent Systems (A, C, and E): For the
speaker-dependent systems, model training began with the
estimation of monophone models (phone models independent
of context). These were then used as the basis for full-context
models, which were re-estimated before decision-tree-based
context clustering was applied to spectral, , aperiodicity
and duration features separately. The clustered parameters were
tied and re-estimated, then the procedure was repeated: param-
eters were untied and re-estimated, clustered, and re-estimated
a second time.

4) Speaker Adaptive Systems (B, D, and F): As noted above,
the speaker-adaptive system adopted an already-trained gender-
mixed average voice from previous work. Details of training
are given in [12]. This gender-mixed average voice model was
trained on the six adult speakers of CMU-ARCTIC speech data-
base (four male, two female). First, two gender-dependent av-
erage voice models were trained using speaker adaptive training
(SAT); that is, speaker normalization was applied during estima-
tion of the models, to avoid different speaker-dependent voice
characteristics “diluting” the average models. Then, the param-
eters of both gender-dependent models were clustered and tied
using decision-tree based clustering, with gender included as a
context feature. Then the clustered HMMs were re-estimated
using SAT, regression classes for the normalization being de-
termined from the gender-mixed decision-trees. State durations
obtained during this estimation were used to initialize duration
probability distributions which were then clustered. SAT was
performed on the complete HSMMs to re-estimate all parame-
ters (including duration) with speaker normalization.

Adaptation of the gender-mixed average voice model was
performed using data from the target speaker, the labels being
modified to include target speaker gender. Adaptation was per-
formed with a combination of constrained structural maximum
a posteriori linear regression (CSMAPLR) and maximum a pos-
teriori (MAP) adaptation [15].

5) Synthesis: During preparation of the Child corpus, 30
sentences had been chosen for their fair degree of fluency and
medium length (4–9 words) from across the recording sessions
and held out from training and adaptation. These utterances
were synthesized with Festival. Festival’s front-end performed
the phonetic and linguistic predictions needed to provide a se-
quence of context-dependent labels for each utterance. Based on
these predictions, parameters were generated using the models
that had been trained, and waveforms were synthesized from
those parameters.

B. Unit Selection Synthesis + Voice Conversion

We wished to explore the possibilities offered by voice
conversion techniques for imposing a novel speaker’s voice
characteristics on an existing synthesizer and to compare
them with HMM-Based methods. As well as being applied
to the conversion of natural speech, popular voice conversion
techniques such as those based on spectral conversion with
Gaussian mixture models (GMMs: [16] and [17]) have been
applied to the conversion of speech synthesizers’ output to the
voice characteristics of new speakers. For example, in [18],

the output of a concatenative (diphone) synthesizer is used to
create “source speaker” training data for a voice conversion
model. Arbitrary novel utterances subsequently produced by
the synthesizer can then be converted to the voice characteris-
tics of the target speaker.

The application of voice conversion to the output of an ex-
isting speech synthesizer is particularly attractive in the context
of sample-based concatenative methods where there is no sta-
tistical model whose parameters can be transformed. We there-
fore sought to compare the voice-converted output of a unit
selection synthesizer with the results of speaker adaptation of
HMM-based systems.

In GMM-based voice conversion, source speaker’s durations
are typically used unconverted in the output speech; this is the
case in our system J, where spectrum and of the synthesizer’s
output were converted. This can be successful in cases where the
differences between the durational characteristics of source and
target speakers are negligible (as might be true of a pair of adult
speakers), but in the present case the durational patterns which
characterize the target speaker are very different from those of
the adult speaker on whose data the base voice was trained. It
is unreasonable to think that reusing source speaker’s durations
unmodified could be successful in this case. Therefore, we built
a second system K where in addition to performing spectral and

conversions, converted utterances’ durations were obtained
by uniformly stretching by a predetermined factor the utterances
which had been output by the synthesizer.

1) Training (systems J and K): The synthesizer used as the
“source speaker” in both systems J and K (see Table III) was an
existing unit selection voice which had been built with the SLT
corpus, using the Multisyn voice building tools ([3]).

Voice conversion models to map from the output of this base
synthesizer to the characteristics of the child target speaker
were trained using scripts distributed as part of the FestVox
project, implementing techniques developed by Toda ([17],
[19]). Training a Gaussian mixture model (GMM) for spectral
conversion requires a parallel corpus in which the source and
target speakers each utter the same words. The missing “source
speaker” half of this corpus was synthesized using the base unit
selection synthesizer; the target speaker half was natural data
consisting of the whole of our target speaker training data (94
min). At no point after the synthesis of this “source speaker”
data was knowledge of the linguistic contents of the utterances
used; in training the conversion models and applying those
models to arbitrary new speech it was assumed that knowledge
of phone, word, etc., alignment was unavailable.

The speech was parameterized using the STRAIGHT mel-
cepstral analysis and extraction described in Section III-A1
above rather than with the analysis tools distributed with the
FestVox module. The only departure from the analysis proce-
dure described in Section III-A1 was that a lower dimension
static feature vector was used (24—the 0th coefficient was not
used for training GMMs). This was a result of initial work in
which attempts at training joint GMMs on much higher order
features failed even with few mixture components.

The conversion model for spectral features was trained as fol-
lows. The static parameters were supplemented by dynamic fea-
tures and then joint feature vectors were obtained from source
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and target speech by alignment with dynamic time warping. The
parameters of a GMM (weights, means, and covariance matrices
for 128 mixture components) over the joint features were ini-
tialized using vector quantization, and then iteratively refined
using expectation–maximization. The data alignment and GMM
training were iterated.

The conversion model for was obtained by computing the
mean and standard deviation of both source and target speakers’
log . Additionally, for converting duration in system J, a du-
ration scaling factor was computed as the ratio of the total du-
ration of source speaker training data to the duration of that of
the target speaker.

2) Synthesis and Conversion: The sentences to be used
in evaluation were taken from the story Goldilocks and the
Three Bears; they were synthesized with Festival’s front-end
as in Section III-A5, but this time waveform generation was
performed by the concatenation of units selected from the SLT
database by the Multisyn unit selection engine. The resulting
waveform was then analyzed in the same way that the training
corpus had been. The spectral features were supplemented with
dynamic features, and a sequence of single mixture component
conditional probability density functions was determined from
the GMM and input speech vectors using Viterbi selection.
These pdfs were used to compute maximum-likelihood static
parameter sequences considering both static and dynamic parts
of the distributions [17].

Source speaker’s was converted by normalizing the
contour using the source speaker’s mean and standard

deviation, and then imposing the target speaker’s mean and stan-
dard deviation (computed during training) on the resulting con-
tour.

Speech was then resynthesized using the source speaker’s
power and aperiodicity measures unmodified together with the
converted spectral features and .

For system K, the additional step of converting duration
was performed by uniformly stretching the converted utter-
ance in accordance with the duration scaling factor computed
during training. Utterances’ duration was scaled using Pitch
Synchronous Overlap and Add (Praat implementation: [20]).

3) Systems for Comparison: We intended to compare sys-
tems J and K with system F (described above), where transfor-
mation to the voice characteristics of the target speaker was per-
formed using the same 94 min dataset but HMM-based adapta-
tion rather than voice conversion methods. However, for system
J the comparison is inexact, as system J does not impose any
modification on source speaker’s duration. Therefore, another
system resembling system F in every way except for its duration
model was constructed, system I. The only difference between
systems F and I is that whereas in system F the average voice
duration model is adapted to the duration characteristics of the
child target speaker, in system I the same average voice duration
model is adapted to the speaker characteristics of SLT.

C. Statistical Parametric Synthesis + Voice Conversion

Although systems J and K represent credible real-world con-
figurations for voice-converted speech synthesis systems, com-
parison between them and systems F and I is compromised by

two factors. First, as noted above, lower order spectral features
were using in training the voice conversion components of J and
K than were using in building voices F and I. Lower order fea-
tures result in lower quality resynthesis which will adversely af-
fect the performance of systems J and K in evaluation. Second,
the fact that different systems were based on very different un-
derlying voices also complicates the interpretation of evaluation
results: J and K were based on a unit selection voice made from
the data of a single speaker, whereas systems F and I were based
on statistical parametric average voice made from the data of six
speakers. Both these complicating factors mean that it would be
hard to assess the relative performance gains or losses due to the
use of either voice conversion or HMM adaptation techniques in
isolation. Systems L-S were built in order to rectify this situa-
tion.

All of systems L-S were transformed from the same under-
lying voice, an HMM-based speaker dependent voice trained on
the data of SLT following the procedure outlined for speaker de-
pendent voices A, C, and E above, but using lower dimensional
vectors of mel cepstral coefficients (25 static). The use of the
same dimension of feature vector across both HMM-adapted
and voice converted voices was intended to avoid the kind of
bias towards system F in a comparison of systems F and K, in-
evitable due to the higher bit-rate vocoding used for F. The use
of the same technology (statistical parametric) and training data
(SLT) for the base voice was intended to remove the kind of dis-
crepancies we would expect due to these factors not being kept
constant in a comparison of systems F and K.

Furthermore, we wished to evaluate the contribution to
system performance of each voice conversion component
(GMM, scaling of , stretching of duration) individually.
Systems M, N, and O (see Table III) were all designed to be
compared with system L—in each of these comparisons, the
transformation method of a single voice component (spectrum,

, duration) is switched in isolation from HMM adaptation
(with CSMAPLR and MAP as above) to the corresponding
voice conversion method. The same scheme was applied in
systems P–S, but whereas in systems L–O the 15-min target
speaker dataset was used for transformation, in systems P–S
the whole target speaker set of 94 min was used.

The procedures followed for training voice conversion func-
tions of spectrum, and duration and applying them to test
utterances used for systems M–O and Q–S were almost iden-
tical to those used for voice K, described above. The only dif-
ference was that, both for training and conversion, the spectral
and features output by the base voice were fed directly into
the voice conversion components: these features did not need to
be extracted from waveforms.

The “pure HTS” voices L and P were built following the same
general procedure outlined for speaker adaptive voices B, D,
and F above. The only differences were that lower dimension
feature vectors were used, and instead of an average voice, the
base voice for the adaptation was a speaker-dependent voice (as
already mentioned).

For all of voices L-S, aperiodicity measures were kept con-
stant: in all cases they were generated by a model that had been
adapted to the target speaker with HMM adaptation.
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Fig. 3. Listening test results. Boxplot format follows [22]: “the median is represented by a solid bar across a box showing the quartiles; whiskers extend to 1.5
times the inter-quartile range and outliers beyond this are represented as circles.”

TABLE IV
SENTENCES USED TO EVALUATE INTELLIGIBILITY

OF NATURAL AND SYNTHETIC SPEECH

IV. EVALUATION

A. Evaluation of Speaker-Dependent and Speaker-Adaptive
Systems (A–F)

1) Procedure: The evaluation of the various systems was
carried out using a similar protocol to the Blizzard Chal-
lenge [21]. Included in the set of “participants” (i.e., systems)
were two benchmarks—natural speech and vocoded natural
speech—where sentences held out of the corpus were used
instead of synthesis. The vocoder we use (STRAIGHT for anal-
ysis and a mixed-excitation source-filter model for waveform
generation) does degrade the signal slightly, and we wished to
evaluate the effect of this on child speech. The higher value
and higher formant frequencies of child speech, compared to
adult speech, may cause spectral envelope estimation to be less
accurate. The listening test, which was conducted via a web
browser under quiet laboratory conditions using headphones,
consisted of three sections. A Latin Squares design was em-
ployed meaning that in any given section, a single listener
group heard every system once, each time with a different
utterance. Every system was used to synthesize every utterance
once within each section. We used a total of 48 paid listeners,
all native speakers of English between the ages of 18 and 25.

Listeners were asked in Section I to rate the similarity of each
stimulus to the original speaker. Two natural reference utter-
ances were provided, which listeners could play at any time.
Listeners could also hear each stimulus as many times as they
wished. A five-point scale was used; the end points of the scale

were described to the listeners as “1—Sounds like a totally dif-
ferent person” and “5—Sounds like exactly the same person.”
Second 2 followed the same format as the first, but this time
listeners were asked to rate the naturalness of each stimulus on
a five-point scale, with end points described to the listeners as
“1—Completely Unnatural” and “5—Completely Natural.” In
Section III, listeners were asked to type in a transcription of
each test stimulus. Normally, we would use semantically unpre-
dictable sentences for this type of test, to avoid ceiling effects
on transcription accuracy. However, we felt that such sentences
sounded extremely unnatural when uttered by a synthetic child
voice. Additionally, we did not have natural recordings of the
speaker saying such sentences. Therefore, we used sentences
held out from the corpus for this part of the test. These sentences
are listed in Table IV.

2) Results: The listening test data were analyzed using the
same statistical techniques used in the Blizzard Challenge 2007
[22], and we present results in Fig. 3. Significant differences
between systems are presented in Fig. 4. The differences in
the results for all three sections are measured by the same test
used in the Blizzard Challenge 2007: a Wilcoxon signed rank
test with and Bonferroni correction. WER was com-
puted from a set of sentences of differing lengths, necessitated
by the fact that these were naturally occurring sentences “har-
vested” from the recordings rather than generated specifically
for the evaluation. This had an unfortunate consequence: the
within-subjects design of the Wilcoxon test used meant that sig-
nificant differences between systems for WER had to be based
on scores for each listener for each system already normalized
for word length. However, it was not thought that the sentences
vary greatly enough in length that the outcome of the signifi-
cance test for WER would be seriously affected by this.

There are several trends observable in Fig. 3 which receive
partial support from the significance test. In most cases in-
creasing the amount of training or adaptation data gives a
higher median score in Sections I and II and a lower mean
WER in Section III between systems of the same type, as we
would expect.

In most cases, a speaker-adaptive voice yields higher median
opinion scores and lower mean WER than a speaker-dependent
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Fig. 4. Results of pairwise Wilcoxon signed rank tests between systems; a black square shows a significant difference between systems with � � ���� (with
Bonferroni correction).

voice trained on the same amount of data. This is a trend that
we would expect in the light of previous research showing that
adaptation of an average voice with a few minutes of target
speaker data results in more natural synthetic speech than the
training from scratch of a speaker dependent voice on a larger
dataset. The phenomenon is observed in [12] and [23], and at-
tributed to the fact that the average voice can be built from data
covering a greater variety of contexts than is available for any
single speaker. It should be noted that in the present case, the av-
erage voice was trained on very different speakers (adults) to our
target speaker (a child), and yet the same result appears to hold.
Despite speaker differences, the average voice nevertheless in-
corporates a lot of prior knowledge about speech in general and
can provide the basis for successful speaker adaptation.

There is an interesting exception to the two trends mentioned
above in the case of Section I of the evaluation. When the
amount of data is increased from 30 to 94 minutes in this
section, the median similarity of the speaker-dependent voice
to the original speaker increases whereas the median for the av-
erage voice-based system decreases slightly. This suggests that
improvements in similarity to the original speaker achieved by
increasing the size of the dataset are smaller when performing
adaptation than when training speaker-dependent voices.
Similarity to the original speaker is perhaps the aspect of the
speaker-adaptive approach that needs the most improvement.

We note that previous work has indicated that 100 utterances
(approximately 6 min) of adaptation data are enough to adapt
an average voice to the characteristics of a target speaker [23].
Fig. 3, however, shows that 15 min of child data achieve a me-
dian opinion score of only 2. We attribute this low score to the
noisiness of the adaptation data and to the fact that the trans-
formation attempted was unusually extreme: in [23], an average
adult voice was adapted to another adult speaker, and not to a
child.

In the evaluation of naturalness, the natural vocoded speech
received a median opinion score of one point less than that of
the original speech, and in the evaluation for intelligibility, it re-
ceived a higher mean WER. These scores suggest that vocoding
alone is causing degradation of the speech signal. Whether this
degradation in quality (greater than we expected) is specific to
child speech could be the subject of useful future research.

In the evaluation of similarity to the original speaker, even the
natural speech received a median opinion score of 4, where we
would expect 5. This might be attributed to the variability of the

child speech data: the two natural speech samples given for ref-
erence in the evaluation were taken from different recording ses-
sions and have slightly different qualities. The synthetic speech
in effect “averages out” the speaker/recording condition vari-
ability across all the data, and as such is different in quality from
either of the two natural samples.

B. Evaluation of Unit Selection + Voice Conversion (J and K)

1) Procedure: An XAB test was conducted in which a pair-
wise comparison was made of the four systems in terms of the
similarity of the synthetic speech to the natural speech of the
target speaker. Four reference sentences spoken by the target
speaker which had been held out of the training corpus were an-
alyzed and resynthesized as described in Section III-A1 above
with no manipulation of the features. They were presented at the
beginning of the evaluation and at intervals throughout it as X,
and listeners could listen to the samples as much as they wanted.
The ten “Goldilocks” sentences were synthesized with each of
the four systems, and for each sentence an AB pair (randomly
ordered) was made for each pair of systems, resulting in 60 AB
pairs. The listening test was conducted via a web browser, with
a total of ten unpaid listeners. The 60 pairs were presented in
random order and listeners were asked to choose the sentence in
which the synthetic speech’s speaker characteristics were most
similar to those of the natural reference samples.

2) Results: Fig. 5 shows the results of the evaluation. Signif-
icant preferences were detected for all pairs of systems except I
versus K.

The evaluation shows that the HMM-based systems were gen-
erally preferred as more similar to the original speaker than the
voice converted unit selection systems. However, interpretation
of these preferences for HMM adapted over voice converted sys-
tems is complicated by the factors outlined in Section III above.

Both between HMM adapted systems F and I and between
voice converted systems J and K we found significant prefer-
ence for the system where duration transformation to the target
speaker was performed (systems F and K, respectively). We note
that the addition of duration transformation to the HMM adap-
tated system (F versus I) leads to a more extreme preference than
in the case where uniform duration stretching is added to other
voice converted system components (J versus K). In previous
evaluations of HMM adapted voices [23], the inclusion of adap-
tation for duration leads to improved performance in subjective
evaluation, but the preference in the present work for system F
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Fig. 5. Results of XAB test for speaker individuality, comparisons among sys-
tems F, I, J, and K. Vertical lines show 95% confidence intervals (with Bonfer-
roni correction).

over I is greater than that previous work led us to expect. We
attribute the strength of this preference to the fact that speech
duration patterns are very important in characterizing the child
voice; these patterns distinguish a child’s voice from an adult’s
to a much greater extent than they distinguish the speech of an
adult from that of another adult speaker.

C. Evaluation of Individual Voice Conversion Components
(systems L-S)

1) Procedure: Evaluation procedure was the same as that
outlined in Section IV-B; here also, six pairwise comparisons
were made, but this time the comparisons each focused on
the impact of a single voice conversion component on system
performance. Two slight divergences from the procedure in
Section IV-B were made: the natural reference samples were
original waveforms, not vocoded speech, and nine listeners
performed the evaluation, not ten.

2) Results: Fig. 6 shows the results of the evaluation. In
all the voices transformed with the small (15 min) dataset
(L–O), no significant difference is detected between transfor-
mation components based on HMM adaptation and those based
on voice conversion methods (GMM and uniform scaling of

and duration). However, when 94 min of data is available
(P–S), there is a significant preference for the HMM adaptation
technique in every case. These findings are consistent with our
expectations: given sufficient data we would expect the HMM
adaptation techniques to give better results due to the fact
that the decision tree used incorporates high-level linguistic
and prosodic information. It is also our experience that the
performance of shallow voice conversion methods—informed
by acoustic features only—degrades slowly as the amount of
training data available becomes very small. Voice conversion
systems can be trained using the techniques tested here with

Fig. 6. Results of XAB test for speaker individuality; comparisons among sys-
tems L–S, Vertical lines show 95% confidence intervals (with Bonferroni cor-
rection).

as few as 30 target speaker utterances and still perform re-
spectably. An interesting topic for future work would be to
make similar comparisons between HMM adaptation and voice
conversion methods as those outlined here, but with target
speaker datasets smaller than 15 min.

V. CONCLUSION

This paper described the application of existing HMM-based
speech systems to the synthesis of a child’s speech. Both
speaker-dependent voices and speaker-adapted voices were
built. Additionally, we compared the performance of systems
transformed to the child target speaker with HMM adaptation
techniques to that of those where one or more components
of the voice are transformed using techniques from voice
conversion.

Although the child speech data has poor coverage of the pho-
netic/prosodic units of the language, an inconsistent reading
style, and imperfect recording conditions, it is feasible to build
child voices on the database by using the robust framework of
HMM-based speech synthesis. In the evaluation, it was found
that adult average voices adapted to the target child speaker data
generally outperformed child speaker-dependent voices. This
had been found to be true in the case of adult target speakers
in previous work. However, we found that more target speaker
data were needed to get reasonable speaker similarity rating
when adapting to the child target speaker than in the previous
work with adult target speakers. Also, speaker similarity ratings
level off with the largest size of target speaker database, and
better ratings are obtained for the speaker-dependent system.
This implies that better average voice models for child speech
are required.

Our comparison of the effectiveness of HMM adaptation
techniques with voice conversion style techniques for imposing
target speaker characteristics on a base voice sheds light on
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their performance differences. When the adaptation data is
restricted to 15 min, there was no significant preference for
either HMM adaptation or voice conversion methods. This
is also underpinned by the theoretical background that both
the techniques use similar feature linear transforms when
available data is limited. On the other hand, more importantly,
HMM adaptation was preferred in every case when using the
full target speaker corpus. This is because relatively large
amounts of data enable extensive use of the decision tree that
incorporates high-level linguistic and prosodic information in
speaker adaptation. Furthermore the adaptation of durational
characteristics was found to have a greater impact on listener
preference than we were led to expect from previous work on
adaptation to adult speakers.

Our future work is to build child average voice models using
Speecon databases [24] where 60 children (8 to 15 years old)
read 30 phonetically rich sentences. Although the databases do
not cover seven-year old children, average voice models trained
on the databases would provide better prior information than
adult average voice models used for our experiments.

This work has evaluated the performance on child speech
of techniques that—while not adult-specific—have nevertheless
been developed and tuned principally on adult speech. Another
possible direction for future work is to try child-specific speaker
adaptation algorithms, such as the one proposed in [25].

Audio examples of the child synthetic speech built are avail-
able at http://homepages.inf.ed.ac.uk/s0676515/child_speech
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