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Abstract—In conventional speech synthesis, large amounts of
phonetically balanced speech data recorded in highly controlled
recording studio environments are typically required to build
a voice. Although using such data is a straightforward solution
for high quality synthesis, the number of voices available will
always be limited, because recording costs are high. On the other
hand, our recent experiments with HMM-based speech synthesis
systems have demonstrated that speaker-adaptive HMM-based
speech synthesis (which uses an “average voice model” plus model
adaptation) is robust to non-ideal speech data that are recorded
under various conditions and with varying microphones, that are
not perfectly clean, and/or that lack phonetic balance. This enables
us to consider building high-quality voices on “non-TTS” corpora
such as ASR corpora. Since ASR corpora generally include a
large number of speakers, this leads to the possibility of producing
an enormous number of voices automatically. In this paper, we
demonstrate the thousands of voices for HMM-based speech
synthesis that we have made from several popular ASR corpora
such as the Wall Street Journal (WSJ0, WSJ1, and WSJCAMO),
Resource Management, Globalphone, and SPEECON databases.
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We also present the results of associated analysis based on percep-
tual evaluation, and discuss remaining issues.

Index Terms—Automatic speech recognition (ASR), average
voice, hidden Markov model (HMM)-based speech synthesis, H
Triple S (HTS), speaker adaptation, speech synthesis, SPEECON
database, voice conversion, WS]J database.

I. INTRODUCTION

TATISTICAL parametric speech synthesis based on

hidden Markov models (HMMSs) [2] is now well-estab-
lished and can generate natural-sounding synthetic speech. In
this framework, we have pioneered the development of the
HMM Speech Synthesis System, H Triple S (HTS) [3], [4].

In the conventional speech synthesis framework including
HTS, large amounts of phonetically balanced speech data
recorded in highly controlled recording studio environments
are typically required to build a voice. Although using such
data is a straightforward solution for high-quality synthesis,
the number of voices available will always be limited, because
the costs associated with recording and manually annotating
speech data are high.

Another practical, but equally important, reason is footprint
available for text-to-speech (TTS) synthesis systems. In general,
disk space available for TTS systems in commercial products
is limited, and thus it is infeasible for the systems to have a
large variety of voices since the number of voices is a factor
of footprint.

On the other hand, our recent experiments with HMM-based
speech synthesis systems have demonstrated that speaker-adap-
tive HMM-based speech synthesis (which uses an “average
voice model” plus model adaptation) is robust to non-ideal
speech data that are recorded under various conditions and with
varying microphones, that are not perfectly clean, and/or that
lack phonetic balance [5], [6]. In [6], a high-quality voice was
built from “found” audio, freely available on the web. These
data were not recorded in a studio and had a small amount
of background noise. The recording condition of the data was
not consistent: the environment and microphone also varied.
This enables us to consider building high-quality voices on
other “non-TTS” corpora such as ASR corpora. Since ASR
corpora generally include a large number of speakers, this leads
to the possibility of producing an enormous number of voices
automatically.

1558-7916/$26.00 © 2010 IEEE
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In addition, speaker-adaptive HMM-based speech synthesis
is efficient in the sense of footprint. Compared with so-called
unit-selection synthesis, the footprint of HMM-based speech
synthesis systems is usually smaller because we store statis-
tics of acoustic subword models rather than templates of the
subword units [7]. Furthermore, the statistics of the subword
models in the speaker-adaptive HMM-based speech synthesis
(i.e., average voice models) is speaker-independent and thus can
be shared among an arbitrary group of speakers. The speaker-
dependent footprint is only a set of transforms used for speaker
adaptation, which is usually much smaller than the statistics
of the subword models since the transforms are further shared
among the subword models.

In this paper, we explain the thousands of voices for HMM-
based speech synthesis that we have made from several popular
ASR corpora such as the Wall Street Journal databases (WSJO,
WSJ1 [8], and a Cambridge version of WSJO called WSICAMO
[9]), Resource Management (RM) [10], GlobalPhone [11] and
Finnish and Mandarin SPEECON [12]. We believe these voices
form solid benchmarks and provide good connections to ASR
fields. This paper also reports a series of analysis results for in-
vestigating the effect of such non-ideal data from a TTS perspec-
tive, suggests useful applications for the thousands of voices,
and addresses outstanding issues.!

This paper is organized as follows. Section II gives an
overview and analysis of the ASR corpora used for building TTS
systems. A brief overview of speaker-adaptive HMM-based
speech synthesis, details of voices built, and applications which
make use of thousands of TTS voices are also given. Section III
introduces evaluation methodologies used. Sections IV and V
describe analysis of the use of ASR corpora for TTS. Then
Section VI concludes the paper by briefly summarizing our
findings.

II. TTS VOICES TRAINED ON ASR CORPORA

A. TTS and ASR Speech Databases

In conventional speech synthesis research, phonetically
balanced speech databases are typically used. A phonetically
balanced dataset (e.g., complete diphone coverage) is required
for each individual speaker, since conventional systems are
speaker-dependent. In multi-speaker sets of speech synthesis
data (e.g., CMU-ARCTIC?), it is common for the same set of
phonetically balanced sentences to be reused for each speaker.
Therefore, pooling the data from multiple speakers does not
always significantly increase phonetic coverage.

Compared to this, the sentences chosen for ASR corpora
tend to be designed to achieve phonetic balance across multiple
speakers, or are simply chosen randomly. Therefore, phonetic
coverage increases with the number of speakers. However, each
individual speaker typically records a very limited number of
utterances (e.g., fewer than 100 utterances).

However, we hypothesized that it would be feasible to
build speaker-adaptive HTS systems using ASR corpora, since

ITn this paper, we do not explore multilingual or cross-lingual approaches
to acoustic modeling. We simply use language-dependent acoustic models and
TTS systems.

2A free database for speech synthesis: http://festvox.org/cmu_arctic/

TABLE I
DETAILS OF ENGLISH ASR CORPORA USED FOR
BUILDING HMM-BASED TTS SYSTEMS

Corpus (subset) Speakers Sentences/speaker Sentences
RM (ind_train) 80 40 3200
RM (ind_dev) 40 40 1600
RM (ind_eavl) 40 40 1600
RM (ind_total) 160 40 6400
RM (dep_dev) 12 100 1200
RM (dep_eval) 12 (dep_dev) 100 1200
RM (dep_total) 12 200 2400
WSIJO (short) 84 86.1 7236
WSJO (long) 12 600 7201
WSJO (very long) 3 (long) 2400 7199
WSIJIO (dev) 10 194.8 1948
WSJO (eval) 8 163.4 1307
WSJICAMO (train) 92 85.4 7861
WSICAMO (dev) 20 73.5 1471
WSICAMO (eval) 28 74.1 2076
WSICAMO (total) 140 81.5 11408
WSIJ1 (short) 200 191.3 38278
WSIJ1 (long) 25 1241.6 31029

adaptive training techniques (e.g., SAT [13]) can normalize
speaker differences, and since the total phonetic coverage of
ASR corpora may be better than that of TTS (see Section II-H).
Therefore, we used a number of recognized, publicly available
ASR corpora—the Wall Street Journal databases (WSJO, WSJ1,
and WSJCAMO), Resource Management (RM), GlobalPhone,
Finnish and Mandarin SPEECON, and Japanese JNAS [14].
The subsections which follow overview the ASR databases in
each language.

B. English ASR Speech Databases

Table I gives detailed information on the number of speakers
and sentences included in predefined subsets of the English ASR
corpora. No speakers (except a very limited number of speakers
included in the subsets called “very long” in WSJO or “long”
in WSJ1) have a sufficient number of sentences to train HMMs
that can be used for TTS systems. For the training of speaker-de-
pendent HMMSs, we usually require over five hundred sentences.
Therefore building TTS voices from these ASR corpora is, in it-
self, a new challenge.

Since the English corpora provide varying quantities of tran-
scribed read speech data of mostly good quality (though not in
the same category as purpose-built speech synthesis databases),
they were used for 1) comparison of speaker-dependent and
speaker-adaptive HMM-based TTS systems, 2) analysis of the
effect of the quantity of data used for the average voice models,
and also 3) comparison of footprints of acoustic models built.
These topics are mentioned in Sections IV, V-C, and II-K, re-
spectively.

The WSJO was particularly well-suited for the comparison
of speaker-dependent and speaker-adaptive HMM-based TTS
systems. The speaker-dependent systems were built from the
subset called “very long term” which includes about 2400
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sentences per speaker for a small number of speakers. Av-
erage voice models were built using other subsets: short term,
long term (excluding the speakers from very long term), de-
velopment, and evaluation. In total, 110 speakers utter from
80 to 600 sentences each. We compared speaker-dependent
models trained with a reasonably large amount of data (2400
sentences—twice the size of a single-speaker CMU-ARCTIC
dataset) with various speaker-adaptive systems.

For the analysis of the effect of the quantity of speech data
used for training the average voice models, and comparison of
footprints of the acoustic models built, we used speaker-inde-
pendent subsets (short, train, or ind_train in Table I) of the RM,
WSJO, WSICAMO, and WSJ1 databases and built average voice
models on each database. The total amounts of speech data of
the subsets for RM, WSJ0, WSJICAMO, and WSJ1 are 5 hours,
15 hours, 22 hours, and 66 hours, respectively in terms of dura-
tion including silences and pause.

C. Finnish and Mandarin SPEECON Databases

For the Finnish and Mandarin average voice models, we have
used the SPEECON “Speech Databases for Consumer Devices”
[12]. The SPEECON databases include speech data recorded in
various conditions with various amounts of background noise,
detailed below. We directly cite definitions of the noise cate-
gories from [12]:

Office mostly quiet; if background noise
is present, it is usually more or less

stationary.

a home environment but noisier than
office; the noise is more coloured and
non-stationary; it may contain music and
other voices.

Entertainment

Public place may be indoor or outdoor; noise levels are

hard to predict.

Car a medium to high noise level is expected of
both stationary (engine) and instantaneous

nature (wipers).

Sample spectrograms for Mandarin speech recorded in office
and public space environments are shown in Fig. 1. Noise
levels in dB [A] for each environment included in Mandarin
SPEECON are shown in Table II. We can see that the public
space and car environments have larger means and variances.
Details of each environment are shown in Table III. The lengths
of speech data recorded in office, public space, entertainment,
and car are 12.3 hours, 11.3 hours, 4.9 hours, and 5.2 hours,
respectively. The structure of the Finnish SPEECON database
is identical to that of the Mandarin one.

Since the SPEECON corpora provide speech data recorded
in various conditions, they were used for 1) comparison with
purpose-built perfectly clean high-quality speech synthesis
databases, and 2) analysis of the effect of inconsistent recording
conditions. These topics are mentioned in Section V-D together.

For the analysis of the effect of the inconsistent recording
conditions, we chose a set of speech data recorded in the rela-
tively quiet “office” environments (although this is not still per-
fectly clean: see Max value!) for training the baseline system

()

Fig. 1. Spectrograms of clean and noisy data included in the Mandarin
SPEECON database. (a) Clean data recorded in office space. (b) Noisy data
recorded in public space.

TABLE II
NOISE LEVEL IN DB [A] FOR EACH ENVIRONMENT INCLUDED
IN THE MANDARIN SPEECON DATABASE

Noise dB [A]

Environment Mean Variance Min Max

Office 44.7 25.5 34 54

Public space 56.7 453 41 73

Entertainment 46.9 24.2 37 61

Car 57.0 130.0 34 71
TABLE III

DETAILS OF THE MANDARIN SPEECON CORPUS USED FOR BUILDING
AVERAGE VOICE MODELS. THE FINNISH SPEECON CORPUS
ALSO HAS THE SAME STRUCTURE

Environment Speakers Sentences/speaker ~ Sentences
Office 200 29.6 5916
Public space 180 29.9 5378
Entertainment 75 29.9 2240
Car 75 30.0 2247
Total 530 29.8 15781

and compared it with a system using all data regardless of the
environment. Note that the system has about three times as much
speech data as the baseline system. If the amount of noisy data
is equal to that of clean speech data, then clearly the TTS voices
adapted from the model trained on the noisy data will be worse
than those from the model trained on clean data. We therefore
analyze the advantages (and disadvantages) of the more likely
situation, where much more noisy data is available than clean
data.

For the comparison with purpose-built perfectly clean
speech synthesis databases, we utilized the systems above
and a normal TTS system trained on phonetically balanced
speech data recorded in highly controlled recording studio
environments.

The databases also include isolated word or spelling pronun-
ciation utterances and phonetically balanced sentences. Since
we are unsure of the effects of using large quantities of isolated
word or spelling pronunciation utterances on synthesis, we used
only phonetically balanced sentences as training sentences for
the average voice model in this experiment.

D. Japanese JNAS and Spanish Globalphone Databases

The Japanese Newspaper Article Sentences database (JNAS)
contains speech recordings and their orthographic transcriptions
of 306 speakers (153 males and 153 females) reading excerpts
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from the Mainichi Newspaper and the ATR 503 phonetically
balanced sentences [14]. From the database, we randomly chose
50 female and 50 male speakers, who have a total of 14134
utterances, as training speakers for the Japanese average voice
models. The length of the chosen speech data is 19.5 hours.

The GlobalPhone database is a multilingual speech and text
database that covers 15 languages [11]. From the database, we
utilized all of the one hundred Spanish speakers, who have a
total of 6620 utterances, as training speakers for the Spanish
average voice models. The length of the chosen speech data is
22 hours.

The Japanese and Spanish models were utilized for demon-
strating an application using many TTS voices mentioned in
Section II-M.

E. Phonesets, Lexica, and Front-End Processing

Contrary to normal TTS databases where professional
or semiprofessional narrators utilize standard accents and
speaking styles, the speakers included in the ASR databases
have a variety of accents. For instance, the Mandarin SPEECON
database is made up equally of four major dialectal accents
(Beijing, Chongqging, Shanghai, and Provinces).

Using speech recordings that comprised a variety of accents
for training could prove either advantageous or disadvanta-
geous. If the target speaker has an accent for which training data
is not available, models trained on the various accents would
be more appropriate since they have larger variance and can
capture the variation in the unseen accent. On the other hand,
when the target accent is limited to, for example the British
received pronunciation (RP) accent, as it is in the Blizzard
Challenge, a more appropriate average voice model would be
one trained only on RP speakers, rather than one trained on
various accents.

Since the Unilex pronunciation lexicon [16] from CSTR sup-
ports multiple accents of English in a unified way—by deriving
surface-form pronunciations from an underlying meta-lexicon
defined in terms of key symbols—it is possible, in theory, to pre-
pare different phonesets for each accent. The same framework
may be used for accents in other languages. In practice, how-
ever, time constraints meant we were unable to do this, and we
simply used an identical phoneme set for all speakers available
in each language. However, we separated speakers of American
and British English based on speaker nationality.

The English phoneme labels, including the initial segmenta-
tion for the data, were automatically generated from the word
transcriptions and speech data using the Unisyn lexicon [16]
and Festival’s Multisyn Build modules [17]. In the Unisyn lex-
icon, general American (GAM) and RP phonesets were used
for American and British speakers, respectively. The Multisyn
Build modules identified utterance-medial pauses, vowel reduc-
tions, or reduced vowel forms and they were added to the la-
bels. For the out-of-vocabulary words, letter-to-sound rules of
the Festival’s Multisyn were used.

The Finnish and Mandarin labels were also automatically
generated from the word transcriptions and speech data using
an extended LC-STAR lexica [18] and Nokia’s in-house TTS
modules. The modules also identified utterance-medial pauses
and they were added to the labels. We used phonemes instead

of typical Mandarin units, initial/final [19] since we found that
the phoneme-based systems perform better when the amount
of adaptation data available is limited because of the smaller
number of units they specify [20], [21].

The Japanese phoneme labels were also automatically gener-
ated from the word transcriptions and speech data using ATR’s
XIMERA TTS modules [22]-[24]. The modules also identified
utterance-medial pauses and they were added to the labels.

The Spanish labels were automatically generated using new
front-end modules [25] that considers the word transcriptions
and several handwritten rules available in Festival modules orig-
inally developed for a Castilian Spanish diphone synthesizer
called “el_diphone.”

English, Spanish, and Japanese phonesets are based on IPA
and Finnish and Mandarin phonesets are based on SAMPA-C.
The numbers of phonemes (including the utterance-medial
pauses and silences) for each language are 57, 53, 31, 26,
51, and 42 for U.S. English, U.K. English, Spanish, Finnish,
Mandarin, and Japanese, respectively.

F. Phonetic, Prosodic, and Linguistic Contexts

Compared to the phonetic contexts used for ASR (e.g., pre-
ceding and succeeding phonemes), the contexts used for TTS
are very rich and include various prosodic and linguistic infor-
mation as well as phonetic information. The contexts we em-
ploy can be summarized in Table IV. English, Spanish, and
Finnish contexts that we employ have the same structure and
they contain phonetic, segment-level, syllable-level, word-level,
and utterance-level features. Specifically, this includes lexical
stress, neighboring phones, part-of-speech, position in syllable,
etc. (see [26] for more details). In addition to these features,
Mandarin contexts that we employ have tonal information. The
structure of Japanese contexts are borrowed from the XIMERA
TTS system and thus they are different from those for other lan-
guages: it contains phonetic, mora-level [15], morpheme, accen-
tual, breath-group-level, and utterance-level features.

Questions used for clustering of the acoustic HMMs [27],
mentioned in Section II-G, were also automatically generated.
For instance the phonetic questions are automatically defined
based on combinations of vowel phonetic categories such as
vowel height or frontness and consonant categories such as
place or manner of articulation.

G. Framework of Speaker-Adaptive HMM-Based Speech
Synthesis Systems

All TTS voices are built using the framework from the
“HTS-2007/2008” system [5], [28], which was a speaker-adap-
tive system entered for the Blizzard Challenge 2007 [29] and
2008 [30]. The HMM-based speech synthesis system, outlined
in Fig. 2, consists of four main components: speech analysis, av-
erage voice training, speaker adaptation, and speech generation.

In the speech analysis part, three kinds of parameters for
the STRAIGHT (Speech Transformation and Representation by
Adaptive Interpolation of weiGHTed spectrogram [31]) mel-
cepstral vocoder with mixed excitation (i.e., the mel-cepstrum,
log Fp and a set of band-limited aperiodicity measures) are ex-
tracted as feature vectors for HMMs. These are the same fea-
tures as mentioned in [32]. In the average voice training part,
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TABLE 1V
NUMBER OF CONTEXTS USED IN EACH LANGUAGE. ENGLISH, SPANISH, AND FINNISH CONTEXTS THAT WE EMPLOY HAVE THE
SAME STRUCTURE. MANDARIN CONTEXTS THAT WE EMPLOY HAVE TONAL INFORMATION ADDITIONALLY. THE STRUCTURE
OF JAPANESE CONTEXTS ARE BORROWED FROM THE XIMERA TTS SYSTEM

Contexts English Spanish ~ Finnish ~ Mandarin ~ Japanese
Phonetic 5 (quinphone) 5 5 5 5
Segmental 2 2 2 2 0
Mora [15] 0 0 0 0 3
Morpheme 0 0 0 0 12
Syllable (inc. stress and pitch accent) 22 22 22 22 12
Word 12 12 12 12 0
Tone 0 0 0 3 0
Phrase/Breath group 9 9 9 9 12
Utterance 3 3 3 3 3
Total 53 53 53 56 47
Initial Segmentation
MULTISPEAKER | Speechsignal e i
SPEECH- ] M h HSMM
DATABASE Excitation Spectral onophone | Segmental K-means & EM |
parameter parameter
extraction extraction | Speaker Adaptive Training D
Excitation Spectral
parameters \—l L—I parameters T T T T TTTTTTTTTTTT T e *___ — T -
Cabeis Training of MSD-HSMM | Speaker Adaptive Training |<7
JL Context-dependent HSMM DecisionTreobased C i -
ecision-Tree-based Context Clustering
< Training part (MDL criterion) & State Tying
...................... Nerares e g e
A a A Adaptation part )
Tied-state N —
A _a A ) Context-dependent context-dependent HSMM | Speaker Adaptive Training D
Spectral & multi-stream MSD-HSMMs [
excitation
TARGET-SPEAKER |Parameters Adaptation of MSD-HSMM Fig. 3. Overview of the training stages for average voice models.
SPEECH- Labels
DATABASE l
times using segmentation labels refined with the trained models
777777777777777777777 HOOCA% ______ Adaptationpart i a bootstrap manner [36].3 All reestimation and resegmen-
TEXT Synthesis part  tation processes utilize speaker-adaptive training (SAT) [37]
A _a A _JContext-dependent

Text analysis | multi-stream MSD-HSMMs

Parameter generation
from MSD-HSMM

Excitation Spectral
parameters parameters
Excitation Synthesis SYNTHESIZED
generation filter SPEECH

Fig. 2. Overview of the HTS-2007/2008 speech synthesis system, which con-
sists of four main components: speech analysis, average voice training, speaker
adaptation, and speech generation.

context-dependent multi-stream left-to-right multi-space distri-
bution (MSD) hidden semi-Markov models (HSMMs) [33] are
trained on multi-speaker databases in order to simultaneously
model the acoustic features and duration. A set of model pa-
rameters (mean vectors and diagonal covariance matrices of
Gaussian pdfs) for the speaker-independent MSD-HSMMs is
estimated using the EM algorithm [34].

An overview of the training stages for the average voice
models is shown in Fig. 3. First, speaker-independent mono-
phone MSD-HSMMs are trained from an initial segmentation,
converted into context-dependent MSD-HSMMs, and reesti-
mated. Then, decision-tree-based context clustering with the
MDL criterion [35] is applied to the HSMMs and the model
parameters of the HSMMs are tied at leaf nodes. The clustered
HSMMs are reestimated again. The clustering processes are
repeated twice and the whole process is further repeated three

based on constrained maximum-likelihood linear regression
(CMLLR) [38].

In the speaker adaptation part the speaker-independent MSD-
HSMMs are transformed by using CMLLR or constrained struc-
tural maximum a posteriori linear regression (CSMAPLR) [39].
In the speech generation part, acoustic feature parameters are
generated from the adapted MSD-HSMMs using a parameter
generation algorithm that considers both the global variance
of a trajectory to be generated and trajectory likelihood [40].
Finally an excitation signal is generated using mixed excita-
tion (pulse plus band-filtered noise components) and pitch-syn-
chronous overlap and add (PSOLA) [41]. This signal is used to
excite a mel-logarithmic spectrum approximation (MLSA) filter
[42] corresponding to the STRAIGHT mel-cepstral coefficients
to generate the speech waveform.

H. Analysis of ASR Corpora—Phonetic Coverage

One clear advantage of the ASR corpora is phonetic coverage.
Triphone and context coverage is a simple way to measure the
phonetic coverage of a corpus. Table V shows the total number
of different triphone and context types in the English corpora.
Since the predefined official training data set (known as SI-284)

3Although we could utilize the HSMMs themselves for re-segmentation by
using weighted finite-state transducers, in this case for efficiency we simply
reduced the HSMMs to normal HMMs and used these to perform the Viterbi
alignment.
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TABLE V
PHONETIC COVERAGE OF ENGLISH MULTISPEAKER TTS AND ASR CORPORA

Corpus Subset Size [h] Speakers  Triphones/speaker ~ Triphones/corpus  Contexts/corpus
TTS corpora

CMU-ARCTIC  (total) 6 6 10041 10708 91247
CSTR n/a 41 15 11462 42860 1157755
ASR corpora

RM (ind_total) 5 160 1091 7162 114945
WSJO (short/SI-84) 15 84 3287 18577 421476
WSICAMO (total) 22 140 3036 23534 675266
WSJO+WSJ1 (short/SI-284) 81 284 4220 23776 1246728

TABLE VI TABLE VII

PHONETIC COVERAGE OF THE MANDARIN SPEECON CORPUS

Environment Size [h] Triphones/corpus Contexts/corpus
Office 12 4999 71863
All environments 34 5865 181338

for WSJ1 includes WSJO as a part of training data, we followed
instructions for the November 93 CSR evaluations and calcu-
lated them together. The predefined official training data set for
WSIJO is known as SI-84. A larger number of types implies that
the phonetic coverage is better, which in turn implies that the
corpus is more suitable for speech synthesis. For comparison,
the coverage of the CMU-ARCTIC speech database which in-
cludes four male and two female speakers is also shown. Details
of the CSTR database are given in the next subsection.

We can see that the coverage of the complete WSJO, WSJ1,
and WSJCAM corpora is much higher than CMU-ARCTIC.
This is because all speakers in CMU-ARCTIC read the same set
of sentences and thus the total coverage across all speakers in the
database is about the same as that of an individual speaker. This
leads us to believe that these ASR corpora should be better for
building speaker-independent/adaptive HMM-based TTS sys-
tems as well as speaker-independent ASR systems. The RM
corpus, because of its very limited domain and small word vo-
cabulary, has relatively poor coverage and would be unsuitable
for use as a TTS corpus unless combined with other data or used
in limited domain as we do for ASR.4

Table VI shows the total number of different triphone and
context types in the Mandarin SPEECON database. The total
numbers for the office environment and the mixed environments
are shown. We see the data set for the mixed environments has a
much larger coverage than that of the office environment. There
is a tradeoff between consistency of recording conditions and
phonetic coverage.

1. TTS Speech Databases to be Compared

To enable comparison of TTS databases with the ASR
corpora mentioned above, we used CMU-ARCTIC, the 2009
British English and Mandarin databases (which we refer to as
“BL2009” database), and a CSTR’s in-house database (which
we refer to as “CSTR” database). All of these are standard

4Although the context coverage including prosody contexts of the RM corpus
is slightly better than CMU-ARCTIC, its triphone coverage is critically worse
than CMU-ARCTIC.

DETAILS OF ENGLISH AND MANDARIN TTS CORPORA USED
FOR BUILDING HMM-BASED TTS SYSTEMS

Corpus Language Speakers Sentences
CMU-ARCTIC (BDL)  English 1 1130
CMU-ARCTIC (total) English 6 6780
BL2009 (arctic) English 1 1130
BL2009 (total) English 1 9509
BL2009 Mandarin 1 6000
CSTR English 15 29552

purpose-built high-quality TTS databases and have very clean
speech data. Details are given in Table VIIL.

The CMU-ARCTIC database has six speakers, each of whom
reads the same set of 1130 phonetically balanced sentences,
corresponding to about 1 hour of speech data per speaker. In
Section V-C, an American male speaker from the database,
“BDL,” was chosen as one of out target speakers and his speech
data was utilized for speaker adaptation of the average voice
models and for training of speaker-dependent models.

The British and Mandarin BL 2009 corpora were released for
the 2009 Blizzard Challenge [43] and they have a male Eng-
lish RP speaker and a female Mandarin speaker. They include
9509 and 6780 sentences corresponding to 15 hours and 10.5
of speech, respectively. The English BL 2009 corpus has the
ARCTIC sentences above as one of subsets. In Sections V-C
and D, they were also chosen as target speakers for speaker
adaptation.

The above TTS corpora were mainly used only for speaker
adaptation or for training speaker-dependent models. For the
training of the average voice models which provide the starting
point for speaker adaptation, we used the CSTR database having
41 hours of very clean speech data uttered by 15 speakers and
compared it with several English ASR corpora in Section V-C.
In total, the CSTR database includes 29 552 sentences. The orig-
inal HTS-2008 system that used the CSTR database for the
training of the average voice models was evaluated in the 2008
challenge [30]. Since in the CSTR database speakers utilize dif-
ferent sets of texts, its context coverage is as high as that of the
ASR corpora. As shown in Table V, it has about four times as
many triphones as the CMU-ARCTIC database and 1.4 times as
many as the SI-284 sets. In fact, the system had the equal best
naturalness and the equal best intelligibility on the Arctic data
in the 2008 challenge [28]. The system was also found to be as
intelligible as human speech [28]. Thus, we considered the very
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TABLE VIII
NUMBER OF LEAF NODES AND FOOTPRINTS FOR SPEAKER-DEPENDENT (SD) AND SPEAKER-ADAPTIVE SYSTEMS. NOTE THAT SYSTEMS THAT WERE NOT
EVALUATED IN THE LISTENING TESTS MENTIONED LATER ARE ALSO INCLUDED. (a) ENGLISH SYSTEMS. (b) MANDARIN SYSTEMS. (¢) OTHER SYSTEMS

(a)

Number of leaves in decision tree

Footprint [Mega-Bytes]

Acoustic models  Linear transforms

Corpus Subset Size [h] Mel-cepstrum log Fp  Aperiodicity Duration HTK hts_engine HTK
SD models
CMU-ARCTIC (BDL) 1 871 2118 705 658 50 1.5 n/a
BL2009 (total) 15 5833 27137 6790 4045 517 13.0 n/a
Average voice models
CMU-ARCTIC (total) 6 2311 11613 1504 3194 118 3.1 0.5
CSTR n/a 41 9380 49269 5138 8539 1592 31.5 0.7
RM (ind_total) 5 2122 12417 2839 3733 334 5.8 0.1
WSJ0 (short/SI-84) 15 2945 26952 2624 13165 669 11.0 0.5
WSICAMO (total) 22 3599 40326 3237 23641 981 13.0 0.2
WSJO+WSJ1  (short/SI-284) 88 10861 105940 9202 51567 1697 34.0 0.9
(b)
Footprint [Mega-Bytes]
Number of leaves in decision tree Acoustic models  Linear transforms
Corpus Environment Size [h] Mel-cepstrum log Fy  Aperiodicity Duration HTK hts_engine HTK
SD models
BL2009 n/a 11 4837 14175 4654 3335 400 9.5 n/a
Average voice models

SPEECON Office 12 2373 15320 3238 3474 442 7.0 0.1
SPEECON All environments 34 6272 33905 6378 7695 681 17.0 0.3

(©

Number of leaves in decision tree

Footprint [Mega-Bytes]

Acoustic models  Linear transforms

Corpus Language Size [h] Mel-cepstrum log Fy  Aperiodicity Duration = HTK hts_engine HTK
Average voice models

SPEECON (Office) Finnish 12 1383 16682 2325 6950 279 53 0.1

JNAS Japanese 20 2388 34642 2705 9995 527 9.2 0.3

GlobalPhone Spanish 22 2925 52088 2308 27193 1377 17.0 0.5

clean and also contextually rich database as an ideal case for
other ASR corpora.

J. Number of Leaves in Decision Trees

Table VIII shows the number of leaves of each of the decision
trees for each system built on the speaker-independent subset of
each multispeaker corpus. For comparison, the table shows the
number of leaves for speaker-dependent HMMs trained on the
BDL subset of the CMU-ARCTIC, the British English and the
Mandarin BL 2009 corpora. Systems that were not evaluated in
the listening tests mentioned later are also included in this table
for reference.

From the tables, we see that the trees for mel-cepstral and
aperiodicity elements of voices built on WSJO and WSJCAMO
have fewer leaves than those of English speaker-dependent (SD)
HMMs trained on the English BL2009 corpus, although the
WSJO and WSJCAMO databases are similar in size to those for
the SD-HMMs. On the other hand, they have almost the same
number or more leaves for log F{y and duration parts. Trees for
the voice built on the office subset of the Mandarin SPEECON
database have similar sizes to those for Mandarin SD-HMMs

and we can see the same tendency also for the Mandarin sys-
tems. The fact that they include various dialectal accents may
partially explain the greater number of log Fy leaves. However,
further investigation is required, especially in the case of the
much greater number of duration leaves of the English systems
trained on the WSJ databases. It can be seen that the Mandarin
system using data from all environments has more leaves than
the SD-HMM system or the one using data from office environ-
ments only.

K. Footprint of Each System Built

Table VIII also shows the footprints of speaker-independent
HMMs and linear transforms for each system built. For refer-
ence the footprints of speaker-dependent HMMs are also shown.
Since we used a single Gaussian for each leaf node, the number
of leaves is a dominant factor for the footprint of the acoustic
models. It shows the footprints in both the standard HTK format
and the hts_engine format that maintains only statistics required
for use by synthesis modules.

We can also see that the speaker-adaptive HMM-based speech
synthesis is efficient in terms of footprint. For example, the foot-
print of the average voice model (which is speaker independent
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TABLE IX
NUMBER OF THE TTS VOICES BUILT ON ASR CORPORA

Language Corpus Subset TTS voices
English Total 651
WSJO short 84
WSJO long 12
WSJO very long 3
WSJO dev, eval 18
WSI1 short 200
WSJ1 long 25
WSIJICAMO total 140
RM ind_total 160
RM dev_total 12
Finnish SPEECON office 200
Mandarin SPEECON office, all 500
Japanese JNAS (random) 100
Spanish GlobalPhone all 100
Total 1554

and thus can be shared among many speakers) trained on WSJO
and WSJCAMO is as compact as that of the SD-HMMs trained
on the English BL2009 corpus in the hts_engine format. Fur-
thermore, the speaker-dependent footprint, a set of linear trans-
forms for each speaker, is less than 1 MB and thus we can in-
crease the number of voices efficiently. The average voice model
trained on the SI-284 set has larger footprint than that of the
SD-HMMs in the hts_engine format. However, sharing the large
average voice models among hundreds of speakers leads to more
efficient footprint overall than maintaining hundreds of separate
SD-HMMs.

L. Demonstration of the TTS Voices

Since we aim to give a fair impression of the quality of
synthetic speech built from each corpus and to discuss the
usefulness of the ASR corpora, we followed predefined training
recipes for each corpus, built speaker-adaptive gender-inde-
pendent HMM-based TTS systems from major subsets of each
corpus separately, and adapted them to all speakers available.
A summary of the number of TTS voices built from each ASR
corpus is given in Table IX. Audio samples are available from
http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/ASRcor-
pora.html

Careful listening reveals 1) that the quality of synthetic
speech varies according to which corpus is used to train the
average voice models, or by the amount of adaptation data used
and 2) that there are a few speakers whose synthetic speech
sounds worse than that of other speakers who have the same
amount of adaptation data from within the same corpus.

For the first case, our previous analysis has already shown that
the amount of adaptation data required for reproducing speaker
similarity above a certain level varies by target speakers (and
acoustic features) and ranges from three minutes to six minutes
in terms of speech duration [44] and also that the naturalness
of the synthetic speech generated from the adapted models is

closely correlated with the amount of data used for training the
average voice models [39].5

This directly explains the relatively low quality of voices built
on the RM corpus since the small corpus does not satisfy the
two conditions above: the total duration of training data for the
average voice model is just five hours and the duration of adap-
tation data in the RM corpus averages 3.8 minutes. Evaluation
results reported in Section V-C also highlighted this issue. The
first condition also explains unstable adaptation performance of
voices built on the SPEECON databases, since the duration of
adaptation data in the SPEECON databases averages 3.8 min-
utes and that is not always enough for all the speakers.

The interesting phenomenon observed in the second case
is new and analogous to the familiar situation in ASR, where
WER varies widely across some speakers and is especially
high for a small number of speakers [47]. This is investigated
in Section IV-F.

M. Geographical Representation and Online Demo

One of important advantages of using the ASR corpora is the
large number of speakers as we can see in Table IX. Building
TTS voices on such data allows the creation of many more
voices than has previously been possible for TTS.

In fact, we believe this is the largest known collection of
synthetic voices in existence. We built so many voices (1500+
voices built on ASR corpora plus several voices built on TTS
corpora using the same techniques) that it became impossible
to represent them in list or table form. Instead, we devised an
interactive geographical representation, shown in Fig. 4.

Each marker corresponds to an individual speaker. Blue
markers show male speakers and red markers show female
speakers. Some markers are in arbitrary locations (in the
correct country) because precise location information is not
available for all speakers. Then right box shows list of speakers
that user can choose with speakers’ gender and nationality.
This is based on Google Maps and AJAX Language (Transla-
tion) APIs6 as well as our Festival TTS system running on a
University of Edinburgh server.

This geographical representation, which includes an inter-
active TTS demonstration of many of the voices, is available
from http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/map.
html. Clicking on a marker will play synthetic speech from that
speaker, as shown in Fig. 5. Currently, the interactive mode sup-
ports all English and some of the Spanish voices. For other lan-
guages only presynthesised examples are available, but we plan

SWe also know that gender-dependent average voice models provide better
speaker adaptation performance than gender-independent average voice models
for TTS [39]. Please bear in mind, however, that the purpose of this demonstra-
tion is to give benchmarks that can be easily related to the field of ASR. For
example, the predefined training sets such as SI-84 or SI-284 are the de facto
standard for training clean acoustic models for ASR, and HTK provides bench-
mark scores on the speaker independent set of the RM corpus. Obviously, we
may use HMMs built for TTS purposes on ASR corpora as acoustic models for
ASR [45], [46] and thus we can easily compare ASR scores of TTS HMMs
with scores reported in ASR literature. On the other hand, if we explore the best
quality of synthetic speech in the ASR corpora, we should combine these ASR
corpora and train larger and gender-dependent average voice models as we can
guess from the previous analysis results.

Shttp://code.google.com/intl/ja/apis/ajaxlanguage/
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Speaker 1 [American/M] 3

[ Wap [ Satelite | Hybrid ]

Speaker 2 [American/M]
Speaker 3 [American/M]
Speaker 4 [American/M]
Speaker 5 [American/M]
Speaker 6 [American/M]
Speaker 7 [American/M]
Speaker 8 [American/M]
Speaker 9 [American/M]
Speaker 10 [American/M]
Speaker 11 [American/M]
Speaker 12 [American/M]
Speaker 13 [American/M]
Speaker 14 [American/M]
Speaker 15 [American/M]

Speaker 16 [American/M]

« >

Speaker 17 [American/M]

Fig. 4. Geographical representation of TTS voices trained on ASR corpora used for EMIME projects. Blue/dark gray markers show male speakers and red/light
gray markers show female speakers. Available online via http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/map.html.

to add an interactive text-to-speech feature in the very near fu-
ture.

As well as being a convenient interface to compare the many
voices, the interactive map is an attractive and easy-to-under-
stand demonstration of the technology being developed in the
EMIME project,” whose goal is personalized cross-lingual
speech-to-speech translation systems. For example, if a user’s
mobile device for the speech-to-speech translation systems
has GPS functions, we would be able to automatically choose
and utilize appropriate voices based on that user’s location,
obtained from GPS. Furthermore if desired we may perform
cross-lingual speaker adaptation on the chosen models [48],
[49].

III. EVALUATION METHODOLOGIES

For the evaluation of synthetic speech, both objective mea-
sures and formal listening tests have been used. This section ex-
plains the details of the evaluation methodologies.

A. Objective Measures

Voices for a large number of speakers can be built during the
training of the speaker adaptive HMM-based synthesizer. How-
ever, in some cases, there were too many speakers to evaluate by
formal listening tests. The listening tests were therefore princi-
pally used for only a few target speakers. Objective measures,
on the other hand, could be used for many or all speakers. Here
it is important to recognize that these objective measures do not

"The FP7 Effective Multilingual Interaction in Mobile Environments
(EMIME) project http://www.emime.org

british speaker 129

AP e— AT

Gayi)

Type your text here.

Fig. 5. All English and some of the Spanish HTS voices can be used as online
TTS on the geographical map. For other languages only presynthesized exam-
ples are available.

perfectly measure the quality of synthetic speech. They gener-
ally only weakly correlate with perceptual scores obtained from
listening tests [50], [51].

For the calculation of all the objective measures, the synthetic
speech and natural speech must be aligned frame-by-frame.
In order to do this, the synthesis model for the test sentence
is force-aligned with the natural speech. From this alignment,
the phoneme durations of the natural speech are obtained. The
model is then used to generate synthetic speech with exactly
those phoneme durations (within phonemes, the usual duration
model is used to obtain the state durations [52]) so that the
synthetic and natural utterances have exactly the same durations
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and thus a one-to-one correspondence between their frames can
be used to calculate the objective measures.

B. Mel-Cepstral Distance

To measure the accuracy of the spectral envelope of the syn-
thetic speech, we use “average mel-cepstral distance” (MCD)
which is a popular objective measure used in speech coding or
parametric speech synthesis (e.g., [39], [53]). When the analysis
order of mel-cepstral analysis is high enough, Parseval’s the-
orem means that the mel-cepstral distance can be viewed as an
approximate log spectral distance between the synthetic speech
and natural speech.

After silence and pause regions are ignored, the Euclidean
distance between the mel-cepstral parameters of the natural and
synthetic examples is computed.

C. Root-Mean-Square-Error of log Fy

To measure the accuracy of the F{y contour generated by the
model, the second objective measure we calculate is the root-
mean-square-error (RMSE) of log Fj. Since Fj is not observed
in unvoiced regions, the RMSE of log Fy is calculated only
using regions where both the generated and the actual speech
are voiced.

The RMSE values of log Fy are shown in “cent.” The cent
is a logarithmic unit of measure used for musical intervals and
musical scales. 1200 cents are equal to one octave (a frequency
ratio of 2:1). An equally tempered semitone (the interval be-
tween two adjacent piano keys) is 100 cents.

D. Reference Materials

Natural speech utterances are required for all these objective
measures, since the objective measures are computed between
acoustic parameters generated from HMMs and ones extracted
from the natural speech utterances. Test sentences included in
neither the training nor the adaptation data were used for the
objective evaluation.

E. Listening Test Design

The key properties of the synthetic speech that must be eval-
uated are: naturalness, intelligibility, and similarity to the orig-
inal speaker. Therefore, and because the web-based listening
test infrastructure was already in place, we adopted a design
based on that of the Blizzard Challenge 2008 [29], [30]. We used
the software developed for that Challenge which comprises: a
web-based listening test that runs in any standard browser; Perl
CGI scripts running on a University of Edinburgh server; results
stored in a MySQL database; R scripts to compute statistics and
produce graphical output.

To evaluate naturalness and similarity to the target speaker,
5-point mean opinion score (MOS) and comparison category
rating (CCR) tests are used. The scale for the MOS test runs
from 5 for “completely natural” to 1 for “completely unnatural.”
The scale for the CCR test runs from 5 for “sounds like exactly
the same person” to 1 for “sounds like a totally different person”
and a few example natural sentences from the target speaker are
provided as a reference.

To evaluate intelligibility, the subjects are asked to transcribe
semantically unpredictable sentences by typing in the sentence

they heard; the average word error rate (WER) is calculated
from these transcripts (an automatic procedure is used, which
corrects spelling mistakes and typographical errors). The eval-
uations are conducted via a standard web browser.

F. Format Used to Report Results

We used the same conventions as the Blizzard Challenge
for reporting results [54]: “Standard boxplots are presented for
the ordinal data where the median is represented by a solid
bar across a box showing the quartiles; whiskers extend to
1.5 times the inter-quartile range and outliers beyond this are
represented as circles. Bar charts are presented for the word
error rate interval data.” In addition average scores are marked
as “x” within the boxplots.

The differences in the results for all three sections are
measured by the same test used in the Blizzard Challenge:
a Wilcoxon signed rank test with & = 0.01 and Bonferroni
correction.

G. Listeners

Different sets of listeners were collected for individual lis-
tening tests. They are natives or non-natives with sufficient un-
derstanding of the target languages. Furthermore one of the lis-
tening tests was performed via the 2009 Blizzard Challenge.
Thus, we cannot directly compare results across each listening
test.

H. Scenarios

There are three scenarios depending on whether the ASR cor-
pora are used for either (or both) training of the average voice
models or speaker adaptation. We have evaluated the use of
the “found” audio [5], in a context very similar to one of the
present scenarios, where the average voice models are trained
on the TTS corpora and adaptation data is chosen from the ASR
corpora.

Hence, this paper focuses on the other two scenarios: the case
where the ASR corpora are used for training the average voice
models and the adaptation data is chosen from the purpose-built
TTS corpora, and the most difficult case where the ASR cor-
pora are used both for training the average voice models and for
speaker adaptation. The former case is reported in Section V and
the latter in the section which now follows.

IV. EVALUATION FOR HMM-BASED TTS SYSTEMS
CONSTRUCTED FROM ASR CORPORA

In this section, we analyze the performance of speaker-depen-
dent (SD) and speaker-adaptive (SA) HMM-based TTS systems
constructed from the ASR corpora only and assess how different
their tendencies are from our previous analysis [5], [39], where
performance analysis of the systems constructed from TTS cor-
pora have been reported. We also analyze speaker distributions
and their correlations to the quality of synthetic speech gener-
ated from adapted HMMs.

A. Average Voice Model Training Data

Since we had used the equal amount of data for each training
speaker of the average voice models in the past analysis and
since the amount of data available for each speaker in the ASR
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corpora may vary by subsets and even recording sites, we built
two kinds of gender-dependent average voice model from short
term, long term (excluding the speakers from very long term),
development, and evaluation subsets of the WSJO corpus using
different training data sets. The first was built using 50 utter-
ances per training speaker (“condition 17). If a speaker has more
than 50 utterances, a subset of 50 was chosen randomly. The
second average voice model was built using all available ut-
terances from all training speakers (“condition 2”). The num-
bers of training sentences are 2950 and 10847 sentences for
male average voice models in conditions 1 and 2, respectively,
and for female average voice models there are 3000 and 12 151
sentences, respectively. They have 5.7 hours, 21.1 hours, 5.9
hours, and 24.6 hours of speech, respectively. By providing a
part of training data for speaker-dependent models to the av-
erage voice models, we compared the speaker-adaptive systems
with speaker-dependent systems.

B. Speaker-Dependent Model Training Data

In general, training of speaker-dependent models requires
O(10?) utterances and only the very long subset of the WSJO
corpus is available for the models. Since this subset has only
two males and a female, we simply chose a male speaker 001
and a female speaker 002 as target speakers for listening tests
in this section.

In order to examine the effect of corpus size, three speaker-de-
pendent systems were built, using 100 randomly chosen sen-
tences (about 6 minutes in duration), 1000 randomly chosen
sentences (about 1 hour in duration), and 2000 randomly chosen
sentences (about 2 hours in duration), respectively, from the two
target speakers included in very long subset. These sentences
are also used as the adaptation data for the two average voice
models mentioned in previous section.

C. Objective Evaluation of SD and SA Systems

Table X shows the objective measures for each system.
From the results for speaker 001, we can confirm that
the speaker-adaptive systems using all available average
voice model training data (“condition 2”) outperform the
speaker-adaptive systems using an equal amount of speech
data per training speaker (“condition 17). In addition, we can
see that when the amount of target speaker speech data is
less than about 1 hour, speaker-adaptive systems outperform
speaker-dependent systems. Once the amount of speech data
is more than about 1 hour, speaker-dependent systems start to
become better than speaker-adaptive systems. This result is
relatively consistent with previous results except the SD and
SA systems using 2 hours of speech data were still comparable
to TTS databases.

On the other hand, the RMSE of log Fy for the speaker 002
shows different tendencies. All the systems using 2 hours of
target speaker speech data have worse RMSE than those using
1 hour of data although the absolute values are better than those
for the speaker 001.

One of possible explanations for this is that the speaker’s
speaking style was not consistent over the long-term recording
sessions (e.g., the average value and range of Fj varied ses-
sion by session). This is a natural consequence of using ASR

TABLE X
OBJECTIVE MEASURES OF EACH SPEAKER-DEPENDENT (SD) AND
SPEAKER-ADAPTIVE (SA) SYSTEMS BUILT USING VARIOUS AMOUNTS OF
SPEECH DATA FROM THE TARGET SPEAKER. UNDERLINED FIGURES INDICATE

THE BEST PERFORMING SYSTEM UNDER EACH OBJECTIVE MEASURE
FOR EACH TARGET SPEAKER (i.e., IN EACH COLUMN). MCD AND log F}
SHOW MEL-CEPSTRAL DISTANCE AND RMSE OF log Fy,, RESPECTIVELY.

(a) 6 MINUTES OF TARGET SPEAKER DATA. (b) 1 HOUR OF TARGET

SPEAKER DATA. (c) 2 HOURS OF TARGET SPEAKER DATA

(a)

Speaker 001 Speaker 002
MCD log Fo MCD log Fo
System (dB) (cent) (dB) (cent)
SD 9.05 407 7.18 195
SA (condition 1) 5.46 393 4.97 168
SA (condition 2)  5.38 369 5.09 186
®)
Speaker 001 Speaker 002
MCD log Fo MCD log Fo
System (dB) (cent) (dB) (cent)
SD 5.27 354 4.86 174
SA (condition 1)  5.36 398 4.99 176
SA (condition 2) 5.25 352 4.98 174
©
Speaker 001 Speaker 002
MCD log Fo MCD log Fo
System (dB) (cent) (dB) (cent)
SD 5.18 348 4.83 190
SA (condition 1)  5.32 386 497 180
SA (condition 2)  5.25 351 4.97 182

data since the speakers are not trained voice talents. Although
usually speaker adaptation is used for less target speaker data,
more sophisticated strategies are required to cope with such
changeable characteristics. For example, if the adaptation data
includes acoustic fluctuation that should not be explained by lin-
guistic contexts such as speaker’s mood or fatigue, preselection
or preclustering of adaptation data should be added to the adap-
tation process.

D. Subjective Evaluation of SD and SA Systems

We chose the male speaker 001 as the target speaker for the
subjective (listening test) evaluation. English synthetic speech
was generated for a set of 600 test sentences, including 400
sentences from conversational, news and novel genres (used to
evaluate naturalness and similarity) and 200 semantically un-
predictable sentences (used to evaluate intelligibility). A subset
of these sentences were then chosen randomly for use in the lis-
tening test (the exact number required depends on the number
of systems being compared—see [30] for details of the Latin
Square experimental design.) The number of listeners for this
experiment was 26.

Fig. 6 shows the results. The perceptual evaluation reveals the
same tendencies as the objective evaluations. The speaker-adap-
tive systems using all the data (“‘condition 2”) were found by
listeners to be better in terms of naturalness and similarity than
the speaker-adaptive systems using an equal amount of speech
data. We can again see that when the amount of speech data
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Fig. 6. Subjective evaluation results for speaker-dependent and speaker-adaptive HMM-based TTS systems built on ASR corpora. The target speaker used is a

male speaker “001” included in very long subset of the WSJO corpus.

is less than about 1 hour, speaker-adaptive systems outperform
speaker-dependent systems in every way (p < 0.01). Once the
amount of speech data is about 1 hour, the speaker-dependent
system and speaker-adaptive system in condition 2 have almost
the same scores. When the amount of speech data is about 2
hours, the speaker-dependent system starts to have better nat-
uralness than the speaker-adaptive system. In the intelligibility
test, only the speaker-dependent system using six minutes of
speech data was found to be significantly worse the other sys-
tems (p < 0.01). Other differences between WERs were not
statistically significant.

We note that previous work on TTS databases has indicated
that 100 utterances (approximately 6 minutes) of adaptation data
are enough to adapt an average voice to the characteristics of a
target speaker [44]. On the other hand, this figure shows that
15 minutes of data achieve a median opinion score of only 2.5
for naturalness. The previous work also indicated that the SD

and SA systems using 2 hours of speech data were comparable,
whereas the SD systems start to become better than SA systems
on this ASR database. We attribute this low score to the noisi-
ness of the adaptation data and conclude that more target speaker
data were needed to obtain a reasonable naturalness rating.

E. Multidimensional Scaling of 120 HTS Voices Adapted and
Average Voices

Rather than visualizing speakers by placing them in a geo-
graphical space, we can place them in a space derived from the
properties of the speech and can analyze speaker distributions.
There are several conventional approaches to visualize speakers
or speaking style based on acoustic models or acoustic features
[55], [56].

A similar visualization can be straightforwardly achieved
using the HT'S voices built and multidimensional scaling (MDS)
[57]. Using all test sentences from the Blizzard Challenge 2008,
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Fig. 7. Multidimensional scaling of 120 HTS voices trained on the WSJO corpus. The three characters at each point correspond to the name of each speaker in the
database. Left part shows the male speakers and male average voice and right parts shows the female speakers and female average voice. A demonstration movie
for two-dimensional MDS representation is available via http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/mov/HundredsHTS.mov.

we generated a set of speech samples from the gender-depen-
dent average voice models and all the HTS voices that equally
had a hundred of adaptation sentences. For the average voice
models, we used “condition 2” of the previous evaluation. We
then calculated the average mel-cepstral distance between the
speech for all pairs of voices, placing the values in mel-cepstral
distance tables. For simplicity, the unadapted duration models
of the average voice model were used so that the number of
frames of synthetic speech for each speaker is the same. Then
we applied a classic multidimensional scaling technique [57]
to the mel-cepstral distance table and examined the resulting
three-dimensional space, which is shown in Fig. 7. On the
left-hand side of the figure, the MDS of the male speakers and
male average voice appear and on the right, that of the female
speakers and female average voice.

The axes of this space do not have any predefined meaning,
but MDS attempts to preserve the pairwise distances between
speakers given in the mel-cepstral distance table. In other words,
similar speakers will be close to one another in this space. For
example, in the MDS for male speakers, speakers 012, 011, Ole,
026, and 029 are similar to one another (in terms of mel-cepstral
distance) and speakers 22h, 422, 423, 40k are relatively different
from other speakers. If we need to analyze performance of “out-
lier” speakers it would be reasonable to choose speakers based
on this MDS representation.

Instead of the geographical GUI above, we may use the MDS
space for an alternative GUI for the HTS voices (see a provided
URL in the caption for Fig. 7). More importantly, since we could

only use very few target speakers in formal listening test, we
should investigate the distribution or tendency of many speakers
in other ways, such as MDS.

On examining the figure in detail, we noticed that all
three-characters codes (corresponding to the names of speakers)
distributed in the bottom part start with 0 and the codes for
speakers distributed in top part start with 4. The first character
of the names represents recording site for these speakers (0:
MIT, 4:SRI, and 2:TI) [8]. Therefore, we assigned different
colors to each recording site in the figure.

It is apparent that recording conditions were not consistent
among the recording sites although the same microphones
were utilized. Furthermore, acoustic differences due to the
inconsistent recording conditions are greater than acoustic
differences between speakers since there is an obvious border
between them. Thus, the average voice models trained on these
speakers are located at the center of recording conditions rather
than the center of the speakers. If we use additional hierarchical
transforms to normalize the recording conditions as well as
speaker transforms [58], [59], it would be possible to make the
average voice model more compact and more efficient.

F. Subjective Evaluations of Speakers Included in WSJO
Corpus and Average Voices

Next we analyze fluctuation of the quality of synthetic speech
generated from models adapted from the same average voice
models using the same amounts of adaptation data chosen from
the same corpus. For this purpose we utilized the 59 male voices
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erage voice itself, random-sampling-based parameter generation algorithm [60]
was used.

and a male average voice used for MDS in the previous section
and evaluated their naturalness using the MOS test in which four
test sentences were randomly chosen from all the test sentences
used for MDS above. The number of listeners was 40.

The Pearson product-moment correlation coefficient be-
tween the mean MOS scores obtained in the evaluation and
the first axis of MDS which represents the recording sites, the
second axis, and mel-cepstral distance between average voice
and each voice (which can viewed as a transformed distance
of the voice) are —0.13, —0.38, and —0.48, respectively. In
a word, the MOS scores obtained are not correlated with the
recording sites and associated recording condition differences.
However it is somewhat correlated inversely with mel-cepstral
distance from the average voice. Its 95% confidence intervals
are from —0.20 to —0.68.

Fig. 8 shows the scatter plot of the mean MOS scores for
the voices and the mel-cepstral distance from the average voice.
For computation of the mel-cepstral distance for the average
voice itself, the random-sampling-based parameter generation
algorithm [60] was used. This also represents a linear regression
function fitted and its 95% confidence and prediction intervals.

We can see that as the mel-cepstral distance from the average
voice becomes larger, the MOS scores generally become worse.
Readers might also be surprised at the highest scores of the av-
erage voice in the evaluation (the mean MOS score is 3.9.). A
similar tradeoff phenomenon between transformed distance and
quality reduction of synthetic speech has been observed in voice
conversion [61].

In addition to the transformed distance, we hypothesize that
there is a psychological reason: Langlois and Roggman have
shown that averaged faces look more attractive than individ-

uals in their paper entitled “Attractive Faces are Only Average”
[62]. In a similar way, a likely psychological explanation for the
higher score of the average voices is that attractive voices are
also average. This is a very interesting aspect which has a deeper
meaning and implies a new direction of the statistical parametric
speech synthesis approach since the statistical averaging effect,
which is an acknowledged weakness of current HMM-based
speech synthesizers might have the potential to produce voices
that sound more attractive than individuals.

V. EVALUATION FOR AVERAGE VOICE MODELS TRAINED ON
ASR CORPORA AND ADAPTED ON TTS CORPORA

Finally, we analyze the situation most likely to be encoun-
tered in real life, where average voice models are trained on ASR
corpora and are adapted to target speakers chosen from TTS cor-
pora. In this scenario, we can use both advantages, that is, high
context coverage of the ASR databases and high-quality speech
of the purpose-built TTS databases. We also evaluate the effect
of the quantity and inconsistent recording conditions of ASR
data used for training of the average voice models together.

A. Average Voice Model Training Data

We utilize the English and Mandarin average voice models in
this section. For the training data of the average voice models,
we have used the predefined speaker-independent training data
set for each corpora mentioned earlier. The context coverages of
the data set are shown in Tables V and VI. Model complexity and
footprints for each of the systems built on each of the datasets
are shown in Table VIII(a) and (b).

B. Target TTS Database

For the target TTS databases from which adaptation data is
chosen, we used CMU-ARCTIC, British English and Mandarin
BL 2009 databases. For details see Section II-A.

C. Subjective Evaluation of the Quantity of Data Used for
Training of the Average Voice Models

Using the Arctic subsets (ca. one hour of speech data) of the
British speaker’s corpus, we adapted the English average voice
models trained on each ASR corpus having various amounts
of data and compared synthetic speech generated from adapted
models to see the effect of the quantity of the training data.8

At the same time we also evaluated the original HTS-2008
system that used the CSTR database, which is very clean, con-
textually rich ideal TTS database. Note that since the CSTR
database comprises male speakers only and since the SI-284 sets
comprises both genders equally, they include almost the same
amounts of male speakers’ data. For listening tests, we utilized
all test sentences used for the 2007, 2008, and 2009 challenge.
The number of listeners who completed the listening test was
68.

The evaluation results are shown in Fig. 9. In the MOS evalu-
ation on naturalness, the reference system using the CSTR data-
base was found to be significantly better than other systems ex-

8In reality, both supervised and unsupervised adaptation were evaluated to-
gether in the listening tests. However, there were not significant differences be-
tween them and thus we omitted results for the unsupervised versions. For full
results, see [63].
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Fig. 9. Subjective evaluation results for speaker-adaptive HMM-based TTS systems built on various ASR and ideal TTS corpora. The target speaker used is a
British male speaker included in the 2009 Blizzard Challenge corpus. The total amounts of speech data used for RM, WSJO, WSJCAMO, WSJO0+WSJ1, and CSTR
are 5 hours, 15 hours, 22 hours, 81 hours, and 41 hours. Note that the CSTR database includes gender-specific waveforms only.

cept the SI-284 system (p < 0.01). The SI-284 system was also
found to be significantly better than the RM system (p < 0.01).
Other differences in the MOS evaluation were not statistically
significant. In the similarity (CCR) evaluation, there was no sta-
tistically significant difference. In the intelligibility evaluation
(WER), the reference and SI-284 systems were found to signif-
icantly better than the SI-84 system (p < 0.01).

Overall, we can see the average voice models using larger
amounts of data provide better results in general. Compared to
the reference system using the CSTR database, there are several
negative conditions for the SI-284 systems in addition to the
ASR recording quality. For example, the SI-284 system did not
have any British speakers and was gender-independent, whereas
the reference system had many British speakers and gender-de-
pendent. However, we can also see that the SI-284 system pro-
vided relatively good performance close to that of the reference
system. This is a promising result since from publicly available
ASR databases we can create average voice models that have
good performance close to ideal TTS ones.

The original HTS-2008 system has also been found sig-
nificantly better than the speaker-dependent (SD) systems in
terms of similarity and naturalness on this small Arctic subset
[28]. Therefore, we expect the SI-284 systems would also have
better performance than the SD systems similarly. To confirm
this, we performed additional listening tests using the Amer-
ican speaker BDL included in the CMU-ARCTIC database
as a target speaker and compared the RM, SI-84, and SI-284
systems adapted to the speaker with the SD system. We used all
the Arctic sentences as adaptation sentences. In the same way
as previous tests, test sentences used for this listening tests were
randomly chosen from all test sentences for the 2007, 2008,
and 2009 challenge. The number of listeners are 40. Table XI

TABLE XI
SUBJECTIVE EVALUATION RESULTS FOR SPEAKER-ADAPTIVE HMM-BASED
TTS SYSTEMS BUILT ON VARIOUS ASR AND A SPEAKER-DEPENDENT
HMM-BASED TTS SYSTEM BUILT ON CMU-ARCTIC CORPUS.
TARGET SPEAKER IS BDL (AMERICAN MALE)

Corpus Subset Size (h) MOS
SD models

CMU-ARCTIC  (BDL) 1 2.5
Average voice models plus adaptation

RM (ind_total) 5 2.3
WSJo (short/SI-84) 15 2.6
WSJO+WSJ1 (short/SI1-284) 81 2.8

shows the comparison results with the SD system in which we
can see the SI-284 system outperforms the SD system.

From these positive results, we conclude that these clean ASR
corpora are useful even for the training of the average voice
models used in speaker-adaptive HMM-based speech synthesis.

D. Subjective Evaluation of Mixed Recording Conditions

Since this is our first challenge using speech with background
car noise, etc. for TTS, we have not used any noise suppression
techniques such as Wiener filtering. Instead we simply changed
acoustic features from mel-cepstra to mel-generalized cepstra
[64] with cubic-root compression of amplitude and applied SAT
which includes cepstral mean normalization (CMN) and cep-
stral variance normalization (CVN) implicitly and trained the
average voice models as normal. This was motivated by multi-
style training used in the ASR field [65]. The use of mel-gener-
alized cepstra was also motivated by ASR. The mel-generalized
cepstra are similar to PLP features in terms of spectral repre-
sentation [64]. Thus, we expect that they should provide similar
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robustness to noise as the PLP features, which are known to give
small improvements over MFCCs, especially in noisy environ-
ments, making them the preferred encoding for many ASR sys-
tems [66]. We have also confirmed that mel-generalized cepstra
have better ASR performance than mel-cepstra [45], [46].

Using the Mandarin corpus (ca. ten hours of speech data)
released for the 2009 Blizzard Challenge, we adapted the above
average voice models trained on the Mandarin SPEECON
corpus and compared them with SA systems trained on speech
data recorded in the office environment and SD systems.

This evaluation was done in the formal listening tests for the
2009 Blizzard Challenge. Mandarin synthetic speech was gen-
erated for a set of 697 test sentences, including 647 sentences
from a news genre (used to evaluate naturalness and similarity)
and 50 semantically unpredictable sentences (used to evaluate
intelligibility). The evaluations were conducted over a six week
period via the internet, and a total of 334 listeners participated.
For further details of these evaluations, see [43].

Fig. 10 shows evaluation results of related systems in the 2009
Blizzard Challenge®. From the table, we can see the systems
using both noisy data and clean data have slightly better MOS
and CCR scores than systems using clean data only. However,
contrary to the clean data case in the previous section, the dif-
ferences are not directly supported by the statistical significance
check regardless of the three hundred listeners.

In all the evaluation, natural speech was found to be signifi-
cantly better than other systems. In the MOS evaluation, the SD
system was found to be significantly better than both the SA sys-
tems. On the other hand in the similarity and Pinyin with tone

9Although the total of 12 Mandarin systems were evaluated in the listening
tests, we omitted unrelated systems from this figure and table. For full results,
see [43].

error rate (PTER) evaluation, the SD system was found to be sig-
nificantly better than only the SA systems trained on the office
data only. Thus, we can indirectly attribute minor improvements
to the additional use of noisy data.

However, in the MOS evaluation, there is a clear gap between
the SD system and SA systems, although the amount of noisy
data and clean data obtained from the Mandarin SPEECON
corpus was 34 hours, which is 3 times more than the amount
for the SD-HMMs. This is different from our previous anal-
ysis results [5], [28] which show that the SA systems trained
on large scale of TTS databases are comparable to the SD sys-
tems trained even on eight to ten hours of speech data.

From these results we conclude that the noisy data is not use-
less. However, mixing speech data recorded in various condi-
tions for ASR is not as efficient as increasing very clean speech
data for TTS.

VI. CONCLUSION

In conventional speaker-dependent speech synthesis in-
cluding unit-selection and HTS, large amounts of phonetically
balanced speech data recorded in highly controlled recording
studio environments have typically been required to build a
voice. Although using such data is (and will be) a straight-
forward solution for the best quality synthesis, the number of
voices available is always limited, simply because recording
costs are high.

On the other hand, in the framework of speaker-adaptive
HMM-based speech synthesis, we can consider robust voice
building on “non-TTS” corpora such as ASR speech databases.
Building TTS voices on ASR speech databases allows the
creation of many more voices than has previously been possible
for TTS. In fact, we have created the largest collection of
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synthetic voices in existence from a number of recognized,
publicly available ASR corpora—WSJ0, WSJ1, WSICAMO,
RM GlobalPhone, SPEECON, and JNAS. These voices are
efficient in terms of total footprints of voices, compared to
speaker-dependent HMM systems.

These ASR databases are different from normal purpose-built
TTS databases in various ways. Each individual speaker typi-
cally records a very limited number of utterances. However, they
include hundreds of speakers having various regional accents.
Since they are not trained voice talents (who are normally used
in TTS databases), session by session their speaking style may
undergo sufficient changes to cause issues in TTS systems. The
recording condition may not be perfectly consistent and the en-
vironment may also vary. Therefore, building TTS voices from
these ASR corpora is, in itself, a new challenge.

However, we conclude that relatively clean ASR corpora
are very useful, especially for the training of the average voice
models used in speaker-adaptive HMM-based speech synthesis
because of their rich context coverage. For example the SI-284
system trained on WSJO and WSJ1 databases and adapted to
TTS databases provided good performance close to that of the
reference system trained on ideal TTS databases. Since a lot
of clean ASR databases have already been developed for many
languages, this result would remove barriers in constructing
speaker-adaptive HTS systems for new languages and also
would enhance the potential for a unified ASR and TTS frame-
work. The average voice models trained across many speakers
themselves have surprisingly high MOS scores. Interestingly,
the scores are higher than scores for voices adapted to individual
speakers. We believe the average voice models themselves have
more potential usefulness than we had initially anticipated
and therefore a more complete perceptual and psychological
analysis of the average voice models used directly as synthesis
models is essential to this approach to speech synthesis.

Contrary to this, the additional use of speech data recorded
in various environments such as car or public space resulted in
minor improvements. It was not as efficient as increasing the
amount of very clean speech data for TTS. The acoustic dif-
ferences due to the inconsistent recording conditions were also
found to be greater than acoustic differences between speakers.

Our evaluation results also show that speaker adaptation on
speech data chosen from the ASR corpora presents some dif-
ficulty due to the changeable speaking styles, conditions, etc.
It would require both a larger amount of speech data than that
required for speaker adaptation on TTS corpora and more so-
phisticated adaptation strategies such as preselection or preclus-
tering of adaptation data.

Meanwhile, from the analysis using many speakers adapted
and their average voice available in the ASR corpora, we were
able to make new and useful findings. For instance, the MOS
scores of the adapted voices were found to be somewhat cor-
related inversely with mel-cepstral distance from the average
voice that the speaker adaptation starts from. Although the
correlation is not strong, this becomes an important factor for
determining how to train average voice models from many
speakers. For instance, this could explain why gender-depen-
dent average voice models provide better speaker adaptation
performance than either gender-independent average voice

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 5, JULY 2010

models or speaker-dependent models for TTS. Thus, further
in-depth analysis of the relation between the average voice and
adapted voices using other acoustic distances such as trans-
formed F and duration distances, or using stochastic measures
such as likelihood and Kullback-Leibler divergence is the most
important of the future work to have arisen from this study.
The analysis results of the distances correlated with the quality
of synthetic speech adapted would lead to appropriate speaker
clustering for average voice model training.

In the demonstrations of HTS voices built on each ASR
corpus, we utilized predefined training sets for each corpus and
formed solid benchmarks that have good connections to the
ASR field. However, these benchmark systems do not represent
the best quality of synthetic speech as our past and new analysis
results suggest and some readers would have a strong interest
in seeing the highest possible quality being achieved.

For achieving a better quality of synthetic speech based on our
analysis results, we should combine these relatively clean ASR
corpora and train larger and gender-dependent average voice
models. If a huge amount of data is available, we may use mul-
tiple gender-dependent average voice models and may choose
the nearest model. We note that all of them must have a suffi-
cient quantity of training data since the amount of data for the
average voice models is the most dominant factor for the quality
of synthetic speech. For the clustering of speakers used for the
multiple average voice models, combining the above notions of
distances correlated with the quality of synthetic speech adapted
and speaker recognition/identification research would be useful.
On the other hand, mixing different corpora normally introduces
additional differences due to the use of different microphones.
This important factor is not well understood and thus requires
analysis, which we plan to perform as future work.

We have also shown attractive applications of the voices using
a geographical map. In addition to this application, there are sev-
eral applications which could potentially benefit from the avail-
ability of thousands of TTS voices. In closing, we give some
practical examples below:

Platform for medical voice banking: These voices may be
used as a platform for medical voice banking. In [67], the HTS
framework was used as personalized synthetic voices for pa-
tients who have dysarthria and thus require TTS systems as com-
munication aids. The patients can choose the most similar voice
from a wide variety of voices. Such a selection is most impor-
tant for patients who start to have progressive speech loss since
the amount of speech data available from the patients is very
limited and thus adaptation performance highly depends on the
initial model from which adaptation will start.

Virtual games and social network services: An individual
user can choose a different voice and can avoid overlap of voices
between users on virtual games such as second life. For social
network services these voices may be attractive.

Forestalling imposture against speaker verification: It is
known that the HMM-based speech synthesis system—espe-
cially the speaker adaptive framework—can be used to breach
speaker verification systems [68], [69]. By using these various
kinds of voices, we can verify the robustness of speaker verifica-
tion systems against imposture using speech synthesis for many
speakers in advance [70].
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New research field “voice selection for TTS”:

Finally a

new research topic arises from these voices, that is, automatic
selection of voices. One such possible solution would be to use
GPS as mentioned earlier. Alternatively, from given texts we
may estimate an appropriate voice or required conditions (e.g.,
gender, adult or child, or country, etc.) to be used to read the

texts.
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