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A Robust and Computationally Efficient

Subspace-based Fundamental Frequency

Estimator
Johan Xi Zhang,Student Member, IEEE,Mads Græsbøll Christensen,Member, IEEE,

Søren Holdt Jensen,Senior Member, IEEE,and Marc Moonen,Fellow, IEEE

Abstract

In this paper, we present a method for high resolution fundamental frequency (F0) estimation based

on subspaces decomposed from a frequency-selective data model, effectively splitting the signal into

a number of subbands. The resulting estimator is termed frequency-selective harmonic MUSIC (F-

HMUSIC). Computational savings and robustness are expected due to the subband based approach.

Additionally, a method for automatic subband signal activity detection is proposed which is based

on information theoretic criterion where no subjective judgment is needed. The F-HMUSIC algorithm

exhibits good statistical performance when evaluated withsynthetic signals for both white and colored

noise, while evaluations on real-life audio signal shows the algorithm to be competitive compared with

other estimators. Finally, F-HMUSIC is concluded to be morecomputationally efficient and robust

than other subspace basedF0 estimators while also showing robustness against recordeddata with

inharmonicities.
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A Robust and Computationally Efficient

Subspace-based Fundamental Frequency

Estimator

Index Terms

fundamental frequency estimation, pitch estimation, subband processing, subspace methods.

I. I NTRODUCTION

The problem of estimating the fundamental frequency (F0) or pitch in a recorded signal has been of

interest to the signal processing community for many years.Many sophisticated algorithms have been

proposed where the motivation for the intensive research inF0 estimators is found in the wide usability,

both inside and outside the field of engineering. The non-idealcharacteristics of recorded data make the

estimators especially challenging to design. For more details aboutF0 properties of musical instruments

we refer to, [1], [2]. In signal processing, theF0 estimator is often a key component in speech and audio

applications, such as linear prediction based speech coding, coding of speech and audio using a harmonic

sinusoidal model, and musical information retrieval. Even in the field of linguistics,F0 estimators can

be applied when the analysis of tones (pitch) is an importantpart of understanding and classifying the

language, such as for tonal languages [3], [4].

Most existing methods suffer from a degraded performance due to non-ideal characteristics of the

recorded data such as low signal to noise ratio (SNR), missingpartials, inharmonicity, signal transients

and reverberations. Estimators are often time-domain techniques based on the auto-correlation function,

cross-correlation function, averaged magnitude difference function, or average squared difference function.

Other methods are mainly based on spectral extraction of thespectrogram. These methods are typically

biased and primarily designed to solve the problem encountered in speech and audio applications. In

most of the cases only a “rough” estimate ofF0 can be obtained. For a historical review ofF0 estimation

methods, we refer to [5]–[8].

The harmonic structure of speech and audio signals can be modeled as follows: considering a set of
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harmonic signals with frequenciesωl for l = l, ..., L in noise:

y(t) =

L
∑

l=1

βle
jωlt + e(t), βl = αle

jθl , (1)

wheret = 0, ..., N − 1 is the time index,L is the model order,αl is the real-valued amplitude ofl-th

complex exponential,θl is its phase, ande(t) is complex symmetric white Gaussian noise. For perfect

harmonic signals, the frequencies of the harmonics are exact integer multiples ofω0. This perfect harmonic

model is not always valid. Depending on the instrument, different parametric models of the inharmonicity

of the harmonics can be derived from physical models [1], [2]. A common model used for stiff-stringed

instruments isωl = ω0l
√

1 + Bl2 for B ≪ 1 whereB is normally referred to as the stiffness parameter,

which is dependent on physical parameters of the string. The problem considered here is the estimation

of ω0 with or without estimation of the model orderL in a time frame ofN measured samples. The

estimation problem associated with real valued signals canbe cast as (1) by the use of analytic signals,

which is valid when there is little or no spectral content of interest near 0 andπ. In order to simplify

our sinusoidal model as well as the algorithm, we only consider complex valued signals.

Recently,F0 estimation algorithms based on subspace techniques have shown good estimation perfor-

mance with a high accuracy in low SNR conditions, also providing flexibility for robust estimation on

inharmonic signals [9]–[12], and to multi-pitch signals for known orders in [10] and for unknown orders

in [12]. The main disadvantages of subspace basedF0 estimators are the high computational complexity

of the subspace decomposition process, and the sensitivityto colored noise of the estimation of signal

and noise subspaces.

In this paper we present an algorithm for high resolution fundamental frequency estimation based on

subspaces decomposed from a frequency-selective (FS) data matrix model using inputs from a discrete

Fourier transform (DFT). The resulting algorithm is termed Frequency-selective Harmonic MUSIC and

represents a frequency domain extension of HMUSIC [9], [13].F-HMUSIC adopts a subband based

approach where the signal spectrum is divided into Q equallyspaced subbands and where in each band

an individual estimation problem is considered. This approach leads to a computationally more efficient

algorithm compared to HMUSIC where the subspace decomposition is applied directly on the fullband

covariance matrix, and furthermore the averaging of estimatedF0 from the different subbands is expected

to lead to more robustness to colored noise. Moreover, the signal model order detection used in HMUSIC

is limited to model ordersL ≥ 1, and therefore automatic signal presence detection in subbands is not

possible [14]–[16]. Here, a new method for automatic signalactivity detection in subbands is proposed,

which is based on information theoretic criterion [17]. The main advantage of this subband detection
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method is that no subjective judgment is required in the decision process. Based on this knowledge

of the subband activity, additional computational savingscan be achieved, e.g. by simplifications on

the order estimation stage, and by estimating the noise subspace only in active subbands. For a more

complete discussion on order detection, we refer the readerto [17]–[21]; for an overview of subspace

based techniques, we refer to [22]–[25].

The performance of the automatic detection method is evaluated using Monte Carlo simulations

where different parameters are examined. Furthermore, F-HMUSIC using this automatic detection in

the subbands is evaluated on recorded musical signals [26] and its performance is compared with the

performance of HMUSIC and YIN [7], [9]. Parameter selectionsand encountered problems during the

evaluations are discussed. Additionally, the statisticalproperties of F-HMUSIC are evaluated using Monte

Carlo simulations for synthetic signals with constant and Rayleigh distributed amplitudes in both white

and colored noise, where the Rayleigh distribution is oftenused to model audio and speech signal

amplitudes.

The remaining part of the paper is organized as follows. In Section II, the development of F-HMUSIC

is introduced where the frequency-selective data matrix model is reviewed, and an automatic subband

detection method is proposed. The evaluation results from both recorded and synthetic signals are

presented in Section III before the conclusions are drawn in Section IV.

II. PROPOSEDMETHODS

A. Frequency-Selective Data Matrix Model

The given signal sequence (1) is first Fourier transformed using anN point DFT. Let us then assume

that the components of interest lie in a prespecified subband is composed of the following Fourier

frequencies:
{

2π
N km

1
2π
N km

2 . . . 2π
N km

M

}

, (2)

wherem denotes the subband index ofQ = N/M equally divided subbands, and{km
1 ...km

M} are M

given consecutive integers. The number of componentsLm lying in the m-th subband specified by (2)

is assumed to beLm ≤ L.
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In the derivation of the frequency-selective model the following definitions are used:

zk = ej 2π

N
k, k = 0, 1, . . . , N − 1 (3)

uk =
[

zk . . . zs
k

]T
(4)

vk =
[

1 zk . . . zN−1
k

]T
(5)

y =
[

y(0) . . . y(N − 1)
]T

(6)

Yk = v∗ky, k = 0, 1, . . . , N − 1 (7)

e =
[

e(0) . . . e(N − 1)
]T

(8)

Ek = v∗ke, k = 0, 1, . . . , N − 1, (9)

whereuk is the so-called phase shift vector andvk is the Fourier vector forzk, y is the signal vector,e

is the noise vector,∗ is the complex conjugate,T is the vector transpose, ands is a user parameter. The

choice ofs will be discussed later.

Let {ωm
l }Lm

l=1 denote the components of interest lying in them-th subband. The key equation of the

FS data matrix model involving the DFT sequenceYk is proved in [25], [27], and given as:

ukYk =
[

a(ωm
1 ) . . . a(ωm

Lm
)
]











β1v∗kb(ωm
1 )

...

βLm
v∗kb(ωm

Lm
)











+ Γuk + ukEk, (10)

vectorsa(ωm
l ) andb(ωm

l ) is specified as:

a(ωm
l ) =

[

ejωm

l . . . ejsωm

l

]T
(11)

b(ωm
l ) =

[

1 ejωm

l . . . ej(N−1)ωm

l

]T
, (12)

which express the harmonic components of the signal. MatrixΓ ∈ C
s×s is a known matrix which was

defined in [25], [27].

To separate the terms corresponding to these in-band components of interest from the out-of-band

components in (10), we use the notation

Am =
[

a(ωm
1 ) . . . a(ωm

Lm
)

]

(13)

xk =











β1v∗kb(ωm
1 )

...

βLm
v∗kb(ωm

Lm
)











, (14)
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for the in-band components, and similarlỹAm and x̃k for the components that represent leakage signals

in the subband. A compact matrix form of (10) for all DFT frequencies in them-th subband is given as:

Ym = AmXm + ΓUm + ÃmX̃m + Em, (15)

where matrices in (15) are defined as:

Ym =
[

ukm

1
Ykm

1
. . . ukm

M
Ykm

M

]

(16)

Em =
[

ukm

1
Ekm

1
. . . ukm

M
Ekm

M

]

(17)

Um =
[

ukm

1
. . . ukm

M

]

(18)

Xm =
[

xkm

1
. . . xkm

M

]

, (19)

with Ym ∈ C
s×M . The third and fourth terms in (15) are, respectively, the out-of-band components and

the noise term. TermΓUm in (15) is eliminated by postmultiplying (15) with a projection matrix,

Π
⊥
m = I − U∗

m(UmU∗
m)−1Um, (20)

which is the orthogonal projection matrix onto the null space of Um which is as×M matrix, wheres is

chosen such thatM > s. The out-of-band component̃Xm is assumed to be zero which is asymptotically

the case. The resulting expression is written as:

YmΠ
⊥
m = AmXmΠ

⊥
m + EmΠ

⊥
m, (21)

The matrix YmΠ
⊥
m obtained form-th subband can be decomposed using either a singular value

decomposition (SVD) or an eigen value decomposition (EVD), i.e. [9], [27]:

YmΠ
⊥
m = HmΛmVm. (22)

The matrixHm in (22) is written as

Hm =
[

h1 h2 . . . hs

]

, (23)

where the columns ofHm contain the singular vectors defining the signal and noise subspace, andΛm

is a diagonal matrix containing the corresponding singularvalues. Furthermore, letSm and Gm be the

orthonormal subspaces denoted as follows:

Sm =
[

h1 h2 . . . hLm

]

(24)

Gm =
[

hLm+1 hLm+2 . . . hs

]

, (25)
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with Sm connected to the signal subspace associated with theLm principal singular values, andGm

connected to the orthonormal noise subspace associated with s−Lm singular values. The noise subspace

spanned byGm is then orthogonal to the Vandermonde matrixAm defined in (13), i.e.,

AH
mGm = 0. (26)

for frequenciesωm
l wherel = 1, ..., Lm.

B. F-HMUSIC

In this part, F-HMUSIC is formulated with a subband based approach for jointly estimating bothF0

and the model orderL for harmonics with frequenciesωl = ω0l
√

1 + Bl2, l = 1, ..., L. The spectrum

from 0 to π is divided intoQ equally spaced subbands where the number of active subbandscontaining

harmonics have indexQ′. For simplicity,Q′ is assumed to be known. In the next subsection, the proposed

subband activity detection method will be described.

The harmonic model orderL of (1) is given as:

L =

Q
∑

m=1

Lm, (27)

with Lm denoting the number of harmonics in subbandm. The number of harmonics in each subband

is further derived from the laws of inharmonicity written as:

Lm =

⌊

L′
m −

m−1
∑

i=1

⌊

L′
i

⌋

⌋

, (28)

where,

L′
m =

√

√

√

√

√− 1

2B
+





(

1

2B

)2

+

(

2π
N km

M

ω0

)2




1/2

(29)

is derived from2π
N km

M > ω0Lm

√

1 + BL2
m. Note, expression in (29) is valid forB > 0. WhenB = 0,

the number of harmonics isL′
m =

⌊

2π

N
km

M

ω0

⌋

. In this paperB is assumed to be known. InF0 estimations

on recorded piano notes averagedB measured from various pianos can often be used, as an example

in [28] good estimation results have been shown using average measuredB in estimations on recorded

piano notes. IfB is unknown, it can be estimated as a parameter of interests inthe extended cost function

[11].

The Vandermonde matrixAm in (13) has been derived without consideration of the harmonic structure

of the signal. If the harmonic structure is taken account, then Am can be written as:

Am =
[

a(ωm
1 ) . . . a(ωm

Lm
)

]

. (30)
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The two dimensional cost function for the joint order and fundamental frequency estimation is given

as:

J(ω0, L) =
1

Q′

Q′

∑

m=1

∥

∥AH
mGm

∥

∥

2

F

smin(Lm, s − Lm)
, (31)

where the denominator is a scaling factor that makes the noise floor of the cost function invariant to

the changing matrix dimensions ofAm andGm based on the angle between subspaces [14], [15]. More

specifically the measure is the average over cosine to all the non-trivial angles between the subspaces

spanned by the column ofAm and Gm. The estimates for the orderL and the fundamental frequency

ω0 are obtained by minimizing (31),

ω̂0 = arg min
ω0∈Ω

min
L∈L

J(ω0, L), (32)

whereΩ is the searching space for the fundamental frequency, andL is the search space for the order

estimation.

The performance of the proposed method depends on a number parameters such as the data lengthN ,

the number of subbandQ, and the user parameters. In general, the resolution is mainly dependent on

parameterss, N andQ. IncreasingN leads to a resolution improvement, while increasingQ reduces the

resolution. Previous experience with similar approaches show that user parameters may be selected as

large as possible to increase the number of linearly independent vectors in the noise subspace, but still

less thanM in order to achieve a correct estimate of the FS data matrix model [25], [27], [29].

The cost function in (31) can be computed using either an FFT based method or a gradient based

method. Both methods are described in [2]. A coarser estimate is achieved when the efficient FFT based

method is used. However, for applications that require accurate estimates for a given model order, a

gradient search algorithm with minor modifications comparedto the method described in [2] can be

used.

C. Subband detection

The proposed subband activity detection method is formulated using the information theoretic cri-

terion for model selections described in [17].It is known from [30] that for a given Toeplitz matrix

R, an asymptotically equivalent circulantM × M matrix C can be constructed, under the condition of

limM→∞
1√
M

‖C − R‖F = 0, where‖·‖F is the Forbenius norm and the limit is taken over the dimensions

of C and R. Circulant matrixC can then be written asC = QΓQH where Q is the Fourier matrix.

Therefore, the absolute square magnitude of DFT elements are asymptotically equal to the eigenvalues
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of R. The DFT elements can be written asX2
k = |lk|2ej∠Xk , where|lk|2 is the squared magnitudes and

ej∠Xk is the phase.

DFT elements in a subband are sorted by descending magnitudes, with the new sorted index denoted

ask′. The sorting operation used here is similar to the sorting procedure applied on eigenvalues in EVD.

The sorted magnitudes of DFT is then inserted into the cost function derived in [17], given as:

MDL(k′) = − log

(

∏M
n=k′+1 |ln|2/(M−k′)

1
M−k′

∑M
n=k′+1 |ln|2

)(M−k′)N

+
1

2
k′(2M − k′) log N, (33)

The first term in (33) is in fact the log-likelihood of the maximum likelihood estimator of the model

parameters and the second term is a penalty term [17], [19]–[21]. In the proposed method only the activity

of the band is of interest therefore when the minimum of (33) is k′ > 0 the subband is decided as active.

Algorithm outline:

1) Extract the Fourier transformed segment of the specified subbandm on Yk, with index defined in

(2)

2) Sort |Yk| in a descending order with the biggest magnitude first. The new sorted index is denoted

ask′.

3) Insert sorted magnitudes into (33). Find the argument which gives minimum value of (33).

4) Detect subband activities using the following rules:

k′ > 0, subband is active.

k′ = 0, subband is not active.

In this paper, when subband signal detection method is used,the active subband is assumed to have full

model orderL. The search range forL is bounded by (28). Therefore the simplified cost function will

be denoted as:

ω̂0 = arg min
ω0∈Ω

J(ω0), (34)

whereL is fixed and founded using (27).

III. E XPERIMENTAL RESULTS

A. Statistical Evaluation of subband detection algorithm

Before evaluating F-HMUSIC on real recorded signals the proposed subband signal detection method

is evaluated with Monte Carlo simulations where errors are measured as correctness in detection. The

test signal is generated according to (1) where the signal isperfectly harmonicB = 0 with corresponding
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Fig. 1: Percentages of correctly estimated subband activity on theproposed method evaluated on: a)

different SNR under the white noise conditions b) a varying frame lengthN with fixed SNR=25dB.

model number set toL =
⌊

π
ω0

⌋

. Two types of signal amplitudes are evaluated one with constant amplitudes

and second type is random amplitudes generated according toRayleigh distribution. The active subband

detection errors are measured on subband with band indexm = 1 where three different scenarios will

be evaluated.

First, we start with an experiment of detection performance versus signal-to-noise ratio (SNR) where

the sample length is fixed atN = 512. For each SNR,500 Monte Carlo simulations are evaluated. The

signals have the frequencyω0 = 0.23 and the performance is shown in Fig. 1a. From the simulations, it
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Fig. 2: Percentages of correctly estimated subband activity on theproposed method evaluated on varying

F0 with fixed SNR=30dB andN = 1024

Fig. 3: Top) Spectrogram of the clarinet signal. Bottom) Fundamentalfrequencies estimated using F-

HMUSIC and YIN.

can be seen that almost100% accuracy can be achieved when the SNR is above30dB. Next, the same

signal setup is used with SNR fixed at30dB and applied on different sample lengths evaluated from

N = 256 to N = 1024. The results are shown in Fig. 1b, and the detection algorithm can be seen to be

very accurate for sample length aboveN = 512. With an increased sample length, a better approximation

of DFT magnitudes to the eigenvalues is achieved. Last test is to evaluate the performance whenF0 is

varying from0.01 to 0.5 with frame length fixed atN = 1024 and SNR at30dB. The simulation results

are shown in Fig. 2. The difficulty in this test is mainly on the lower F0 where the harmonics are more
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closely spaced than at higherF0. This will be clarified later on.

From the simulation results, we can clearly confirm that the proposed subband detection method can

sufficiently detect subband activity under different circumstances. In all cases, the performances with

random generated signal amplitudes are better than constant amplitudes which can be explained by the

limited sample length where DFT magnitudes are far away from equality to the asymptotically equal

eigenvalues. In the case of asymptotically equality between Fourier power magnitudes and eigenvalues,

every harmonic should only have one element representationin the Fourier spectrum. This is usually

never the case when sample length is limited, and frequency smearing of the harmonics in the frequency

domain will be obtained. The smearing effect is not crucial onwhite noise because perfect white noise

has a flat spectrum distribution. Therefore, the proposed methods performs better on random generated

amplitudes since interfering elements might be treated as noise elements when the amplitudes power is

close to the noise variance.

B. Signal Examples

We start this subsection by demonstrating the proposed method on a recorded sequence of clarinet

playing an up going arpeggio. The clarinet signals are assumed to be perfectly harmonic withB = 0.

Spectrogram of the signal is shown in Fig. 3 top panel while estimates ofF0 using F-HMUSIC and

YIN are shown in the bottom panel. According to Fig. 3, our algorithm can successfully estimate the

fundamental frequency except on some boarder region where the signal is not well defined due to non-

ideal circumstances such as reverberation in the room, thatmay cause a multi-pitch scenario where our

model in (1) is invalid. The setup used in F-HMUSIC in this example was on a signal with sampling

frequencyfs = 11025Hz processed with a frame length ofN = 512, and50% overlaps. The model order

of F-HMUSIC is s = ⌊0.9M⌋. The method is generally sensitive to the choice ofs. For short frames,

large number ofs is preferred. Two subbands are selected where the active subbands are automatically

detected using the proposed detection algorithm. The cost function was evaluated from100Hz to 1000Hz.

In this part, we evaluated F-HMUSIC on recordings from a database consisting of transcribed notes

played by pianos [26]. The database is recorded under different reverberation environment, with three

loudness levels (piano, mezzo-forte and forte). For each note, we selected a test set consisting of recordings

played with six different pianos. In average,1000 frames of data is processed for each note. The onset

and offset time of the note is provided by the database, whichprovides a challenging test data where

both metallic thumps of hammers against strings, and constantly degradation of SNR during the release

of the note are involved. One example of a note spectrogram ontest data at466Hz is shown in Fig. 4,
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which clearly shows the non-ideal signal conditions duringonset and release of the note. This forces us to

estimate under different circumstances with a general fixed parameter setup during the entire evaluation.

Furthermore, the subband signal detection performance on low F0 is more sensitive for frames with low

SNR, with the statistical performance for lowF0 being shown in Fig. 2. The main intention of this

evaluation is to evaluate the robustness of subspace based methods on real-recorded data. Our proposed

methods will be compared with both HMUSIC1 and YIN2. Previous studies of YIN have often referred

it as a very robust single pitch estimator while HMUSIC has primarily shown good performance on

synthetic signals and on small set of recorded signals.

During the evaluations, each estimatedF0 is quantized to the nearest note in the musical scale with

A4 tuned to440 Hz. Errors are then measured as incorrect MIDI note estimates. The evaluated signals

are analyzed with a window length ofN = 1024 and sliding forward in time with50% overlap. For

computational simplicities, signal is downsampled toFs = 11025Hz. Parameters used in F-HMUSIC and

HMUSIC are selected as follows:Ω ∈ [103.83, 4310] Hz, Q = 2, ands = ⌊0.85M⌋, s′ = ⌊0.60N⌋ where

s′ is the user parameter for HMUSIC. Piano notes will be evaluatedon MIDI notes45 to 108. In this

evaluation, the lowest possibleF0 is selected to be a bit higher than the lowest note that can be produced

by a piano. This is because at lowF0, closely space sinusoids will give a rank deficient Vandermond

matrix (30) which gives inaccurate estimations and cost function evaluated on rank deficient region will

degrade the overall performance ofF0 [29]. Therefore it is important to selectΩ which does not include

rank deficient points in order to stabilize the overall performance. Note that F-HMUSIC use less data

samples which make it more sensitive to rank deficiency problem than HMUSIC. Due to the limited data

length inserted into the FS data model,s needs to be selected close toM in order to reduce the noise

influence of the data. The stiffness parametersB for different F0 is averaged from the results presented

in [2, page 365]. The estimation errors evaluated on MIDI notes are reported in Fig. 5, it shows clearly

that both subspace based methods suffer from degradation inestimation robustness on recorded signals.

This can be explained by model mismatches where subspace based F0 estimators do not make additional

adaptation to the model changes. Model mismatch situationsare most probably to be observed during

onset and release of the notes.

The significantly reduced performance on higher MIDI notes canbe explained with that model order

L is decreasing for increasedF0. This reduce the estimation performance according to the asymptotic

1The HMUSIC used in evaluation on recorded data is based on fixed orderwhere the orderL =

j

π

ω0

k

2Parameters used in YIN is the standard parameter found on authors webpage
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Fig. 4: Spectrogram example of one note on MIDI note70 with fundamental frequency466.2Hz.

TABLE I: Summarized errors of MIDI notes[45, 95]

MIDI Notes 45-95 F-HMUSIC HMUSIC YIN

% Mean Errors 6.4% 7.4% 6.2%

1/2 Octave Errors 6.3% 18.7% 9.83%

2 Octave Errors 17.6% 45.6% 27.2%

CRLB described in [9]. Regarding temporal aspects of the testsignal, the reduced detection performance

is related with physical properties of the piano sound whereamplitudes of harmonics decay3 rapidly

for frequency above2800Hz [2, page 384] which has the effect to significantly increasethe number of

frames with low SNR.

Too make the comparison fair between involved methods, errors will be discussed for MIDI notes

[45, 95] which in our point of view is the operating region for the involved algorithms. The errors

are summarized in Table I where it shows that the performanceof subspace basedF0 estimators are

comparable with YIN. It also shows that HMUSIC is more sensitive to octave errors than F-HMUSIC

but no significant differences between the performance have been observed. Even thought F-HMUSIC

make less 2-octave and 1/2-octave errors, those errors are hard to avoid. Nevertheless, our proposed

estimator does not significantly improve the robustness ofF0 estimations but high resolution of estimates

can be obtained, something that is not possible using YIN or similar time-domain methods. Another

3The speed for amplitude decreases is often referred as decay time [2,page 384]
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Fig. 5: Percentage errors of the quantized MIDI notes evaluated from [45, 108].
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Fig. 6: Frequency domain representation of one realization on the harmonic signal embedded in colored

noise. The SNR is at11dB with the constant amplitudesαl = 1∀l.

advantage of F-HMUSIC is the computational complexity is relatively low compared with other subspace

basedF0 estimators. As an example, in HMUSIC the computational complexity using EVD on fullband

covariance matrix is of orderO
(

(N)3
)

, and by splitting up the estimation problem into subproblems the

computational load will be reduced by1
(2Q)3 when frequency samples from region0 to π are used.

C. Statistical Evaluation of F-HMUSIC

Next, the statistical properties of the proposed method is evaluated using the Monte Carlo simulations

under both white and colored noise conditions. In this part of the evaluation only statistical properties
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Fig. 7: a) The RMSE with a varying SNR in the case of constant amplitudesembedded in white noise.

b) Corresponding model order estimation errors

of the algorithm is of interest and errors generated due to the automatic subband signal detection are

not preferred therefore the subband containing the signal is assumed to be known. The signal is perfect

harmonic withB = 0.

In each trial, a signal segment is generated according to themodel in (1), with the noise being

randomized. The estimators are evaluated in terms of the rootmean square error (RMSE) defined as:

RMSE =

√

√

√

√

1

D

D
∑

d=1

(ω̂0 − ω0)2, (35)
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Fig. 8: a) The RMSE with a varying SNR in the case of random distributed amplitudes embedded in

white noise. b) Corresponding model order estimation errors.

with ω0 and ω̂0 being the true fundamental frequency and the estimate, respectively, and withD being

the number of Monte Carlo simulations. In this paperD = 200. This is done for various SNR defined

as:

SNR = 10 log10

L
∑

l=1

α2
l

φ(ωl)
, (36)

where the functionφ(ωl) is the power spectrum of the noise at frequencyωl = ω0l. In the case of white

noise, power spectrum is equal to the variance of noise, and in colored noise the power spectrum is

white noise filtered with a AR process. The SNR is calculated with(36) where the functionφ(ωl) is
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Fig. 9: The RMSE performance with a varying frame lengthN where amplitudes is constant distributed

and SNR fixed at25dB

power spectrum at frequencyωl. Furthermore, model order errors on the harmonic signals is defined as

the difference between the estimated order subtracted on the true order. The results are compared with

the exact CRLB for both white and colored noise cases using equations stated in [31], [32].

In the experiments to follow, we use the following signal andnoise setup. The signal will consist of

L = 13 complex exponentials embedded in noise with a fundamental frequency ofω0 = 0.15. Both white

and colored noise are evaluated. Two cases of amplitudes areconsidered one with constant amplitudes

of αl = 1 ∀ l and the other with a randomized amplitude generated from a Rayleigh probability density

function. The Rayleigh distribution provides a good model for amplitudes from speech and musical

instruments. For both F-HMUSIC and HMUSIC the parameters are set in common where the searching

candidates ofω0 is set toΩ ∈ [0.06, 0.4], the model order considered wereL ∈ [5, ⌊π/ω0⌋ − 1]. Note

that the interval forω0 includes both2ω0 and 1
2ω0 which is normally referred as octave errors. The user

parameter for F-HMUSIC is selected to bes = ⌊0.5M⌋, and for HMUSIC⌊0.5N⌋.
In the first example, F-HMUSIC is evaluated in white noise scenario where the amplitudes of harmonics

are constant. The corresponding results are shown in Fig. 7a where in estimated RMSE versus a varying

SNR is shown and in Fig.7b the associated model order estimation errors is plotted. The performance curve

of F-HMUSIC is closely following CRLB for region above the breakdown4 region of the algorithm.

4The algorithm performance break down problem is a common problem atlow SNR region which is also referred as subspace

swapping problem where the high noise level cause part of the signal subspace erroneously determined as signal subspace.

August 3, 2009 DRAFT



18

−5 0 5 10 15

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

R
M

S
E

 

 
H−MUSIC
F−HMUSIC
CRLB

(a)

−5 0 5 10 15

−6

−5

−4

−3

−2

−1

0

SNR [dB]

E
st

im
at

io
n 

er
ro

r

 

 

H−MUSIC
F−HMUSIC

(b)

Fig. 10: a) The RMSE with a varying SNR in the case of constant amplitudesembedded in colored

noise. b) Corresponding model order estimation error

With the consideration of computational savings the performance of F-HMUSIC is still comparable

with HMUSIC as shown in Fig. 7a where both algorithms provides estimate close to CRLB. Next, the

performance is measured on a set of harmonic signals whose signal amplitudes are generated according

to a Rayleigh distribution. The performance curve of RMSE withvarying SNR is shown in Fig. 8a,

the subspace methods are suffering some performance degradation where the breakdown point has been

raised compared to constant amplitude case. Overall, F-HMUSIC has shown good statistical performance

for harmonic signals embedded in white noise. In the operation region above the breakdown point the
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Fig. 11: a) The RMSE with a varying SNR in the case of random amplitudes embedded in colored noise.

b) Corresponding model order estimation error.

order estimates have also shown good accuracies, and this isalso the case in the remaining experiments.

From Fig. 7b and 8b shows that the estimates ofL is close to true value when estimate ofF0 is closing

to CRLB.

In the next example, the RMSE performance is evaluated on a varying window length with SNR fixed

at 25dB and amplitudes kept fixed atαl = 1,∀l. For various frame length the user parameters are selected

to be⌊0.85M⌋ and⌊0.85N⌋, respectively for F-HMUSIC and HMUSIC. The performance is reported in

Fig. 9 where it shows that both algorithms can be operating on any frame length between 256 to 1024
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with wisely selected user parameters.

A final example will demonstrate F-HMUSIC performance evaluated in colored noise scenario. Signal

setup is the same as previous examples except that, here the embedded noise is filtered with a second order

AR process( 1
1+0.3z−1+0.8z−2 ), where the main power of the noise is mainly concentrated on subband

m = 2, and one realization of the signal embedded in colored noiseis shown in Fig. 6. To enhance the

performance of both methods a slightly different setup havebeen used for both F-HMUSIC and HMUSIC

where the searching space forω0 is Ω ∈ [0.1, 0.8]. Remaining parameters are same as in earlier examples.

In the colored noise case the evaluation results for the constant distributed amplitudes is shown in Fig.

10 where the algorithm breakdown region for F-HMUSIC is lower than HMUSIC. Rayleigh distributed

amplitudes are also evaluated with Monte Carlo Simulations,significantly better performances of F-

HMUSIC has been shown in Fig. 11. Due to the noise properties, subband with indexm = 1 contains

white noise characteristic which provides good estimates with reduced subspace swapping properties than

estimates in subbandm = 2. By averaging the estimates from both subbands a more robustestimation is

then achieved. From simulations shown in Fig 11, it can be clearly seen that F-HMUSIC is more robust

against the colored noise than HMUSIC both in fixed and Rayleighdistributed amplitudes.

IV. CONCLUSION

In this paper, a high resolution fundamental frequency estimator termed F-HMUSIC with automatic

subband signal detection has been proposed. This algorithm is a frequency domain based estimator using

subspaces decomposed from FS data matrix model to efficiently estimate the fundamental frequency,

where a subband based approach is adopted to reduce the sensitivity to the colored noise and increase

the computational efficiency. Additionally, an automatic subband signal detection method has been pro-

posed which is based on information theoretic criterion where no subjective judgment is needed. The

performance of F-HMUSIC has been evaluated on both synthetic and recorded signals. From simulations

on synthetic data shows that F-HMUSIC is more robust against colored noise than HMUSIC. Furthermore,

robustness of the method has been demonstrated by evaluation on recorded signals where F-HMUSIC

has shown performance close to YIN for MIDI notes between[45, 95], and for MIDI note above 95 our

algorithm performs better than YIN. Overall the performance of F-HMUSIC is considered as accurate and

robust for the operating region. In the operation region theprice we paid for computational complexity

and robustness to colored noise is with estimation accuracy.

REFERENCES

[1] T. D. Rossing,The Science of Sound, 2nd Edition, Addison-Wesley Publishing Company, 1990.

August 3, 2009 DRAFT



21

[2] N. H. Fletcher and T. D. Rossing,The Physics of MUSICAL instruments, Springer, 1998.

[3] P. J. Rose, “On the non-equivalence of fundamental frequency and pitch in tonal description,”In Prosodic Analysis and

Asian Linguistics, 1988.

[4] R. Herman, M. Beckman, and K. Honda, “Linguistic models of F0 use, physiological models of F0 control, and the issue

of ”mean response time”,”Language and Speech, vol. 42, pp. 373–399, 1999.

[5] W. Hess,Pitch Detemination of Speech Signals, Springer-Verlag, Berlin, 1983.

[6] W. Hess, “Pitch and voicing determination,”Advances in Speech Signal Processing, pp. 3–48, 1992.

[7] A. de Cheveigne and H. Kawahara, “YIN, a fundamental frequency estimator for speech and music,”J. Acoust. Soc. of

Am., vol. 111(4), pp. 1917–1930, 2002.

[8] R. Badeau, B. David, and G. Richard, “A new perturbation analysisfor signal enumeration in rotational invariance

techniques,”IEEE Trans. Signal Processing, vol. 54, no. 2, pp. 450–458, 2006.

[9] M.G. Christensen, A. Jakobsson, and S.H. Jensen, “Joint high-resolution fundamental frequency and order estimation,”

IEEE Trans. Acoust., Speech, Signal Process., vol. 15, no. 5, pp. 1635–1644, 2007.

[10] M. G. Christensen, P. Stoica, A. Jakobsson, and S. H. Jensen,“Multi-pitch estimation,” Elsevier Signal Processing, vol.

88(4), pp. 972–983, 2008.

[11] M.G. Christensen, P. Vera-Candeas, S.D. Somasundaram, and A. Jakobsson, “Robust subspace-based fundamental frequency

estimation,” IEEE Int. Conf. Acoust., Speech and Signal Processing, pp. 101–104, 2008.

[12] M.G. Christensen, A. Jakobsson, and S.H. Jensen, “Multi-pitchestimation using Harmonic MUSIC,”in Rec. Asilomar

Conf. Signals, Systems, and Computers, pp. 521–525, 2006.

[13] M. G. Christensen, S. H. Jensen, S. V. Andersen, and A. Jakobsson, “Subspace-based fundamental frequency estimation,”

European Signal Processing Conf., pp. 637–640, 2004.

[14] M.G. Christensen, A. Jakobsson, and S.H. Jensen, “Sinusoidal order estimation using angles between subspaces,”Submitted

to: IEEE Transaction in Signal Processing, 2008.

[15] M.G. Christensen, A. Jakobsson, and S.H. Jensen, “Sinusoidal order estimation using the subspace orthogonality and

shift-invariance properties,”Rec. Asilomar Conf. Signals, Systems, and Computers, 2007.

[16] A. Jakobsson, M. G. Christensen, and S. H. Jensen, “Frequency selective sinusoidal order estimation,”IEEE Electronic

Letters, vol. 43(21), pp. 1164–1165, 2007.

[17] M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,” IEEE Trans. Acoust., Speech, Signal

Process., vol. 33, pp. 387– 392, 1985.

[18] M. S. Bartlett, “A note on the multiplying factors for variousx2 approximations,”J. Roy. Stat. Soc,, vol. Ser. B,16, pp.

296–298, 1954.

[19] H. Akaike, “Information theory and an extenstion of the maximum likelihood principle,” in in Proc. 2nd Int. Symp. Inform.

Theory, 1973.

[20] J. Rissanen, “Modeling by shortest data description,”Automatica, vol. 6, pp. 461–464, 1978.

[21] G. Schwartz, “Estimating the dimention of a model,”Ann. Stat., vol. 6, pp. 461–464, 1978.

[22] H. Krim and M. Viberg, “Two decades of array processing research-the parametric approach,”IEEE SP. Mag., July 1996.

[23] J. Gunnarsson and T. McKelvey, “High SNR performance analysis of F-ESPRIT,” inRec. of 38th Asilomar Conference

on Signals, Systems and Computers, 2004.

[24] T. McKelvey and M. Viberg, “A robust frequency domain subspace algorithm for multi-component harmonic retrieval,”

in Rec. of 34th Asilomar Conference on Signals, Systems and Computers, 2001.

August 3, 2009 DRAFT



22

[25] P. Stoica, N. Sandgren, Y. Seln, L. Vanhamme, and S. van Huffel, “Frequency-domain method based on the singular value

decomposition for frequency-selective NMR spectroscopy,”Journal of Magnetic Resonance, vol. 165 (1), pp. 80–88, 2003.

[26] V. Emiya, Transcription automatique de la musique de piano, Ph.D. thesis,École Nationale Suṕerieure des
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