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Sequential Organization of Speech in Reverberant
Environments by Integrating Monaural Grouping

and Binaural Localization
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Abstract—Existing binaural approaches to speech segregation
place an exclusive burden on cues related to the location of sound
sources in space. These approaches can achieve excellent perfor-
mance in anechoic conditions but degrade rapidly in realistic en-
vironments where room reverberation corrupts localization cues.
In this paper, we propose to integrate monaural and binaural pro-
cessing to achieve segregation and localization of voiced speech
in reverberant environments. The proposed approach builds on
monaural analysis for simultaneous organization, and combines
it with a novel method for generation of location-based cues in
a probabilistic framework that jointly achieves localization and
sequential organization. We compare localization performance to
two existing methods, sequential organization performance to a
model-based system that uses only monaural cues, and segrega-
tion performance to an exclusively binaural system. Results suggest
that the proposed framework allows for improved source localiza-
tion and robust segregation of voiced speech in environments with
considerable reverberation.

Index Terms—Binaural speech segregation, computational audi-
tory scene analysis, monaural grouping, sequential organization,
sound localization.

I. INTRODUCTION

M OST existing approaches to binaural or sensor-array-
based speech segregation have relied exclusively on

localization cues embedded in the differences between signals
recorded by multiple microphones [1], [2]. These approaches
may be characterized as spatial filtering (or beamforming),
which enhances the signal from a specific direction. Spatial
filtering approaches can be very effective in certain acoustic
conditions. On the other hand, beamforming has well-known
limitations. Chief among them is substantial performance
degradation in reverberant environments. Rigid surfaces reflect
a sound source incident upon them, hence corrupting localiza-
tion cues [3].
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Time–frequency masking techniques have been proposed
to deal with segregation in reverberant environments [4], [5].
Recent approaches have relied on probabilistic frameworks
that jointly perform source localization and time–frequency
masking to segregate multiple sources [6]–[8]. These ap-
proaches improve segregation by modeling the increased
variability of localization cues in reverberation, and improve
localization by integrating cues over part of the mixture in
which a given source is dominant. In spite of the performance
gain achieved by such systems, they are still fundamentally
limited by the discriminative power of localization cues, which
is substantially diminished in environments with room rever-
beration.

In this paper, we propose an alternative framework that in-
tegrates monaural and binaural analysis to achieve robust lo-
calization and segregation of voiced speech in reverberant en-
vironments. In the language of auditory scene analysis (ASA)
[9], our proposed system uses monaural cues to achieve simulta-
neous organization, or grouping sound components of the mix-
ture across frequency and short, continuous time intervals. This
allows locally extracted, unreliable binaural cues to be inte-
grated over large time–frequency regions. Integration over such
regions enhances localization robustness in reverberant condi-
tions and in turn, we use robust localization to achieve sequen-
tial organization, or grouping sound components of the mixture
across disparate intervals of time.

Our computational framework is partly motivated by psy-
choacoustic studies suggesting that binaural cues may not play
a dominant role in simultaneous organization, but are impor-
tant for sequential organization [10], [11]. Further, human lis-
teners are able to effectively localize multiple sound sources in
reverberant environments [12], and some recent analysis sug-
gests that localization may be facilitated by monaural grouping,
rather than localization acting as a fundamental grouping cue in
ASA [13].

Prior work exploring the integration of monaural and bin-
aural cues for reverberant speech processing is limited. In [14],
localization cues are used to perform initial segregation in
reverberant conditions. Initial segregation provides a favorable
starting point for estimating the pitch track of the target voice,
which is then used to further enhance the target signal. In [15],
pitch and ITD are used to achieve localization of simultaneous
speakers in reverberant environments. Our prior work analyzed
the impact of idealized monaural grouping on localization and
segregation of speech in reverberant environments [16], and
showed that pitch-based monaural grouping can be used to
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Fig. 1. Schematic diagram of the proposed system. Binaural recordings are fed as input to the system. Cochlear filtering is applied to both the left and right ear
signals. Monaural processing generates simultaneous streams from the Better Ear Signal. Both signals are used to generate azimuth-dependent cues. Simultaneous
streams and azimuth-dependent cues are combined in the final localization and sequential organization stage.

achieve accurate localization of multiple sources in noisy and
reverberant environments [17].

Utilizing binaural cues to handle sequential organization is
attractive because monaural features alone may not be able
to solve the problem. For example, in a mixture of two male
speakers who have a similar vocal range, pitch-based features
cannot be used to group components of the mixture that are far
apart in time. As a result, feature-based monaural systems have
largely avoided sequential organization by focusing on short
utterances of voiced speech [18] or assuming prior knowledge
of the target signal’s pitch [19], or achieved sequential organi-
zation by assuming speech mixed with non-speech interference
[20].

Shao and Wang explicitly addressed sequential organization
in a monaural system using a model-based approach [21]. They
use feature-based monaural processing to perform simultaneous
organization of voiced speech, and speaker identification to per-
form sequential organization of the already formed time–fre-
quency segments. They provide extensive results on sequen-
tial organization performance in co-channel speech mixtures as
well as speech mixed with non-speech intrusions. However, they
do not address sequential organization in reverberant environ-
ments.

In the following section, we provide an overview of the
proposed architecture. In Section III we discuss monaural si-
multaneous organization of voiced speech. Section IV outlines
our methods for extraction of binaural cues, for calculating
azimuth-dependent cues, and a mechanism for weighting cues
based on their expected reliability. In Section V, we formulate
joint sequential organization and localization in a probabilistic
framework. We assess both localization and sequential or-
ganization performance, and compare the proposed system to
existing methods in Section VI. We conclude with a discussion
in Section VII.

II. SYSTEM OVERVIEW

The proposed system integrates monaural and binaural anal-
ysis to achieve segregation of voiced speech. A diagram is pro-
vided in Fig. 1. The input to the system is a binaural recording
of a speech source mixed with one or more interfering signals.
The recordings are assumed to be made with two microphones
inserted in the ear canals of a human listener or dummy head,
and we will refer to the two mixture signals as the left ear and
right ear signals, denoted by and , respectively.

In this paper, we use the ROOMSIM package [22] to gen-
erate impulse responses that simulate binaural input at human

ears. This package uses measured head-related transfer func-
tion (HRTF) data from a KEMAR dummy head [23] in com-
bination with the image method for simulating room acoustics
[24]. To generate binaural speech mixtures, we use monaural
speech signals drawn from the TIMIT database [25], pass the
signals through a binaural impulse response pair, and sum the
resulting binaural target and interference signals to create a bin-
aural mixture. The TIMIT signals, originally sampled at 16 kHz,
are upsampled to 44.1 kHz prior to binaural filtering to match
the sampling rate of the impulse responses.

When processing a given mixture, the system first passes both
the left and right signals through a bank of 128 gammatone fil-
ters [26] with center frequencies from 50 to 8000 Hz spaced
on the equivalent rectangular bandwidth scale [27]. Since the
source signals are originally sampled at 16 kHz, the filterbank
covers the entire frequency range of speech energy in the mix-
tures. We denote the signals for frequency channel as and

. Each filtered signal is divided into 20-ms time frames
with a frame shift of 10 ms to create a cochleagram [2] of
time–frequency (T-F) units for both the left and right ear sig-
nals. A T-F unit, which we denote as , is an elemental sound
component that contains one frame of signal, indexed by ,
from one of the gammatone filter outputs, indexed by .

In the first stage of the system, the tandem algorithm of Hu
and Wang [28], [29] is used to form simultaneous streams from
the T-F units of the better ear signal. By better ear signal, we
mean the signal in which the input SNR is higher, as determined
from the signals before mixing. A simultaneous stream refers to
a collection of T-F units over a continuous time interval that
are thought to be dominated by the same source. A stream, in
the computational auditory scene analysis (CASA) literature,
typically corresponds to the set of T-F units dominated by a
specific source. A simultaneous stream refers to a continuous
part of a stream that is grouped through simultaneous organiza-
tion (i.e., through across frequency grouping and temporal con-
tinuity). The tandem algorithm generates simultaneous streams
for voiced speech using monaural cues such as harmonicity and
amplitude modulation. Unvoiced speech presents a greater chal-
lenge for monaural systems and is not dealt with in this study
(see [20]).

Binaural cues are extracted that measure differences in timing
and level between corresponding T-F units of the left and right
ear signals. A set of trained, azimuth-dependent likelihood func-
tions are then used to map from timing and level differences
to cues related to source location. Azimuth cues are integrated
within simultaneous streams in a probabilistic framework to
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achieve sequential organization and to estimate the underlying
source locations. The output of the system is a set of streams,
one for each source in the mixture, and the azimuth angles of
the underlying sources.

III. SIMULTANEOUS ORGANIZATION

Simultaneous organization in CASA systems forms simul-
taneous streams, each of which may contain disconnected T-F
segments across frequency but span a continuous time interval.
We use the tandem algorithm proposed in [28], [29] to generate
simultaneous streams for voiced regions of the better ear mix-
ture. The tandem algorithm iteratively estimates a set of pitch
contours and associated simultaneous streams. In a first pass,
T-F segments that contain voiced speech are identified using
cross-channel correlation of correlogram responses. Up to two
pitch points per time frame are estimated by finding peaks in the
summary correlogram created from only the selected, voiced
T-F segments. For each pitch point found, T-F units that are
consistent with that pitch are identified using a set of trained
multi-layer perceptrons (one for each frequency channel). Pitch
points and associated sets of T-F units are linked across con-
tinuous time intervals to form pitch contours and associated si-
multaneous streams using a criterion that measures pitch devi-
ation and spectral continuity. Pitch contours and simultaneous
streams that span only a single time frame are discarded. Finally,
the pitch contours and associated simultaneous streams are iter-
atively refined until convergence.

We focus on multi-talker mixtures in reverberant environ-
ments, and find that in this case the criterion used in the tandem
algorithm for connecting pitch points and simultaneous streams
across continuous time intervals is too liberal. For this reason,
we break pitch contours and simultaneous streams when the
pitch deviation between time frames is large. Specifically, let
and be pitch periods from the same contour in neighboring
time frames. If , the contour and asso-
ciated simultaneous streams are broken into two contours and
two simultaneous streams. The value of 0.08 was selected on
the basis of informal analysis, and was not specifically tuned for
optimal performance on the data set discussed in Section VI.

An example set of pitch contours and simultaneous streams
are shown in Fig. 2. The plots are generated using the better ear
mixture of a female talker placed at 15 azimuth and a male
talker placed at 30 azimuth in a reverberant environment with
0.4 s reverberation time . There are a total of 27 contour
and simultaneous stream pairs shown. The energy of each T-F
unit in the cochleagram of the mixture is shown in Fig. 2(a). In
Fig. 2(b), detected pitch contours are shown by alternating be-
tween circles and squares, while ground truth pitch points gen-
erated from the reverberant signals prior to mixing are shown as
solid lines. In Fig. 2(c), each gray level corresponds to a sepa-
rate simultaneous stream. One can see that simultaneous streams
may contain multiple segments across frequency but are contin-
uous in time.

IV. BINAURAL PROCESSING

In this section, we describe how binaural cues are extracted
from the mixture signals and propose a mechanism to translate
these cues into information about the azimuth of the underlying

Fig. 2. Example of multi-pitch detection and simultaneous organization using
the tandem algorithm. (a) Cochleagram of a two talker mixture. (b) Ground truth
pitch points (solid lines) and detected pitches (circles and squares). Different
pitch contours are shown by alternating between circles and squares. (c) Si-
multaneous streams corresponding to different pitch contours are shown with
different gray levels.

source signals. We also discuss a method to weight binaural cues
according to their expected reliability.

A. Binaural Cue Extraction

Two primary binaural cues used by humans for localization
of sound sources are interaural time difference (ITD) and inter-
aural level difference (ILD) [30]. We calculate ITD in individual
frequency bands by first computing the normalized cross-corre-
lation,

(1)

where is the time lag for the correlation and
and index frequency channels and time frames, respectively,
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Fig. 3. Examples of ITD-ILD likelihood functions for azimuth 25 at frequencies of 400, 1000, and 2500 Hz. Each example shows the log-likelihood as a surface
with projected contour plots that show cross sections of the function at equally spaced intervals.

denotes the number of samples per time frame and the frame
shift is . The ITD is then defined as the time lag that
produces the maximum peak in the normalized cross-correlation
function, or

(2)

where denotes the set of peak lags in .
ILD corresponds to the energy ratio in dB between the two

signals in corresponding T-F units:

(3)

B. Azimuth-Dependent Likelihood Functions

If one assumes binaural sensors in an anechoic environment,
a given source position relative to the listener’s ears will pro-
duce a specific, frequency dependent set of ITDs and ILDs for
that listener. In order to effectively integrate information across
frequency for a given source position, these patterns must be
taken into account. Further, integration of ITD and ILD cues
extracted from reverberant mixtures of multiple sources should
account for deviations from the free-field patterns.

In this paper, we focus on a subset of possible source lo-
cations. Specifically, we restrict the sources to be in front of
the listener with 0 elevation. As a result, source localization
reduces to azimuth estimation in the interval [ 90 , 90 . To
translate from raw ITD-ILD information to azimuth, we train a
joint ITD-ILD likelihood function, , for each
azimuth, , and frequency channel, . Likelihood functions are
trained on single-source speech in various room configurations
and reverberation conditions using kernel density estimation
[31]. The room size, listener position, source distance to listener
and reflection coefficients of the wall surfaces are randomly
selected from a predefined set of 540 possibilities. Following
Roman et al., we use Gaussian kernels for density estimation
and choose smoothing parameters using the least-squares
cross-validation method [31]. For a more detailed description,
see [32].

An ITD-ILD likelihood function is generated for each of 37
azimuths, [ 90 , 90 ] spaced by 5 , and for each of the 128

frequency channels. With these functions, we can translate the
ITD-ILD values measured from a given T-F unit pair into an
azimuth-dependent likelihood curve. Due to reverberation, we
do not expect the maximum of the likelihood curve for each
T-F unit pair to be a good indication of the dominant source’s
azimuth, but hope that a good indication of the dominant
source’s azimuth emerges through integration over a simulta-
neous stream.

The set of likelihood distributions for a specific azimuth cap-
tures the frequency dependent pattern of ITDs and ILDs for that
azimuth and the multi-peak ambiguities present at higher fre-
quencies where signal wavelengths are shorter than the distance
between ears or microphones. Each distribution has a peak cor-
responding to the free-field cues for that angle, but also captures
common deviations from the free-field cues due to reverbera-
tion. We show three distributions in Fig. 3 for azimuth 25 . Note
that, in addition to the above points, the azimuth-dependent dis-
tributions capture the complementary nature of localization cues
[30] in that ITD provides greater discrimination between angles
at lower frequencies (note the large ILD variation in the 400
Hz example) and ILD improves discrimination between angles
at higher frequencies where spatial aliasing hinders discrimina-
tion by ITD alone.

Our approach is adapted from the one proposed in [32]. In that
system two ITD-ILD likelihood functions are trained for each
frequency channel, and ,
where denotes the hypothesis that the target signal
is stronger than the interference signal, and that the
target is weaker. The distributions and

are trained for each target/interference
angle configuration. The ITD search space is limited around
the expected free-field target ITD in both training and testing to
avoid the multi-peak ambiguity in higher frequency channels.
For a test utterance, the azimuths of both target and interference
sources are estimated, the appropriate set of likelihood distri-
butions is selected and the maximum a posteriori decision rule
is used to estimate a binary mask for the target source.

There are two primary reasons for altering the method in [32]
to the one proposed here. First, our proposed approach lowers
the training burden because likelihood functions are trained for
each angle individually, rather than as combinations of angles.
Second, the fact that we do not limit the ITD search space in
training allows us to use the likelihood functions in estimation
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of the underlying source azimuths, rather than requiring a pre-
liminary stage to estimate the angles. In [17], we showed that our
proposed localization method, which utilizes the ITD-ILD like-
lihood functions, performs significantly better than the method
proposed in [32].

Because we do not limit the ITD search space, our approach
does not attempt to resolve the multi-peak ambiguity inherent
in high frequency ITD calculation at the T-F unit level. For fre-
quency channels in which the wavelength of the signal is shorter
than the spacing between microphones, multiple peaks are cap-
tured by the likelihood functions (see Fig. 3). Spatial aliasing
in these channels is naturally resolved by integrating across fre-
quency within a simultaneous stream.

C. Cue Weighting

In reverberant recordings, many T-F units will contain cues
that differ significantly from free-field cues. Although these de-
viations are incorporated in the training of the ITD-ILD likeli-
hood functions described above, including a weighting function
or cue selection mechanism that indicates when an azimuth cue
should be trusted can improve localization performance. Moti-
vated by the precedence effect [33], we incorporate a simple cue
weighting mechanism that identifies strong onsets in the mix-
ture signal. When a large increase in energy occurs, and shortly
thereafter, the azimuth cues are expected to be more reliable.
We therefore generate a weight associated with that
measures the change in signal energy over time. First, we define
a recursive method to measure the average signal energy in both
left and right channels as follows:

(4)

Here and , where denotes the
time constant for integration and is the sampling frequency
of the signals. We set ms and kHz. We then
calculate the percent of change in energy between samples and
average over an integration window to get

(5)

is then normalized over each mixture to have values be-
tween 0 and 1 by first subtracting the minimum value over all
T-F units, finding the maximum value after subtraction, and then
dividing by the maximum value over all T-F units.

We have found measuring change in energy using this method
to provide better results than simply taking the change in av-
erage energy from unit to unit, or taking the more traditional
derivative of the signal envelope [2]. We have also found better
performance by keeping only those weights above a specified
threshold. The difficulty with a fixed threshold however, is that
one may end up with a simultaneous stream with no unit above
the threshold. To avoid this we set a threshold for each simulta-
neous stream so that the set of T-F units exceeding the threshold
retain 25% of the signal energy in the simultaneous stream.

is set to 0 for all T-F units below the selected threshold. We have
found that the system is not particularly sensitive to the value of
25% and that values between about 15% and 40% give similar
performance in terms of localization accuracy.

Alternative selection mechanisms have been proposed in the
literature [34], [35], [15]. Faller and Merimaa proposed inter-
aural coherence as a cue selection mechanism [34], although
in preliminary experiments we found the proposed method to
outperform selection methods based on interaural coherence.
The method proposed in [35] uses ridge regression to learn a
finite-impulse response filter that predicts localization precision
for single-source reverberant speech in stationary noise. This
method essentially identifies strong signal onsets, as does our
approach, but requires training. The study in [15] finds that a
precedence motivated cue weighting scheme performs about as
well as two alternatives on a database of two-talker mixtures in
a small office environment.

V. LOCALIZATION AND SEQUENTIAL ORGANIZATION

As described above, the first stage of the system generates si-
multaneous streams for voiced regions of the better ear mixture
and extracts azimuth-dependent cues for all T-F units using the
left and right ear mixtures. In this section, we describe the source
localization and sequential organization process. The goal of se-
quential organization is to generate a target or interference label
for each of the simultaneous streams, thereby grouping the si-
multaneous streams that occur mainly at different times. Our
approach jointly determines the source azimuths and sequential
organization (simultaneous stream labeling) that maximizes the
likelihood of the binaural data. This approach is inspired by the
model-based sequential organization scheme proposed in [36].

Let be the number of sources in the mixture, and be the
number of simultaneous streams formed using monaural anal-
ysis. Denote the set of all possible azimuths as and the set
of simultaneous streams as . Let be the
set of all sequential organizations, or labelings, of the set
and be a specific organization. We seek to maximize the joint
probability of a set of angles and a sequential organization given
the observed data, . This can be expressed as

(6)
For simplicity, assume that and apply Bayes rule to

get

(7)

assuming that all angles and sequential organizations are equally
likely (with the exception that .

Now, let be the set of simultaneous streams associated
with and be the set of simultaneous streams associated
with by . Using ITD and ILD as the observed mixture data,
and assuming independence between simultaneous streams and
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between T-F units of the same simultaneous stream, we can ex-
press (7) as

(8)

where denotes a probability function defined for frequency
channel (see Section IV-B).

One can express the above equation as two separate equations
that can be solved simultaneously in one polynomial-time oper-
ation as

(9)

(10)

where denotes the label assigned to . The key assumption
in moving to (9) and (10) is the independence between simulta-
neous streams expressed in (8).

Incorporating the weighting parameter defined in
Section IV-C, (9) and (10) become

(11)

(12)

For the case with , use rather
than in (11) and
in (12). The complexity of the search space is , which is
reasonable when the number of sources of interest is relatively
small and the size of the azimuth space is moderate. In our ex-
periments in Section VI, and . We provide a
more thorough discussion regarding search complexity and in-
dependence assumptions in Section VII.

VI. EVALUATION AND COMPARISON

In this section, we evaluate source localization, localization-
based sequential organization, and segregation of voiced speech
using the proposed integration of monaural and binaural pro-
cessing. We analyze localization performance with and without
the cue weighting mechanism discussed in Section IV-C and
compare the proposed method to two existing methods in var-
ious reverberation conditions. We evaluate sequential organi-
zation performance in various reverberation conditions through
comparison to a model-based approach and to a method that in-
corporates prior knowledge. Finally, we evaluate voiced speech

segregation of the full system through comparison to an exclu-
sively binaural approach and to identify the conditions in which
integration of monaural and binaural analysis can outperform
binaural analysis alone.

A. Training and Mixture Generation

We generate a training and a testing library of binaural im-
pulse responses for 37 direct sound azimuths between 90 and
90 spaced by 5 , and 7 times between 0 and 0.8 s using
the ROOMSIM package [22]. In the training library, three room
size configurations, three source distances from the listener (0.5,
1 and 1.5 m) and five listener positions in the room are used. In
the testing library, two room size configurations (different from
those in training), three source distances from the listener (same
as those in training) and two listener positions (different from
those in training) are used. For training the ITD-ILD likelihood
distributions, speech signals randomly selected from the eight
dialect regions in the training portion of the TIMIT database
[25] are upsampled to 44.1 kHz and convolved with a randomly
selected impulse response pair from the training library (for a
specified angle). Training is performed over 100 reverberant sig-
nals for each of the 37 azimuths (see Section IV-B).

For all testing mixtures we select target and interference
speech signals from the TIMIT database, upsample the signals
to 44.1 kHz, pass the signals through an impulse response pair
from the testing library for a desired azimuth and time, and
sum the resulting binaural target and interference signals to
create a binaural mixture. We generate 200 two-talker mixtures
and 200 three-talker mixtures for each of the reverberation
conditions. In each mixture the room dimensions, source dis-
tance and listener position are randomly selected and applied
to all sources. For the two-talker mixtures source azimuths are
selected randomly to be between 10 and 125 apart. For the
three-talker mixtures source azimuths are selected randomly to
be at least 10 apart. The average azimuth spacing over each set
of two-talker mixtures is 53 , whereas the average spacing from
the target source to the closest interference source is 41 for
each set of three-talker mixtures. Speech utterances, azimuths
and room conditions remain constant across different times.
Only the reflection coefficient of the wall surfaces was changed
to achieve the selected . The SNR of each mixture is set to
0 dB using the dry, monaural TIMIT utterances. This results in
better ear mixtures that average 2.8 dB in anechoic conditions
down to 1 dB in 0.8 s for the two-talker case, and 0.4
dB in the anechoic mixtures down to 1.6 dB in 0.8 s for
the three-talker case. Mixture lengths are determined using the
target utterance with the interference signals either truncated
or concatenated with themselves to match the target length.
In order to make a comparison to the model-based approach
(discussed further in Section VI-C), the speakers used for the
test mixtures are drawn from the set of 38 speakers in the DR1
dialect region of the TIMIT training database.

B. Localization Performance

In this section, we analyze the localization accuracy of the
method described in Section V. Specifically, we measure av-
erage azimuth estimation error with and without cue weighting.
We also compare localization performance to two existing
methods for localization of multiple sound sources, as proposed
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in [37] and [38], and to an exclusively binaural system that
incorporates the azimuth-dependent likelihood functions de-
scribed in Section IV-B, but labels each T-F unit independently.

The approach proposed by Liu et al. in [38], termed the stencil
filter, performs coincidence detection for each frequency bin
and time frame and counts the detected ITD as evidence for a
particular azimuth if it falls along the azimuth’s “primary” or
“secondary” traces. The primary trace is simply the predicted
ITD for that angle, while the secondary traces are due to ambi-
guity at higher frequencies. For comparison on the database de-
scribed, some changes were necessary to account for the (some-
what) frequency-dependent nature of ITDs as detected by a bin-
aural system and the discrete azimuth space. Further, because
angles are assumed constant over the length of the mixture, az-
imuth responses from the stencil filter were integrated over all
time frames for added accuracy and the two most prominent
peaks were selected as the underlying source angles.

The SRP-PHAT algorithm is a well-known technique for lo-
calization in reverberant conditions [37]. It combines a steered
beamformer with the phase transform weighting of the general-
ized cross-correlation. Rather than use a frequency-independent
time delay to steer the beam pattern, as is typically done, we
use the true frequency dependent phase delays of the anechoic
HRTFs for each of the 37 possible angles. This resulted in much
better performance across all conditions, and this information
was also used for the stencil filter implementation. We measure
the PHAT weighted steered response power for each angle over
time frames of 1024 samples, or 23 ms, that overlap by 50% and
integrate over frequencies up to 8 kHz, since the speech sources
in our test corpus do not have energy beyond this frequency.
We integrate over all time frames and again select the two most
prominent peaks as the underlying source angles.

The exclusively binaural system treats each T-F unit inde-
pendently and jointly estimates source azimuths and time–fre-
quency masks. Specifically, for a given set of angle hypotheses

, each T-F unit is given a source assignment
using the azimuth-dependent likelihood functions. The az-

imuth set that maximizes the likelihood after integration over all
T-F units is selected. This can be expressed with a slight alter-
ation of (9) and (10)

(13)

(14)

This approach is similar in spirit to [6] and [7] in that source
azimuths and time–frequency masks are jointly estimated, al-
lowing localization cues to be integrated over a subset of T-F
units in the mixture. One key difference is that the binaural
system presented here takes advantage of the pretrained, non-
parametric likelihood functions whereas [6] and [7] fit para-
metric models directly to the observed mixture. It is important to
note that we do not incorporate the voiced simultaneous streams
in any way, thus unlike the proposed system, the binaural local-
ization system makes use of both voiced and unvoiced speech.

Average azimuth error on the two-talker mixtures is shown
in Fig. 4. Estimation is performed for 400 source signals (2 in

Fig. 4. Azimuth estimation error averaged over 200 two-talker mixtures, or
400 utterances, for various reverberation times. Results are shown using the
proposed approach with and without cue weighting, and three alternative ap-
proaches.

each of the 200 two-talker mixtures) and for 7 times. The
results indicate that including weights associated with signal on-
sets improves azimuth estimation of the proposed method when
significant reverberation is present. We can also see that both
proposed methods outperform the existing methods for of
300 ms or larger. The improvement relative to the stencil filter
method averages 5.18 over the range of 400 ms to 800 ms,
3.74 relative to the SRP-PHAT approach, and 3.51 relative to
the exclusively binaural approach.

The difference in performance between the methods is largely
captured by how well they localize both sources in the mixtures.
If we consider only the source that was localized with the most
precision, the average azimuth error of all methods was near or
below 2 in all times. However, the proposed method was
able to localize the second source with far more accuracy than
the alternative methods. When ranges from 400 ms to 800
ms, the proposed method decreased the average azimuth error
of the less accurately localized source by between 60% and 70%
relative to the alternative systems.

Performance on the three-talker mixtures followed the same
trends, with the proposed system providing an accuracy im-
provement of 33%, 41%, and 48% over the binaural, SRP-PHAT
and stencil filter methods, respectively, over the range of 300
ms to 800 ms. The proposed system achieved about 5 azimuth
error on this set of reverberant mixtures, averaged over the 600
sources (3 in each of the 200 mixtures) localized in each of the
4 times.

The key advantage of both the proposed system and the bin-
aural system is that azimuth-dependent cues for a particular
source are not integrated over the entire mixture, as they are
in the stencil filter and SRP-PHAT approaches. The compar-
ison between the proposed method without cue weighting and
the binaural method shows that monaural grouping alone facili-
tates more accurate localization as T-F units are not treated com-
pletely independent of one another. Selecting a subset of the T-F
units using a mechanism for cue weighting is also advantageous
in terms of localization accuracy.

C. Sequential Organization and Segregation Performance

To analyze both sequential organization and voiced segrega-
tion performance we use the ideal binary mask (IBM), which
has been proposed as a main computational goal of CASA [39]
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and shown to dramatically improve speech intelligibility when
applied to noisy mixtures [40]. The IBM is a binary labeling of
mixture T-F units such that when target energy is stronger than
interference energy, the T-F unit is labeled with 1, and when
target energy is weaker, the T-F unit is labeled with 0. Note
that the IBM labels not only T-F units corresponding to voiced
speech, but also those corresponding to unvoiced speech. We
evaluate performance by finding the percentage of mixture en-
ergy contained in the simultaneous streams that is correctly la-
beled by an estimated mask, where ground truth labeling of a
T-F unit in a simultaneous stream is generated using the IBM
of the better ear mixture. We refer to this metric as the labeling
accuracy. We measure the mixture energy in dB.

To evaluate sequential organization, we compare perfor-
mance against a “ceiling” measure that incorporates ideal
knowledge and to a recent model-based system [21]. We refer
to the ceiling performance measure as ideal sequential organ-
ization (Ideal S.O.). In this case, a target/interference decision
is made for each simultaneous stream based on whether the
majority of the mixture energy is labeled target or interference
by the IBM.

The model-based system uses pretrained speaker models
to perform sequential organization of simultaneous streams
for voiced speech [21]. Speaker models are trained using an
auditory feature, gammatone frequency cepstral coefficients
[21], and the system incorporates missing data reconstruction
and uncertainty decoding to handle simultaneous streams that
do not cover the full frequency range. The system is designed
for anechoic speech trained in matched acoustic conditions.
To account for both the azimuth-dependent HRTF filtering
and reverberation contained in the mixture signals used in our
database, some adjustments were made. First, we train speaker
models for each of the reverberation conditions that will be
seen in testing. For each of the 38 speakers, we select seven out
of ten utterances for training, generate ten variations of each
of these utterances with randomly selected azimuths for each
of the seven reverberation times. This helps to minimize the
mismatch between training and testing conditions, although as
mentioned above, the impulse responses used in training are
different from those in testing. We found this approach to give
better performance than feature compensation methods (e.g.,
cepstral mean subtraction, and cepstral mean subtraction and
variance normalization) for mismatched training and testing
conditions.

In [21], a background model is used to allow the system to
process speech mixed with multiple speech intrusions or non-
speech intrusions. Since we focus on the two and three-talker
cases, we found that assuming all speakers are known a priori
produces better results than using a generic background model.
Incorporating this prior knowledge ensures that we are com-
paring to a high level of performance potentially achievable by
the model-based system.

To identify the conditions in which the proposed integration
of monaural and binaural analysis can improve segregation rel-
ative to binaural analysis alone, we compare performance to the
exclusively binaural system described in (13) and (14). For the
purpose of comparison, we still measure the labeling accuracy
within the simultaneous streams, even though the exclusively

binaural approach is able to generate a binary mask for the en-
tire mixture.

As previously stated, the exclusively binaural system has
much in common with the systems proposed in [6] and [7].
The key difference is that the binaural system presented here
uses pre-trained, non-parametric likelihood functions rather
than fitting parametric models to the observed mixture. To test
whether models that are tuned to capture the reverberation con-
dition of a specific mixture improves performance, we trained
alternative non-parametric likelihood functions tuned for each

time of the test database. On our two-talker database we
found little benefit in using the -specific models for either
the exclusively binaural or the proposed system (0.3% better on
average for both systems). In training the likelihood functions
as described in Section VI-A, we have generated a binaural
model that, while specific to the binaural microphone (or
listener) used for training, provides good performance across a
variety of room conditions.

In Fig. 5, we show the performance of the proposed system,
the model-based system, the binaural system and the ideal
sequential organization scheme on the two- and three-talker
mixtures. The performance achieved by Ideal S.O. indicates
the quality of the monaural simultaneous organization. Any
decrease below 100% reflects that the simultaneous streams
are not exclusively dominated by target or interference. On the
two-talker mixtures shown in Fig. 5(a), labeling error due to
monaural analysis averages 11.6% across all times, and is
largely consistent across reverberation conditions. The perfor-
mance difference between Ideal S.O. and the model-based or
proposed systems reflects errors due to sequential organization.
Model-based sequential organization introduces an additional
12.7% labeling error, averaged over all times. The error
introduced by localization-based sequential organization ranges
from 1.8% in low reverberation conditions, up to almost 8%
in the most reverberant condition. The relative performance
improvement over the model-based system ranges between
9.5% and 14%, depending on the time. This is notable,
especially considering that the model-based results incorporate
prior knowledge of the speaker identities contained in the
mixture and the time of the mixture. The proposed system
outperforms the model-based approach on the three-talker
mixtures as well [see Fig. 5(b)], although the gap is not as large.

In comparing the proposed system to the Ideal S.O. system,
one can see that the proportion of labeling error attributable to
localization-based sequential organization increases with both

time and the number of talkers, suggesting that an increase
in the number of talkers or the reverberation time has a larger
impact on the binaural sequential organization than on the ac-
curacy of the monaural grouping. However, since all results are
obtained from voiced speech only, as generated from the tandem
algorithm’s simultaneous streams, these measures do not pe-
nalize the simultaneous organization stage for what one might
call misses, or T-F units that contain primarily voiced energy
from one of the source signals, but are not captured by any of
the simultaneous streams. We note that the proportion of total
mixture energy (both voiced and unvoiced) that is captured by a
simultaneous stream is 57% in the two-talker anechoic case, de-
creases to 35% averaged over the two-talker mixtures between
300 ms and 800 ms and 33% averaged over the three-talker
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Fig. 5. Labeling accuracy of the proposed and comparison systems shown as a function of reverberation time for (a) two-talker and (b) three-talker mixtures.

TABLE I
LABELING ACCURACY AS A FUNCTION OF SPATIAL SEPARATION (IN )

mixtures between 300 ms and 800 ms . This suggests that
using monaural simultaneous organization developed specifi-
cally for reverberant environments [19] may improve perfor-
mance using the proposed framework.

One can see a strong influence of the reverberation time on
the binaural system. For the two-talker mixtures in which there
is little reverberation present, i.e., with of 0 and 100 ms, the
binaural system outperforms even the Ideal S.O. system. This
suggests that in these cases the binaural cues are more pow-
erful than pitch-related cues for achieving simultaneous organ-
ization. However in the three-talker case and in even moderate
amounts of reverberation, simultaneous organization achieved
by monaural processing improves performance over exclusively
binaural grouping. The gap between the Ideal S.O. system and
the binaural systems increases with both the amount of rever-
beration and the number of talkers, indicating that the potential
gain of integrating monaural and binaural processing is greater
as the mixture complexity increases.

It is clear from Fig. 5 that the proposed system represents
a significant improvement over the binaural system, and that
the margin between the two increases as a function of . The
performance margin is also dependent on spatial separation be-
tween sources. Table I shows the average labeling accuracy of
the proposed and binaural system as a function of spatial sep-
aration between the target source and the closest interference
source for mixtures with between 300 ms and 800 ms. One
can see that our system’s performance does not degrade as se-
verely as the binaural system for closely spaced sources.

Due to the nature of the monaural processing used in this
study, there is some influence of source gender on performance
of the proposed system. For the two-talker mixtures with
between 300 ms and 800 ms, the average labeling accuracy is
81.7% for mixtures where talkers have the same gender and
85.3% when talkers have different genders. This effect is even

more pronounced for the model-based system where average ac-
curacy is 80.2% when talkers have different genders and only
68.2% for same-gender mixtures. In our two-talker database,
46% of the mixtures have sources with different genders. The
difference in performance between the proposed system and
comparison systems is similar for male–male and female–fe-
male mixtures.

VII. CONCLUDING REMARKS

The results in the previous section illustrate that integration
of monaural and binaural analysis allows for robust localization
performance, which enables sequential organization of speech
in environments with considerable reverberation. The localiza-
tion-based sequential organization outperforms model-based
sequential organization that utilizes only monaural cues, and
the proposed integration of monaural and binaural analysis
outperforms an exclusively binaural approach in terms of
voiced speech segregation on two- and three-talker reverberant
mixtures. We have also shown that, in addition to improving
segregation performance, incorporation of monaural grouping
improves localization performance over three exclusively bin-
aural methods.

The discrete azimuth space used in this study avoids two po-
tential issues. First, the azimuth-dependent ITD-ILD likelihood
functions are manageable in number (37 for each frequency
channel in this study). Second, the joint search over all pos-
sible azimuths is computationally feasible. In the case of a more
finely sampled or continuous azimuth space, or a localization
space that includes elevation, one would need to carefully con-
sider how to overcome both issues. To overcome the need for
training an unwieldy amount of likelihood functions in a va-
riety of acoustical conditions, parametric likelihood functions
could be used without considerable performance sacrifice. In an-
alyzing the trained ITD-ILD likelihood functions, clear patterns
emerge that could be utilized to formulate a parametric model.
Certain key parameters, such as the primary peak locations and
spread of the distributions, could be learned from training data
from a discrete set of source positions and extrapolated to a con-
tinuous space. The second issue of joint search over all possible
angles in a finely sampled or continuous space could be avoided
by doing an initial search in a discretized space (such as the one
used here), then refining the source positions in a limited range.
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The development in Section V makes two assumptions that
should be carefully examined in future work. First, we propose
a maximum-likelihood framework in which all sequential
organizations are equally likely. For mixtures in which the
input SNR is significantly different from 0 dB, maximum a
posteriori estimation is more appropriate and it should not
be assumed that is uniform. Second, we assume that all
simultaneous streams are conditionally independent. While this
may be reasonable for simultaneous streams that are separated
in time, this assumption is questionable when two simultaneous
streams overlap in time. In the majority of cases, simultaneous
streams that overlap in time are due to different sources. In-
corporating dependence between simultaneous stream labels
should improve performance, but with increased computational
cost.

Finally, since the proposed system only processes voiced
speech, it is essential to develop methods to handle unvoiced
speech. Binaural cues are likely a powerful tool for handling
unvoiced speech, which is challenging with only monaural
cues (see [20]). Future work must also analyze performance
with different types of interfering signals, e.g., speech babble
or non-speech intrusions.
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