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Abstract—Although considerable effort has been devoted to both
fundamental frequency � �� and spectral envelope estimation in
the field of speech processing, the problem of determining � and
spectral envelopes has largely been tackled independently. If �

were known in advance, then the spectral envelope could be esti-
mated very reliably. On the other hand, if the spectral envelope
were known in advance, then we could obtain a reliable � esti-
mate. � and the spectral envelope, each of which is a prerequisite
of the other, should thus be estimated jointly rather than indepen-
dently in succession. On this basis, we develop a parametric speech
spectrum model that allows us to estimate the � and spectral enve-
lope simultaneously. We confirmed experimentally the significant
advantage of this joint estimation approach for both � estimation
and spectral envelope estimation.

Index Terms—Expectation–maximization (EM) algorithm, �

estimation, spectral envelope estimation, speech analysis.

I. INTRODUCTION

S PECTRAL envelope estimation and fundamental fre-
quency estimation play very important roles in a

wide range of speech processing activities including speech
compression, speech recognition, and synthesis. Convention-
ally, considerable effort has been dedicated to tackling these
problems independently. By contrast, this paper describes the
importance of estimating the and spectral envelope simulta-
neously. For this purpose, we develop a new speech analyzer
based on a parametric speech source-filter model that includes
both and spectral envelope parameters.

In the filter-based speech synthesis framework, we sometimes
assume a speech production model based on a linear system
with a single pulse train as the input, which represents a vocal
cord excitation. In this model, since the input power spectrum
is assumed to have harmonic components with equal powers, a
smooth function passing through the prominent spectral peaks
corresponds approximately to the power spectrum of the vocal
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tract impulse response. In this paper, when we refer to “spectral
envelope,” we assume that it follows this definition.

Many techniques can be used to estimate spectral envelopes.
For example, linear predictive coding (LPC) can be understood
as a spectral envelope extractor in the sense that it tries to fit an
all-pole spectrum to the observed power spectrum using a spec-
tral distortion measure associated with a statistical distribution
assumption related to excitation source signals [1]–[5]. For in-
stance, when an excitation source signal is assumed to follow a
Gaussian distribution, the corresponding distortion measure is
called the Itakura–Saito distance, which imposes larger penal-
ties on negative deviations than on positive deviations of the
all-pole spectrum from the observed spectrum. If we can ensure
that an excitation source signal follows an assumed distribution,
LPC can be a good estimator of a spectral envelope. However,
when changes, in general the statistics of the excitation signal
will change correspondingly. For this reason, we must under-
take LPC for each with a different assumption regarding the
statistical distribution, but if is unknown we cannot decide
what distribution should be assumed in the first place.

The cepstrum method [6] can also be used to estimate the
spectral envelope by low-pass filtering a log-amplitude spec-
trum interpreted as a signal. But this estimator is also sensitive
to : the envelope estimate tends to descend into the space be-
tween the harmonics.

The discrete all-pole modeling method [7] aims to mitigate
this dependency problem in LPC, and is designed to fit an
all-pole spectrum to a discrete set of harmonic components ex-
tracted (via estimation) prior to the analysis. A generalized
version of the discrete all-pole approach to the estimation of
moving average and autoregressive moving average models is
proposed in [8]. Similarly, the discrete cepstrum method [9]
is an extension of the cepstrum method, and directly estimates
the cepstral coefficients where only the extracted harmonics are
considered to be the observed data. The regularized discrete
cepstrum method [10], [11] applies a regularization technique
to the discrete cepstrum approach to impose smoothness con-
ditions on the spectral envelope estimates. STRAIGHT [12],
another state-of-the-art technique, begins by estimating . It
then determines an appropriate length for the analysis window
according to the estimate, and applies discrete Fourier anal-
ysis. These methods have been shown to provide high-precision
spectral envelope estimation results with a reliable estima-
tion preprocessor.

On the other hand, although a huge number of estimation
algorithms have been developed (see review articles by Hess
[13], [14]), their reliability is still limited. One critical issue in

determination is how to avoid subharmonic or pitch halving
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errors. In a mathematical sense, the period of the signal ,
which is the inverse of , is defined as the minimum value
such that . However, this definition applies
strictly only to a perfectly periodic signal and speech departs
from perfect periodicity. Therefore, we would like to find the
minimum value such that . Difficulties in-
clude finding a way to measure the degree of periodicity of sig-
nals. , which is likely to be the smallest member of an infinite
set of time shifts that leave the signal “almost” invariant, cannot
be determined easily because if is the true period, we obtain

for all . We note here that
corresponds to the period of the subharmonic. One effective way
to avoid subharmonic errors is to introduce a smoothness mea-
sure/constraint for spectral envelopes (that is, limit the varia-
tion in partial amplitude across the frequency axis) [15]–[20].
To clarify this point, let us consider a situation where we are
given an estimate obtained with an extractor. If this
estimate corresponds to (i.e. double the true period), for ex-
ample, it amounts to assuming that the speech spectrum has a
harmonic structure with zero power for all the odd-order har-
monics. We may conjecture that the spectral envelope of such a
spectrum would be nonsmooth. The smoothness measure there-
fore signals the irregularity of the speech spectrum when the
determined value is half the true .

From the above discussions we can draw the following
conclusion: the more reliable the determination is the more
accurate the spectral envelope estimation becomes, and, on the
other hand, the more reliable the spectral envelope estimation
is the more reliable the determination becomes. Given
this chicken-and-egg relationship, estimation and spectral
envelope estimation should preferably be performed together
rather than independently in succession. This is the standpoint
we adopt in this paper for formulating a combined model of the
spectral envelope and spectral fine structure based on .

II. FORMULATION OF PROPOSED METHOD

A. Speech Spectrum Modeling

A short-time segment of a speech signal can be modeled
as an output of the linear system of the vocal tract impulse re-
sponse with the source excitation such that

(1)

where is time and is a window function. In the Fourier
domain, the above equation is written as

(2)

where is the frequency, , , , and are the
Fourier transforms of , , , and , respectively.
Letting the excitation source signal be a pulse sequence
with a pitch period such that

(3)

the Fourier transform of its analytic signal representation is
again a pulse sequence given by

(4)

where is the parameter, the Dirac delta func-
tion, and runs over the integers. Multiplying by the vocal
tract frequency response and then taking the convolu-
tion with the frequency response of the window func-
tion yields the complex spectrum of the short-time segment of
voiced speech

(5)

We will use the approximation of its power spectrum as a model
of the speech spectrum ( Fig. 1)

(6)

This approximation is justified under the sparseness assump-
tion whereby the power spectrum of the sum of multiple signal
components is approximately equal to the sum of the power
spectra generated independently from the components. The ac-
curacy of this approximation increases as the interferences be-
tween the harmonics decrease, where the cross term

is such that is sufficiently smaller
than . Assuming to be a Gaussian window,

is also a Gaussian distribution function with a fre-
quency spread of such that

(7)

We see from (6) that the power of each harmonic component
is determined according to the spectral envelope function

. As we want to be a smooth and non-negative
function of , we introduce the following Gaussian mixture
function (see Fig. 2):

(8)
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Fig. 1. Linear system approximation model in the power spectrum domain.

Fig. 2. Spectral envelope model: ������ .

with

(9)

The underlying model for the vocal tract filter with respect to
the above spectral envelope model is shown in Appendix I. The
scale parameter determines the gain of the spectrum model.
From (6) –(8), the speech spectrum can be written concisely as

(10)

where is assumed to be bounded for convenience. We notice
from (10) that the spectral model we present here is a compound
model of two Gaussian mixture models, which represent the
spectral envelope and the spectral fine structure, respectively
(see Fig. 3). Note that the present model is assumed to con-
tain the null frequency component. Although the null frequency
component is usually not considered a partial, this contributes
during the model fitting process to preventing the com-
ponent from being pulled into the low-frequency region when a
low-frequency noise component is present.

Until now, we have assumed voiced speech with a harmonic
structure, but by treating in (10), which has thus far been con-
stant, as a free parameter, the model can also approximate an
unvoiced speech spectrum fairly well. In linear system-based
speech synthesis, a white noise signal is often used as the ex-
citation input to synthesize unvoiced speech so the input power

Fig. 3. Compound model of spectral envelope and fine structure �� ���� .

spectrum should be flat. Now, if becomes sufficiently large
for the tails of adjacent Gaussians to cover each other, the har-
monic structure disappears and the model given by (10) appears
fairly similar to a white spectrum. However, as the approxi-
mation given in (6) becomes less accurate in this case, a more
careful modeling of unvoiced speech should be investigated in
the future. Another reason for treating as a free parameter is
that it has been effective in avoiding the local minimum problem
during the optimization process, which will be described later.

Now, we would like to find the optimal estimates of
such that the present model best

fits the observed spectrum.

B. Parameter Optimization

Based on the fact that the present power domain model is
composed of multiple Gaussian distribution functions with the
mixture weights constrained by each other, the current model fit-
ting problem can be viewed as a natural1 extension of Gaussian
mixture model estimation using the expectation–maximization
(EM) algorithm [21]. This is one advantage we may derive from
dealing with the power-domain observation.

Suppose that we are given an observation , namely the
Fourier transform of a short-term segment of a speech signal.
The current problem is to minimize the distortion measure be-
tween nonnegative functions and . We define
the distortion measure as Csiszár’s -divergence [22]

(11)
which is often used for non-negative matrix factorization
(NMF) [23]. It simply reduces to the KL divergence when

. Since the model
contains the parameters that characterize the spectral envelope
structure and the spectral fine structure, this optimization leads
to a joint estimation of the spectral envelope and . Note that
this measure is not derived from the stochastic modeling of
a time domain signal but defined for the sake of convenience
when deriving an efficient optimization process.

Now, recall that is represented in the form

(12)

1The maximum-likelihood estimation of GMM parameters basically amounts
to the problem of fitting a Gaussian mixture density function to a data histogram
with the KL divergence as the fitting criterion.
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Based on this fact, we will show that the model parameters can
be efficiently estimated with an EM-like iterative algorithm.

First, for any weight functions such that

(13)

and

(14)

we obtain the following inequation:

(15)

by invoking Jensen’s inequality based on the concavity of the
logarithm function such that

where

(16)

By using to denote the upper bound of , i.e.,
the right-hand side of the inequation (15), equality

holds if and only if

(17)

Equation (17) is obtained by setting the variation of the func-
tional with respect to at zero. If we are able
to decrease with respect to , then can be de-
creased iteratively in the following way.

When is given by (17) with an arbitrary , the
objective function becomes equal to . Then, the
parameter that decreases while keeping
fixed will necessarily decrease , since inequation (15)
guarantees that the original objective function is always even
smaller than the decreased . Therefore, by repeating
the update of by (17) and the update of that de-
creases , the objective function, which is bounded from
below by zero, decreases monotonically and converges to
a stationary point. This approach is often referred to as the
majorization method [24] and has been adopted for various
optimization problems including NMF [23].

We notice that cannot be minimized with respect to in
a closed-form expression because of the third term

(18)

More specifically, this part reads

(19)

from which we find that is nonlinear in , and
. However, as this term is the sum of the heights of the sam-

pled points of with an interval , it is convenient to
approximate it with the integral . Approximating
the Gaussian integral with the Riemann sums with subintervals
of an equal length of :

(20)

leads us to

(21)

since the left-hand side of (20) is 1. Substituting (21) into (19),
it follows that

(22)

We can thus conjecture that the third term of the divergence
(and ) depends very weakly on , , and . The
update equations for the parameters other than and can thus
be obtained approximately by maximizing the term

(23)

Now, the parameter update equations for , , , , ,
and are obtained as follows (see the Appendix for their deriva-
tions):

...
...

. . .
...

(24)
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Fig. 4. Observed power spectra of voiced (top) and unvoiced (bottom) speech
and the corresponding spectral envelope estimates.

(25)

(26)

(27)

(28)

where and the superscript refers to the iter-
ation cycle. Some examples of the estimated envelope
with can be seen in Fig. 4.

III. EXPERIMENTAL EVALUATIONS

A. Single Voice Estimation

To confirm its performance as an extractor, we tested our
method on ten Japanese speech data of male (“ myi”) and fe-
male (“fym”) speakers from the ATR speech database [25] and
chose the well-known extractor “YIN” [26] for comparison.
All the speech data were around 5 s long, monaural, and sampled

TABLE I
ACCURACIES OF � ESTIMATION

at 16 kHz. All the power spectra were computed using a Han-
ning window that was 32 ms long with a 10-ms overlap. The
spectral model was made using Gaussians, and
the envelope model was made using Gaussians. The
number of free parameters was therefore . Three
independent sets of iterations were run for each analysis frame
and the starting conditions were different in each case. The ini-
tial values of were set at 47, 94, and 141 Hz, respectively,
and of these conditions, the converged parameter set that gave
the minimum value was considered to be the global optimum.
As the present optimization algorithm usually converged after
ten iterations, each search was run for ten iterations. The initial

values were determined uniformly, and and were ini-
tialized at 31 and 313 Hz, respectively. was initially set at
8000/m Hz.

For an estimation task, we defined two error criteria,
namely deviations over 5% and 20%, from the hand-labeled

reference as fine and gross errors, respectively. The former
criterion shows how precisely the proposed analyzer is able to
estimate and the latter reveals the robustness with respect to
pitch doubling/halving pitch errors. The areas where reference

were given by zero were not considered in the accuracy
computation. As a second evaluation, we took the average of
the cosine measures between and for the entire
analysis interval to confirm the appropriateness of the choices
of distortion measure for minimization and of the model for
expressing speech power spectra. These results can be seen in
Table I. The numbers in the brackets in Table I are the results
obtained with YIN. The source code was kindly provided to
us by its authors. The results confirm that our method is as
accurate as YIN when it comes to roughly estimating , and
significantly outperforms YIN as regards precise estimation.
Thus, our method would be especially useful when a very
precise estimate is required, which is exactly the case with
spectral envelope estimation algorithms that use estimates.
We should note however that the parameters used for YIN may
not do it full justice. The results seem to be rather good for
a frame-by-frame algorithm, which encourages us to embed
this envelope structured model into the parametric spectro-
gram model proposed in [27], [28] to exploit the temporal
connectivity of speech attributes and thus realize a further
improvement.

Although we have chosen and (the number of Gaussian
components for the spectral envelope model and the spectral
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fine structure model) experimentally, we infer that the perfor-
mance as an extractor would depend strongly on the model
order. Determining the model order remains an open problem
that must be investigated.

B. Synthesis and Analysis

Here we evaluate the accuracy of spectral envelope estima-
tion. To accomplish this, we must use speech signals as the ex-
perimental data whose true spectral envelope is known in ad-
vance. For this purpose, we created several synthetic speech sig-
nals, which were made using three types of linear filter, namely
an all-zero filter, an all-pole filter and a pole-zero filter, and the
input excitation. The input excitation we used here is a linear
chirped single pulse signal, whose modulates linearly from
100 to 400 Hz within 2 seconds. We chose filters with the fol-
lowing characteristics:

��� ���� �

��� ���� �

��� 	���


��� ����

The frequency responses of the respective filters can be seen in
Fig. 5. As a measure for assessing the accuracy of the spectral
envelope estimation we chose the “Spectral Distortion (SD),”
defined by

(29)

Fig. 5. Frequency responses of the synthesis filters. (a) All-zero type (1). (b)
All-zero type (2). (c) All-pole type. (d) Pole-zero type.

where refers to the frequency-bin index, is the true
(reference) spectral envelope, and is the spectral enve-
lope estimate.

The experimental results are shown in Fig. 6. Fig. 6(a)–(d)
are the results when the tests were undertaken using the data
created respectively by all-zero (1), all-zero (2), all-pole, and
pole-zero. Each graph shows the transitions of SD values within
two seconds during which the of the input excitation mod-
ulates from 100 to 400 Hz. These graphs show that as the
of the input increases, conventional methods such as 40-order
LPC and LPC cepstrum tend to obtain poorer results. This is
perhaps because the envelope estimates descend into the space
between the partials for high values. The accuracy of the en-
velope estimates obtained with the proposed method does not
seem to deteriorate even with high values. This is obviously
because the proposed method attempts to estimate the spectral
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Fig. 6. Comparison of the accuracies of spectral envelope estimation with the
proposed method and the conventional methods. Each graph shows the transi-
tions of SD values during two seconds. (a) All-zero type (1). (b) All-zero type
(2). (c) All-pole type. (d) Pole-zero type.

fine structure at the same time. On the other hand, the 14-order

TABLE II
PREFERENCE SCORE (%) OF THE SYNTHESIZED SPEECH GENERATED

BY THE PROCEDURE DESCRIBED IN SECTION III-C

LPC envelope is too smooth to realize a good fit with the true en-
velope, and the cepstrum method always seems to obtain poorer
results.

C. Analysis and Synthesis

As the advantage of the filter-type speech synthesis frame-
work is its flexibility as regards modifying speech, here we eval-
uate the basic performance of the present method as a speech
modifier.

We performed a psychological experiment to evaluate the in-
telligibility of pitch-modified synthesized speech generated by
using the parameters obtained with the present and LPC an-
alyzers. The parameters extracted using the present analyzer
were transformed into a synthesized speech signal using the
time-domain representation of the present model described in
Appendix I. As we see from (30), a vocal tract impulse response

can be constructed employing the estimates of , , and
, and using randomly chosen . Then, we can simply gen-

erate a synthesized signal by convolving a pulse train (with an
interval of a certain period) with the constructed . As the
test set, we used speech data consisting of five vowels (/a/, /i/,
/u/, /e/, /o/) and 40 randomly chosen words uttered by a female
speaker that were excerpted from the same database. Analyses
were performed using a Hanning window that was 32 ms long
with a 10-ms overlap. The dimension of the parameters for the
proposed model was set at 45. In this experiment, the LPC order
was set at 45 so that the number of degrees of freedom would
be the same in both models, thus allowing for a fairer compar-
ison. For the LPC analysis, the were extracted by using the
supplementary extraction tool included in the Snack Sound
Toolkit.2 Each synthesized speech used for the evaluation was
excited with an estimated vocal tract characteristic by a pulse
sequence at intervals with a different pitch period from the orig-
inal one. The pitch periods were modified to 80% and 120% of
the pitch periods obtained from the original speech. We let ten
listeners choose the speech that they thought was the more in-
telligible and obtained a preference score for the results using
the proposed analyzer. The preference score, shown in Table II,
shows that the intelligibility of the synthesized speech generated
by the present analyzer is higher than that generated by the LPC
analyzer.

2[Online]. Available: http://www.speech.kth.se/snack/
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It should be noted that as LPC models of order 12 or 14 are
often considered to be appropriate for the synthesis of speech
vowels, different settings for the LPC model may have yielded
better performance.

IV. CONCLUSION

In this paper, we formulated determination and spectral
envelope estimation as a joint optimization problem with re-
spect to a composite function model of the spectral envelope
and the spectral fine structure. The experiments confirmed the
effectiveness of our method as an extractor, spectral enve-
lope extractor, and speech modifier.

The extension of the present model to concurrent utterances
of multiple speakers is straightforward. We can construct a
mixed speech spectrum model by mixing the speech spectrum
models introduced in this paper each of which has its own de-
gree of freedom. The derivation of the optimization algorithm
is exactly the same as the derivation described in this paper.
In future, we will examine its application to monaural speech
separation.

APPENDIX I
DERIVATION OF SPECTRAL ENVELOPE MODEL

Here we show the underlying model for the vocal tract
filter that leads to the spectral envelope model introduced in
Section II-A.

Because human vocal tracts are at most about 20 cm long, it
would be fairly natural to assume that vocal tract impulse re-
sponses are dominant around . Based on this assumption,
we consider modeling a vocal tract impulse response by super-
imposing several Gabor functions, all of which are centered at

. Using an analytic signal representation, we define the
impulse response as

(30)

where , , , and represent the carrier frequency,
amplitude modulation parameter, scale, and starting phase for
the carrier sinusoid of the th Gabor function, respectively. It
should be noted that in a strict sense this model is not valid as
regards allowing the filter to be acausal. Now, the Fourier trans-
form of (see Fig. 7) is written as

(31)

The power spectrum is then given as

Assuming that is an independent random variable uniformly
distributed on the interval , the second term can be
canceled out by taking the expectation of with respect
to such that

Fig. 7. Equations (30) and (31) with � � � for (a)� � � and (b)� � �.
(a) Single Gaussian case. (b) Gaussian mixture case.

(32)

We shall assume that and use (32) to
express spectral envelopes. By imposing a scale constraint

(33)

we finally arrive at (8).
We notice from an inspection of (30) and (32) that con-

straining each Gabor function in (30) so that they are localized
densely around , which can be accomplished simply by
setting at a large value, amounts to imposing a smoothness
constraint on the spectral envelope, as each Gaussian function
in (32) spreads in proportion to .

APPENDIX II
DERIVATION OF UPDATE EQUATIONS

Update equations for guaranteeing approximately the non-
increase of can be derived in various ways, only two of
which are described in this section owing to space limitations.

One way involves adopting a pure coordinate descent ap-
proach. That is, we seek to find the minimum of with respect
to each parameter while keeping the other parameters fixed at
the newest update values. As for , , , and , the update
equations can be achieved approximately by maximizing (23).
Taking the partial derivative of (23) with respect to each of the
parameters and setting at zero, we obtain the following:

where

(34)
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As for and , can be directly minimized with (26) and
(28).

The second way is to adopt an approximation technique. This
approach also adopts the coordinate descent approach but differs
in that we further approximate (23) with

(35)

which can be minimized jointly with respect to and
through a linear simultaneous equation. This approximation is
based on the assumption that . In this way, we
obtain the update equations given in Section II-B.
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