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Abstract—One of the principal cues believed to be used by
listeners to estimate the distance to a sound source is the ratio of
energies along the direct and indirect paths to the receiver. In
essence, this “direct-to-reverberant” energy ratio reveals the
absolute distance component of the direct energy by normalising
by what is assumed to be distance-independent reverberant
energy. Earlier approaches to direct-to-reverberant energy ratio
calculation made use of the estimated room impulse response, but
these techniques are computationally expensive and inaccurate in
practice. This paper proposes and evaluates an alternative
approach which uses binaural signals to segregate energy arriving
from the estimated direction of the direct source from that
arriving from other directions, employing a novel binaural
equalization-cancellation technique. The system is integrated with
a probabilistic inference framework, particle filtering, to handle
the nonstationarity of energy-based measurements. The algorithm
is capable of using reverberation to estimate source distance in
large rooms with errors of less than 1 m for static sources and
1.5-3.5 m for sources with varying degrees of motion complexity.
Model performance can be accounted for largely in terms of a
competition between auditory horizon and source energy
fluctuation effects.

Index Terms—Acoustic distance measurement, direct-to-
reverberant energy ratio, particle filtering, binaural sound source
localization.

I. INTRODUCTION

JUDGEMENT of ego-centric distance to nearby objects is an
important human sensory capability and is at times wholly -
and critically - dependent on auditory input. A cyclist uses
engine noise from motor vehicles to estimate distance in order
to pick up speed in time and prepare for evasive action. A
runner listens to the footsteps and breathing of his or her
opponents to evaluate whether their lead in the race is adequate
enough. The approach of a mosquito person at night can be
detected through the sound made by its vibrating wings.
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Absolute sound energy at the receiver is a function of
intrinsic source energy and source distance, both of which may
be time-varying, precluding the use of energy alone as a cue to
source-listener distance. However, the combination of energy
received along the direct source-listener path with energy
arriving following reflections has potential as a means of
estimating source distance. The “direct-to-reverberant” energy
ratio (DRR) has been suggested as part of the mechanism for
source distance judgements in listeners [3-6]. Distance
judgments are more accurate in a reverberant space than in an
anechoic space, with small inter-test variation in judgements in
the same environment [3]. Listeners may use reverberation as
an absolute distance cue given that accurate distance judgments
were obtained at first stimulus presentation [4]. Zahorik [7]
suggested that the principal role of the DRR cue was to provide
absolute distance information rather than support fine distance
discriminations and was poor as a relative cue. Zahorik also
suggested that DRR was perceptually more salient than an
intensity cue, especially in a situation where prior knowledge of
natural speech level could not be used due to other more
variable and complex acoustic information in the surrounding
environment [8].

Attempts have been made to exploit the DRR cue both
monaurally and binaurally. Bronkhorst and Houtgast [9]
proposed a computational model to predict human distance
judgement in a controlled condition where the DRR cue is
dominant. Their model demonstrated accurate prediction of
subjects’ distance responses based on prior knowledge of
certain acoustical properties of the environment (room volume,
reverberation time and source directivity) using monaural data.
Relying on blind identification of the room impulse response
from the monaural signal, Larsen and colleagues [10]
developed a technique to compute DRR based on certain
assumed room acoustics parameters, such as the duration of
direct sound. They found that source distance could also be
determined as an intermediate output and arrived at
underestimated judgments for sources at moderate and large
distances (further away than 2 m), similar to the pattern found
with human listeners. Other models based on binaural signals
utilised either prior knowledge of the environment (e.g. room
impulse responses [11]) or extensive spectral training data [12]
to formulate source distance inference using the DRR concept.
While these studies attempted to demonstrate that distance
inference can be further improved with binaural input, neither
study, surprisingly, emphasised the role of directional
information.



One basic step in computing DRR involves segregating the
direct and reverberant signals from the acoustic mixture. A
common approach uses the difference in arrival time of the two
components [9], usually applied by specifying an integration
window for the room impulse response (e.g. treating the leading
4 ms portion of the signal as direct) to determine the direct
sound energy. However, it is difficult to extract a precise long
room impulse response by de-convolving the raw signal in a
reasonable run time [13].

It is not clear whether the auditory system also extracts DRR
via a similar temporal scheme. The hypothesis that the
separation of direct and reverberant components correlated
highly with the detection of sharp onsets (or offsets) was not
supported following a study which showed that distance
perception is unaffected by the shape of the envelope of the
sound [14]. Other experiments by Bronkhorst [11]
demonstrated that a reduction of interaural correlation led to a
strong decrease of apparent distance. This suggests that human
listeners might also use binaural information to determine
sound source distance.

Here, we explore the possibility of performing
direct/reverberant energy segregation based on estimated
source direction. By removing the energy of a target signal
which occupies a particular azimuthal region, the reverberant
signal can be identified by its diffuse (i.e non-directional)
characteristic. An adaptive sub-band scheme proposed by Liu
et al. [15] to address a different problem, that of separating
multiple sources, motivated the approach developed in this
study. Their two-microphone system exploited sound location
information to steer independent nulls that suppressed the
strongest interference in each time-frequency region, using a
dual delay-line structure. We adapt this technique to extract
signal energy for each angular position as a means of separating
the direct signal from the reverberant signal. The result is used
to generate the DRR from which a likelihood function can be
derived.

The approach taken in the current study is depicted in Fig. 1.
Left and right ear signals are first processed to allow estimation
of sound source location in both azimuth and distance based on
cross-correlation and DRR features. These cues are then
combined to create either an instantaneous (non-sequential)
estimate of listener-source distance, or integrated through time
using a sequential method. In the latter case, location priors are
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Fig. 1. Computational mode for evaluating reverberation cues in sound source
localisation.

updated with new observations in a sequential particle filtering
(PF) framework in an iterative manner for inferring sound
location.

Section II addresses the extraction of cross-correlation and
DRR cues to location, while section III evaluates the
relationship between DRR cues and distance for both real and
synthetic environments. The DRR-distance relationship is
modelled using Gaussian mixtures as outlined in section IV.
Section V describes the use of particle filtering to integrate
distance estimates through time. An evaluation of the DRR cue
for judging the distance to both static and moving sound
sources in reverberant conditions is presented in section VI.

II. EQUALIZATION-CANCELLATION METHOD FOR ESTIMATION
OF THE DIRECT-TO-REVERBERANT ENERGY RATIO

A system for DRR estimation is introduced capitalizing on
target source directional information. It is fundamentally an
equalization-cancellation (EC) operation applied on a
reverberant binaural signal. The EC concept was proposed to
explain the masking suppression process in the presence of a
single noise source [16]. Equalization renders the magnitudes
of noise components to be identical between channels, while
cancellation subtracts the noise component in one channel from
that of the other channel. In our application of the EC principle,
the direct signal, which is identified by its angular position, is
the “noise” component.

The EC-based DRR estimation system is outlined in Fig. 2.
First, successive windowed frames of a binaural signal are
processed by a pair of N-channel gammatone filterbanks [17].
Next, individual filter outputs from left and right ear models
feed two binaural interaction  processes, namely
cross-correlation (CC) and equalization-cancellation, operating
on an M-element delay line. A cross-frequency integration
stage enables robust localisation of the direct sound source and
estimation of the source power distribution as a function of
interaural delay. Finally, a single DRR value is generated for
each frame of data input. The direct energy is estimated via
azimuthal information from the source localizer which is used
to select the direct source power at the corresponding delay-line
index, denoted jy,c.. The DRR is estimated as the ratio of
direct energy to reverberant energy, the latter computed as the
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Fig. 2. Schematic diagram of EC-DRR system.
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Fig. 3. ITD extraction for a pink noise source located 45° to the right. The lower plots in each panel are cross-correlogram summaries across frequency (from 200 Hz
to 20 kHz). The location corresponding to the source is identified by detecting the peak in the lower plot at which the summarised cross-correlogram is maximized.

Spurious peaks occur due to reverberation (right). By contrast, a single salient peak is easily observed in the anechoic case (left) and in the less reverberant condition
(middle).
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The individual steps are now described in more detail.

A. Cross-correlation

Cancellation

ITD estimates were computed from the summary

cross-correlation (2) of the left and right “ear” outputs of *SRW :/ SR \: o
auditory filters, X;(t,f) and Xx(zf), modelled using a bank of ’% >

N=32 gammatone filters [17] with centre frequencies equally Directional Signal Power of
spaced on an ERB-rate scale between 50 and 8000 Hz with k& i-th Frequency Channel, D{i)j0..u1

and T the start of the current frame and the number of samples Fig. 4. EC module at i-th frequency channel in EC-DRR system.
per frame respectively:
ITD and azimuth from head-related transfer function data, it is

N Tkl possible to generate an azimuth-ITD transformation based on
CC(m) = Z ZX L)X +m, [f) (2)  table lookup [18]. In previous work [19] we demonstrated using
f=1 t=k

a room simulator for a range of reverberation settings that this
transformation was not significantly affected by source

ITD is estimated by identifying the maximum value of g o

summary cross-correlation:
B. Equalization-cancellation

7 =argmax CC(m) 3) A block diagram of the delay-line EC module is shown in Fig.

" 4. The in-phase position of a target source in one channel with
respect to the other channel is determined by the azimuthal
information derived above. The in-phase signal components in
both channels are assumed to be identical after equalization and
can be cancelled by subtracting one from the other. One of the
two channels is selected as the delay-channel which is
compensated by equalization and delayed prior to cancellation.
Power in the non-delayed channel is computed as

Examples of cross-correlations and their average in both
anechoic and reverberant (745= 0.2 s and 0.7 s) spaces are
shown in Fig. 3. As can be discerned in the right panel of the
figure (T5= 0.7 s), fluctuations resulting from reverberation
contribute to spurious peaks in addition to the peak at the
desired ITD (395 us), while the middle panel with a moderate
reverberation (74= 0.2 s) shows a smaller degree of peak

shifting in the individual frequency bands which has little effect Tkt ,
on the average. S (f)= Z‘X(t,f) ,f=1...N 4)
1=k

It is more convenient to work with azimuth angle rather than
directly with ITDs. Given the relationship observed between



The compensation factor E(f), (5), used by the equalization
block is updated every frame to generate Y,, the compensated
delay-channel signal as (6).

E(f)=(Sy (/) Sy (SN Q)
Y(t,/)) =Y NE) (6)

The delayed channel is equalized with respect to the other
channel to compensate for differences in energy captured
through the two microphones. The cancellation block subtracts
the compensated delayed signal from the non-delayed channel
and accumulates the residual energy for each delay as

r z Xt ) =Y.t j. f)

2
— ,j=0..M -1
752 J ()

SR;(f)=

The estimated direct energy D,(f) represented by the
cancelled component is integrated with those from other
frequency channels in the source power extractor as

D; = 2.D;(f)=2[S: (/)= SR, (/)] ®)

III. RELATIONSHIP BETWEEN EC-DRR AND DISTANCE

Ideally, DRR is a quantity that varies only with source
distance and is independent of source power. The effectiveness
of the proposed EC-DRR system was judged according to how
well DRR reflected actual source distance. A pink noise source
with constant power was used to generate simulated audio
sequences in an 18 m by 18 m by 10 m rectangular space using
a room simulator (see Section VI.A for more details). The
distance between the simulated listener (KEMAR head model
[20]) and the noise source was increased from 2 mto 11 m with
Ts= 0.2 s, where Ty, indicates the time required for sound level
to drop by 60 dB following sound onset. The resulting binaural
signals were processed by the EC-DRR system, resulting in
DRR estimates.

n
T
h

=
[~
8 s i
a0
L
D_ -4
M4 \ . ; ! )
—— total ool
= O — — direct g 1
B, || reverb o~
fg 20 /,,/ .
o o~
[-% ~
10 ﬁ,—' B
-45 -4 35 -3 28 -2 -18 -1

log(distance?)
Fig. 5. DRR calculated by EC-DRR system (upper) and its segregated
components (lower).

Estimated DRR increases with decreasing distance in this
simulated case as shown in the upper part of Fig. 5, suggesting
that the EC-DRR approach does generate a distance related
feature. The relationship between log(DRR) and the inverse
squared distance is approximately linear. The lower part of Fig.
5 displays total energy, estimated direct energy and
corresponding reverberant energy as a function of source
distance. The total and direct energy increased as the distance
decreased. However, reverberant energy was not constant, as
would be expected in a truly diffuse sound field. Instead, the
estimated reverberant component also increased as the distance
decreased, albeit at a slower rate than the estimated direct
energy. This outcome may be due to non-ideal direct signal
extraction in the delay-line structure as well as the limited
number of reflecting surfaces employed in the room simulator.

A. Evaluation using real stimuli

Real test sequences collected from a 9 m by 6 m by 4 m
classroom were processed to compare with the simulated case.
Five sides of the room were hard concrete walls while the upper
part of remaining wall was glazed. No acoustically hard objects
were present in the room during the measurements. Two
different static sources, pink noise and speech, were used.
Sources were placed in front of a pair of Bruel & Kjaer (B & K)
type 4190 1/2-in microphones, placed 10.6 cm apart at two
sides of a manikin head. The signal was preamplified by a B &
K Nexus model 2690 conditioning amplifier prior to
digitization at 44.1 kHz by a M-Audio MobilePre A-D
processor. Eighteen different distances were used from 0.75 m
to 5 m at 0.25 m intervals. Recorded sequences for each
distance were 10 s long and processed in 200 ms frames to
obtain 50 DRR values per distance, and 900 in total.

The DRR estimates are depicted in Fig. 6 with respect to
their distance to the noise or speech source along with their
mean and standard deviation. Both speech and noise show a
clear relationship between source distance and /og(1/DRR) for
distances up to around 2.5 m. Thereafter, DRRs show less
dependence on distance. Noise sources have a narrower DRR
distribution than those of speech sources, and the width of the
distribution narrows with distance. The somewhat wider DRR
distribution for the speech source shows that the output of the
EC-DRR system is not perfectly independent of source power.

B.  Evaluation with synthetic stimuli

To verify that reverberation contributed to the variation of
DRR with distance, the same set of spatial configurations as
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Fig.7. EC-DRRs for simulated pink noise (top) and speech (bottom) data in
anechoic (left) and reverberant (right) spaces.

used in the real room recordings was simulated using a room
simulator based on the image source algorithm (see Section
VI.A) to evaluate the effect of reverberant (T5= 0.7 s) versus
anechoic conditions. As before, pink noise and speech sources
were used, with responses collected at the ears of a simulated
KEMAR head model. 1000 DRR values were collected with
distances ranging from 0.75 m to 5 m, discretised into 18 states.
Although a diffuse sound field cannot be perfectly
approximated due to the computational complexity of
simulating a very large number of imaging sources, a similar
pattern was found to be the real world case. Comparing the top
and bottom rows in Fig. 7, a narrower DRR distribution of the
noise source was found than for the speech source. Fig. 7 also
demonstrates the presence of a systematic DRR effect in the
reverberant space but not in the anechoic space. The
observation of an effect up to 2.5 m in both real and synthetic
cases suggests that the room volume might impose a constraint
upon the effective DRR operating range. DRRs for sources
exceeding 2.5 m show a smaller change with respect to the
increase of distance, and beyond 3 m there was no relationship
with distance.

Bronkhorst and Houtgast [9] reported a similar effect with a 2
m upper boundary in a 65 m® room space (Tg= 0.5 s) and
recognized it as the “auditory horizon” effect identified by
Mershon and colleagues [3, 4]. They accounted for this effect
via a direct energy calculation with a fixed-length integration
window after signal onset. Beyond the auditory horizon, the
calculated direct energy stopped decreasing further as a
function of distance since the real direct energy was considered
small compared to that of the fraction of reverberant energy
included in the integration window.

IV. EC-DRR LIKELIHOOD FUNCTION

Due to the absence of a simple analytic relationship between
DRR and distance, a trainable probabilistic modelling approach
was adopted. Given a DRR observation measured from the

current frame, it is possible to obtain a likelihood function as
shown in schematic form in the right part of Fig. 8, which
estimates listener-source distance based on the previously
collected training data in the same environment. Training data
is represented as a Gaussian mixture (GM) with each
component mapped to a discretized distance value with mean
and variance describing the distribution of log(1/DRR)
measurements around this distance range. In the schematic
example of Fig. 8, the distance space is discretised into 8
segments and forms an eight-component GM used to derive the
distance likelihood function.

With reference to the EC-DRR GM parameters, Gaussian
means u and variances o essentially differ with the
reverberation properties, e.g. reverberation time. Given training
stimuli of a particular room space, GM parameters can be
learned through the EM algorithm [21]. There is no guarantee
that EM will converge to the global maximization unless
appropriate initial conditions are used. Means u and variances
o’ of the EC-DRR GM can be initialized based on the statistics
(Yrange/max/min) OF L training stimuli for a K-element GM as shown
in equations (9) to (13). The distance space is uniformly
discretized into K states. The smallest sampled distance state is
mapped to the first Gaussian element.

Viwin = rr\%nlog(DRR(l)'] ),l=1...L 9)
_ -1
V= Maxlog(DRR(I) ) (10)
7mnge:7max_7/min (11)
M) = Y = Vyange (€5 =D le=1),i=1...K (12)
K—-i+1
)= Y r (13)

The effect is to initialize components at smaller distances
with higher variances, while component means increase
logarithmically with distance. An example is illustrated in the
left panel of Fig. 8.

Values of log(1/DRR) for 12241 virtual sources with various
listener-source distances upto 18 mina 18 m by 18 mby 10 m
reverberant indoor space (7T5= 0.7 s) are plotted with their
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Fig. 8. EC-DRR likelihood function for source distance Bayesian filter. The
left panel shows a Gaussian mixture (GM) of which each component is
mapped to a discrete distance. The right panel shows the probability
distribution over source distances derived from the GM’s correspondence to
the DRR observation noted in the dotted vertical line.
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Fig. 9. DRR estimates derived from stimuli synthesised for a 18 m by 18 m by
10 m space with Tg= 0.7 s. Grey circles are plotted for each of the 12241
DRRs, along with the derived GM parameters.

means and standard deviations in Fig. 9. Again, as observed
with the smaller room described in Section III, room volume
seems to impose a constraint upon the effective DRR operating
range, in this case up to 16 m. The same data set in Fig. 9 is
redrawn in Fig. 10 separated into three sets of azimuth angles
(near frontal, intermediate and lateral), using a greyscale
encoding to further represent azimuth information within each
range. It can be seen that, even at identical distances, stronger
direct energy is yielded for sources in front of the listener
(bottom panel of Fig. 10) relative to lateral sources (top panel).
This figure makes it clear that EC-DRR varies as a function of
both distance and azimuth, with less correspondence between
log(1/DRR) and distance for lateral sources. This effect is
considered as a natural limitation of EC-DRR owing to the
deteriorating azimuthal resolution of the delay-line from frontal
to lateral position [22].

The finding that EC-DRR does not correlate solely with
distance suggests that the accuracy of distance estimation can
be improved by introducing an additional variable, the source
azimuth, in GM modelling. A DRR observation associated with
a particular source distance is often misjudged due to
overlapping Gaussian distributions. One way to minimise the
overlap is to reduce Gaussian variance through the use of
multiple Gaussian distributions to describe equally-distant
sources with varying azimuth. Conditioned on the same
training stimuli, multiple GMs, instead of one, are learned
through the EM algorithm associated with different source
azimuths. At least three GMs (each formulated as illustrated in
the left panel of Fig. 8) were found to sufficiently enhance the
distance inference performance in a pilot study. Upon receipt of
new observations, ITD information helps to determine the
appropriate GM for generating the likelihood function. No
ITD-azimuth mapping is needed since only the delay in
samples from the centre is required.

V. SEQUENTIAL MODELLING FOR TEMPORAL INTEGRATION OF
DISTANCE ESTIMATES

Previous sections presented an algorithm which processes
binaural signals to produce instantaneous estimates of source

161 >60°

source-listener distance [m]

g
N .
o '_?Jv-! g
LAF 4]

1 1 = 2

161 30°~ 60°

L

source-listener distance [m]

source-listener distance [m]

Deg off fmum
median plane

-1’.5 ‘I -0‘.5 0 0.‘5 ‘I
logORR ™)
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distance based on the direct-to-reverberant energy ratio. In
practice, instantaneous estimates can be affected by factors
such as noisy observations, and fail to take account of any prior
information in the case of moving sources. This section
explores the localisation of a single static or moving source by a
static virtual listener with a rotating head, using particle
filtering. Particle filtering is a sampling-based approach to
approximate the continuous distribution of belief about the
system state (here, sound source location) via Monte Carlo
simulation [23]. It allows the modelling of non-linear state
variation and the continuous tracking under temporary
dominance of observation noise. The use of particle filtering for



sound localisation is described in [24, 25]. Details of the PF
architecture used in the current study can be found in [19].

In essence, PF operates by iterating 3 steps: prediction,
update and estimation. Each iteration alters the particles (i.e.
independent hypotheses over the system state) and associated
particle likelihood weights based on a predictive model of the
sound source dynamics with the likelihood transformed by
updated observations. Estimated source location is then
calculated as the weighted mean across all particles. The
implementation of these steps in the current study is described
next.

A. PF prediction stage

If available, a model of source dynamics can be used to
modify particle hypotheses at the PF prediction stage. Since no
prior knowledge of source dynamics is assumed here, source
motion is approximated by a zero-mean Gaussian noise term
which is characterized by an adaptive standard deviation, itself
a function of the corresponding particle likelihood weight. The
observed dynamics in the current study is due to motion of the
target source. Noise terms are applied to relocate source
location hypotheses of all particles in both azimuth and distance
in the PF prediction stage. Specifically, the state variable (i.e.
hypothesised source location in distance y” and azimuth x;,t)

rit

corresponding to particle n at time ¢ is determined by

x; :[xf,l,x;f,[] (14)

where the evolution of source azimuth location x is
formulated as an increment to the previous location X! with
noise term 4" As defined in (15), »" is a zero mean Gaussian
variable with a time-variant standard deviation ol which is a
function of the particle likelihood weight ", and the constant
o

max

zutn :N[Oa(o-zn)z]’ Gzn = (z'wzn—l _1)'Gmax (15)

Since o, ranges between 0 and 1, o, specifies the
maximum value of the standard deviation. The effect is that a
weaker particle is more likely to possess a larger noise term,
encouraging a wider range of exploration of the state space. The
altered location hypotheses are subsequently evaluated with the
observation model introduced next to update particle weights.

A fixed maximum standard deviation, empirically
determined as 15° (O . ¢) and 2 m (o, ) in azimuth and
distance coordinates respectively, was applied across all
particles. Note that the source azimuth is measured relative to
the medial plane, as a function of head orientation. Particle
hypotheses for source azimuth therefore need to be adjusted in
accordance with head rotation.

B. PF update stage

At the PF update stage, cues were fused by multiplying the
likelihood functions associated with the two different
localisation cues, namely ITD and EC-DRR, for updating each
particle’s likelihood weight. The derivation of the EC-DRR
likelihood function according to the current observation and the
pre-collected training data was demonstrated in Section IV. The

cross-correlation function, (2), computed from the input
binaural signal can be directly used as the ITD likelihood
function for source azimuth as in the pseudo-likelihood
approach of Ward et al. [25]. The length of the delay line is M =
65 samples corresponding to 0.75 ms at the sampling frequency
of 44.1 kHz used here. As illustrated in the lower plots of Fig. 3,
the cross-correlation function acts as a weight for each time
delays, which are further mapped into source azimuths through
the transfer function described in Section I1.A.

In parallel to PF, the peaks of the likelihood function produce
instantaneous estimates of source azimuth and distance.
Instantaneous azimuth information is also used to calculate
EC-DRR and select the correct GM for generating the EC-DRR
likelihood function for a given azimuth range, as outlined in
Section IV.

C. PF estimation stage

The mean of the 20% of particles with the highest likelihood
weight was used to generate source location estimates. This
approach minimises the negative effect of weak particles and
results in a degree of resistance to noisy observations. Since the
instantaneous azimuth estimate is made without exploiting the
head rotation cue, substantial localisation degradation is
expected resulting from front-back reversals. This estimation
error, which may be up to ~, is principally on account of the
use of the ITD cue rather than the detrimental effects of noisy
environments. Therefore, the judgements suffering from
front-back reversals occurring in the instantaneous estimation
approach were rectified to the hemispheres used to generate the
input stimuli. In this way, the advantage of sequential
integration provided by PF can be properly assessed.

VI. EVALUATION

A. Stimuli

The “Roomsim” room simulator [26] was used to generate
binaural stimuli for various listener-source configurations and
reverberation conditions. Non-individual HRTFs recorded with
a KEMAR dummy head [20] with inter-ear distance of 0.152 m
were used to generate binaural room impulse responses based
on the image method [27]. Stimuli were generated at a sampling
rate of 44.1 kHz. Temperature and relative humidity were set at
20° C and 40% respectively during the simulations. The virtual
room was an 18 m by 18 m by 10 m gym space. This was
generated in two reverberant conditions with T5= 0.2 s and 0.7
S.

Training and test stimuli were generated by convolving a
speech or pink noise source with the binaural room impulse
responses. The simulated listener was static and placed in the
south-west corner of the room in order to permit the use of quite
large listener-source distances, all of which greater than 2 m, at
no near-field distance cues are available [2], allowing a focus
on the range where DRR cues are expected to dominate
distance perception.

Variation of listener-source geometry at each time frame
simulated motion of the sound source. The sound source was
either static, moved linearly, or exhibited more complex motion
which we refer to here as “zigzag motion”. Each simulation run
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Fig. 11. Synthetic sound source dynamics. Virtual binaural stimuli were
generated by a room simulator given the spatial attributes of the listener and
the source. The position of the virtual listener as well as examples of linear and
zigzag motion are shown.

consisted of 60 time steps of 0.75 s each. The linear source
moved towards the SE corner of the room at a constant velocity
of 0.14 ms”. The zigzag source moved in a northeasterly

direction but varied in velocity from stationary to 0.42 ms™. Fig.

11 shows the source trajectory of each of the three cases.

B. Localisation Performance

Localisation performance was measured using (i) the average
Euclidean distance (AED) between the true and estimated
source location; (ii) the unsigned estimation error in azimuth;
and (iii) the unsigned estimation error in distance. The unsigned
error refers to the absolute value of the difference between the
estimate and the ground truth. To avoid undue influence from
initial conditions, since particle hypotheses were set randomly,
performance measures are the averages over frames 15-60 of
the simulation. Frame 15 was chosen based on an offline
analysis of the convergence of particle hypotheses in a
development set using a frame convergence criterion described
in [19]. Evaluation in the sequential case (i.e. using particle
filtering) was based on arithmetic means over 100 simulations.
By contrast, the AED of the non-sequential algorithm is
constant between simulations.

Static auditory cues, DRR and ITD, were used for estimating
source distance and azimuth respectively across six conditions
consisting of two reverberant spaces and three source motions.
Fig. 12 presents results for the non-sequential (DRR+ITD) and
the sequential algorithms (PF+DRR+ITD). Particle filtering led
to a large improvement in localisation performance in virtually
all conditions. For static and linear moving sources, the
estimation error increased as the level of reverberation
increased, whereas motion complexity resulted in poorer
distance estimation for zigzag moving sources with mild
reverberation.

1) Comparison to human listener performance

Human listener localisation performance in azimuth and
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Fig. 12. Localisation performance comparison of sequential (PF+DRR+ITD)
and non-sequential (DRR+ITD) algorithms as a function of different source
motions and reverberation levels. Values above bars are mean AEDs (top
panel), averaged unsigned estimation error of distance (middle panel) and
azimuth (bottom panel) over 100 simulations of 45 s each. The rightmost bars
show averages over the 6 conditions. Error bars denote 95% confidence
intervals.

distance was tested in [1] using a similar experimental
configuration as in the current study. Fig. 13 shows listener
performance in localising a static sound source when the
listener is placed in the center of a 18 m by 18 m by 10 m
rectangular virtual space with Ts= 0.7 s, alongside estimates
from the model for the same stimuli.

While listeners and the model resulted in very similar overall
average Euclidean distance estimates, human listeners were
less able to estimate azimuth but outperformed the model in
distance.

An alternative measure of human distance estimation is
provided by Zahorik [8], who proposed a compressive power
function relationship, D,=k-D,", between the perceived distance
D, and the true distance D,. Based on 84 data sets, Zahorik et al.
[2] found a best fit at a=0.54 and £=1.32. This fit is shown in
Fig. 14, although it should not be taken too literally since it is an
average across a large range of conditions, only some of which
are compatible with the configuration used in the current study.
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Fig. 13. Performance comparison between human listeners (from [1]) and the
PF-based model of source localization in azimuth and distance. The left y-axis
corresponds to azimuth errors while the right y-axis serves for both distance
and average Euclidean distance.

Given the distance estimates obtained in our PF method, a and &
were fitted 0.65 and 2.02 (the dotted line in Fig. 14). Note that
EC-DRR can only function effectively in far-field (source
distance beyond 2 m), while Zahorik’s function is derived from
multiple studies which used both near- and far-field stimuli.
From the figure, distance underestimation in our model is not as
large as predicted by Zahorik’s curve, probably because the
auditory horizon effect of EC-DRR is present at a rather distant
region (see Fig. 9).

2) Effect of reverberation and target motion on EC-DRR

A longer reverberation tail is considered helpful in distance
perception by enhancing later-arriving reflections which
characterise the diffuse sound field. The room size controls the
delays of early strong reflections, while the absorptive
properties of reflected surfaces determine their magnitudes. For
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Fig. 14. Estimated distance as a compressive power function of stimulus
distance. The stimulus-estimate relationship of outputs from PF runs for the
three different target motions are presented. The black solid line (D.=Dj) is the
ideal relationship. Fitted power function curves are generated for data in [2]
(De=1.32-Dx0'54, squares) and in this paper (De:2.02'Dx0'(’5, diamonds).

a fixed room size, a longer reverberation tail contributes to the
existence of a diffuse sound field, offering better conditions for
DRR cue utilization. Mershon et al. [5] reported that more
accurate distance judgments were found for a more reverberant
space, given time to reach sufficient familiarity with the room
acoustics. A similar effect was also found in Bronkhorst and
Houtgast [9], who discovered a closer “auditory horizon” for a
space with less reverberation (in their case, with Tg= 0.1 s vs.
0.5 s). As a result, distance underestimation was less frequent
when the room reverberation was higher compared to the less
reverberant case.

The distance estimation results of the current study were
analysed using a two-way repeated-measures ANOVA.
Reverberation time and source motion were treated as
between-group factors so as to study the effect of reverberation
level and auditory horizon on estimation performance. The
interaction of the two between-group factors, source motion x
Ts9, was significant [F(2,594) = 231.4, p < 0.001]. Post hoc
analysis, using Tukey’s HSD, revealed that judgements for
zigzag moving sources were significantly less accurate than
those for the other two (p < 0.001). The performance for 75—
0.2 s was better than Ts= 0.7 s for static and linear moving
sources (p < 0.001), while the reverse was true for the zigzag
moving sources (p < 0.001). We return to this conflicting
finding below after examining the differences between source
motions.

The simulated sources with zigzag motion have a wider range
of stimulus distance variation than the other source motions, as
shown in Fig. 15. The listener-source distance was a constant
(9.22 m) for the static sources. Stimulus distance variations of
up to 1.55 and 16.9 m were possible for the linear moving
sources and the zigzag moving sources respectively. The
possible EC-DRR distribution of zigzag sources is indicated by
the region of the larger box in Fig. 16, whereas the smaller box
contains the other two motions. Thus, a more limited range of
EC-DRR is seen in the stimuli of static and linear sources
(0~1.25 in the dimensionless horizontal axis) when compared
to that of zigzag sources (-0.25~1.5). The range of the training
stimuli for the 7= 0.7 s condition is -1.25 to 1.5. The heights
of the boxes in Fig. 16 are determined by corresponding curves
in Fig. 15.

Fig 16 displays the GM priors for the EC-DRR likelihood
function in the low and high reverberation conditions. These
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Fig. 15. Listener-source distance variations for three simulated source
motions. The static sources were 9.22 m away from the listener, while varying
distances from 9.19 to 10.74 m and from 5 to 18.69 m were specified for the
linear moving sources and the zigzag moving sources respectively.
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Fig. 16. The operating regions of EC-DRR likelihood function (7= 0.7 s) for
stimuli corresponding to the three simulated source motions.

priors were learned from the training stimuli synthesised for the
same gym space. As shown, the greater reverberant energy in
the Ts~= 0.7 s condition leads to larger values of log-inverse
EC-DRR. Continuously curves are formed by connecting the
Gaussian means. For T5= 0.7 s, log-inverse EC-DRR increases
as the source distance increases. However, for T5=0.2 s, only a
slight increase occurs for distances beyond 12 m along while
the variance continues to increase. This may result from the
“auditory horizon” phenomenon. The auditory horizon of the
low reverberation condition is indicated under the box in Fig.
17, indicating the operating range applied to zigzag sources.
Consequently, it may explain the resulting less accurate
distance estimations in low reverberation for the increasing
number of sound sources falling beyond the auditory horizon.
By contrast, by operating in the listener-source distance region
away from the auditory horizon effect, distance estimates for
the static and linear sources became more accurate in low
reverberation. This suggests that energy fluctuations from

Tso:0.7§

auditory
horizon -

listener-source distance [m]

0 0,51
log(DRR™)
Fig. 17. Two Gaussian mixtures for generating EC-DRR likelihood function
associated with T5=0.2 s (grey) and 0.7 s (black).
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reverberation are more influential when the auditory horizon
effect is absent. The measurements of EC-DRR were disrupted
more severely in high reverberation and led to less accurate
location estimates.

3) Benefit of sequential modelling

As shown in the top panel of Fig. 12, the localisation error of
PF can be reduced to about half of that for approaches which do
not involve PF. The effect of sequential modelling on AED was
analysed using a one-way repeated-measures ANOVA with
two within-group factors (source motion x Tj). The sequential
(PF) algorithm was significantly superior to the non-sequential
(non-PF) algorithm [F(1,198) = 956.2, p < 0.001]. Highly
correlated performance distributions are found for the mean
AED (the top panel of Fig. 12) and the distance error (the
middle panel) except for the condition of non-PF under zigzag
motion.

Simulation results for both PF and non-PF algorithms at T5=
0.2 s for static sources are drawn as a function of time frame in
Fig. 18. Static sources only are presented here so as to examine
the effects of sequential modelling independently from effects
of source motion. From the upper panel, the distance errors of
the non-PF approach show little temporal correlation and range
roughly from 1 to 9 m for 9.22 m distant stimuli. On the
contrary, PF demonstrates a smoothly decreasing distance error.
This decrease stops when it reaches the best EC-DRR can offer,
i.e. 1 m error from the figures of non-PF.

Considering the azimuth component, spurious peaks are
present in the ITD likelihood function which may disrupt
non-PF azimuth localisation. By contrast, the PF algorithm is
relatively insensitive to disturbance caused by reverberation.

—&— DRRHTD
PF+DRR+TD

Unsigned distance error [m]

N
T

Unsigned azimuth error [deg]

Fig. 18. The running unsigned error of distance (upper) and azimuth (lower)
for the static sources with 75= 0.2 s. Each symbol represents an average of
over 100 simulations for the PF methods. The non-PF methods show more
variation in estimates from frame to frame than the PF methods.



PF particles close to the true source position are constantly
supported by that part of the likelihood function, which may
produce a lower weighing due to the existence of spurious
peaks. This effect is depicted in the lower panel of Fig. 18. A
rather smoother azimuth error is found for PF than non-PF
despite the fact that the latter has been improved by correcting
for front-back reversals. It seems likely that the sequential
approach embodied in the PF framework provides some
robustness to occasional observation errors, leading to more
stable performance as a result of temporal cue integration.

It is generally found across conditions that the PF-based
estimate for the azimuth component exhibits a faster
convergence (sometimes showing convergence as early as the
second frame, as exemplified in Fig. 18) than that for distance.
This suggests that EC-DRR may be too sensitive to
instantaneous energy fluctuations to be able to provide as
precise a localisation estimate as ITD.

VII. DISCUSSION

The current study describes a system to extract useful
information for determining sound source distance from
reverberant binaural input. The direct-to-reverberant energy
ratio was measured by assuming direct and reverberant signals
can be separated with their differential incoming directions. A
binaural equalization-cancellation (EC) technique was
proposed to separate energy belonging to each lateral direction
corresponding to a resolution of one delayed sample in a
delay-line structure. The EC-based direct-to-reverberant energy
ratio (EC-DRR) was calculated by dividing the energy aligned
with the target location over the energy sum of the remaining
directions. A cross-correlation based azimuth estimator was
used to determine the target location.

During the evaluation of its potential as a distance cue for
both simulated and real data, estimated EC-DRRs with
substantially varying values even from a static sound source
were commonly observed due to energy fluctuations of both
target and background. Their correlation with source distance
was only be observed in the longer term, i.e. under sequential
examination over a few seconds.

An EC-DRR based likelihood function was developed in
combination with interaural time differences to update

estimates of sound source location in both distance and azimuth.

The likelihood function was derived based on a given
reverberation-related prior as a function of source azimuth, in
the form of a set of Gaussian mixtures, uniquely determined for
each room. Only the information of azimuth offset from the
median  plane is needed when integrating the
reverberation-related prior. The latter can be derived as part of
the process of learning the acoustics of the room. Our approach
is hence insensitive to front-back reversals and consistent with
Simpson and Stanton’s finding [28] on the irrelevancy of head
movements to distance perception.

The framework of particle filtering (PF) integrates evidence
over time to reduce the distorting effects of errors associated
with instantaneous observations. The use of PF nearly halves
the error in localisation compared to instantaneous estimates.
Further, PF smoothes out the variation in reverberation effects
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caused by the changing geometry between room surfaces and
target source (or listener). PF also allows the learning of room
acoustics (here, in terms of GM prior) independent from the
positions of sound source and listener, and may offer a less
complex alternative to the distance learning problem than
presented in [12].

The auditory horizon effect was observed in both real and
synthetic stimuli as a function of room reflection properties and
probably led to the under-estimation of distance found over the
upper part of the distance range (e.g. see Fig. 14). The auditory
horizon is effectively an upper limit on perceived distance and
may result from the mechanism that human listeners use to
separate direct and reverberant energy components [9]. In the
scheme used in the current study to separate direct energy from
reverberation via a delay-line structure, an auditory horizon
may be established if the direct signal is too weak (being
sufficiently far away from the listener) to dominate the energy
arriving from the target source azimuth.

The performance drop compared to real listeners suggests
that the EC-DRR approach to distance estimation does not fully
exploit the DRR cue. One weakness of the evaluated distance
estimator is that EC-DRR was designed to operate principally
in the non-near-field range i.e. for listener-source distances of
greater than 2 m. It is known that other cues, such as interaural
differences, are implicated in near-field distance estimation [2].

The evaluation used synthetic stimuli which reproduced the
diffuse field with limited fidelity, perhaps resulting in a
substantial amount of distance-dependent but non-direct energy.
Further, the acoustic properties of synthetic stimuli were not
completely unknown to the computational models during
simulation: reverberation time served as a prior for configuring
associated likelihood function parameters. Further work using
both real stimuli and methods to learn reverberation time is
required to overcome these limitations. The analytic function
describing the relationship between DRR and listener-source
distance can also be improved to reduce GM parameters by
simplifying the learning of room reverberation.

A further development of the equalization-cancellation
technique for identifying multiple source energies in the
delay-line structure may be necessary to improve EC-DRR
accuracy by removing strong early reverberation or interfering
sources.

VIII. CONCLUSIONS

The direct-to-reverberant energy ratio has long been
considered as an absolute auditory cue in human distance
perception. Traditional methods for extracting this energy ratio
are based on the post-processing of room impulse response,
whose estimation is computationally expensive and inaccurate
in practice. An alternative, which was employed here, is to
estimate the energy arriving from the direction of the direct
source, under the assumption that reverberant components
result in a spatially-diffuse sound field. We proposed a binaural
equalization-cancellation technique to calculate this energy
ratio (EC-DRR) by locating the direct energy in a delay-line
structure.

Simulations using synthetic stimuli indicated that the
degrading effect of reverberation could be effectively mitigated



by sequential cue integration for both distance and azimuth
estimations. The localisation error of the PF approach is in this
way reduced to 47% of that for instantaneous estimation. The
advantage of particle filtering was found to be mainly
attributable to better localisation in distance, suggesting the
importance of sequential integration for auditory cues based on
energy measurements.

The performance of source distance estimation using DRR
can be accounted for largely in terms of a competition between
auditory horizon and energy fluctuation effects. As found for
the sources with non-linear motions, better distance localisation
performance for PF was obtained in the more reverberant space
with a farther auditory horizon. Although energy fluctuations
increased with the level of reverberation, their detrimental
effect was smoothed by PF cue integration over time.
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