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Abstract—One of the principal cues believed to be used by 

listeners to estimate the distance to a sound source is the ratio of 
energies along the direct and indirect paths to the receiver. In 
essence, this “direct-to-reverberant” energy ratio reveals the 
absolute distance component of the direct energy by normalising 
by what is assumed to be distance-independent reverberant 
energy. Earlier approaches to direct-to-reverberant energy ratio 
calculation made use of the estimated room impulse response, but 
these techniques are computationally expensive and inaccurate in 
practice. This paper proposes and evaluates an alternative 
approach which uses binaural signals to segregate energy arriving 
from the estimated direction of the direct source from that 
arriving from other directions, employing a novel binaural 
equalization-cancellation technique. The system is integrated with 
a probabilistic inference framework, particle filtering, to handle 
the nonstationarity of energy-based measurements. The algorithm 
is capable of using reverberation to estimate source distance in 
large rooms with errors of less than 1 m for static sources and 
1.5-3.5 m for sources with varying degrees of motion complexity.  
Model performance can be accounted for largely in terms of a 
competition between auditory horizon and source energy 
fluctuation effects. 
 

Index Terms—Acoustic distance measurement, direct-to- 
reverberant energy ratio, particle filtering, binaural sound source 
localization. 
 

I. INTRODUCTION 
UDGEMENT of ego-centric distance to nearby objects is an 
important human sensory capability and is at times wholly - 

and critically - dependent on auditory input. A cyclist uses 
engine noise from motor vehicles to estimate distance in order 
to pick up speed in time and prepare for evasive action. A 
runner listens to the footsteps and breathing of his or her 
opponents to evaluate whether their lead in the race is adequate 
enough. The approach of a mosquito person at night can be 
detected through the sound made by its vibrating wings. 
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Absolute sound energy at the receiver is a function of 
intrinsic source energy and source distance, both of which may 
be time-varying, precluding the use of energy alone as a cue to 
source-listener distance. However, the combination of energy 
received along the direct source-listener path with energy 
arriving following reflections has potential as a means of 
estimating source distance. The “direct-to-reverberant” energy 
ratio (DRR) has been suggested as part of the mechanism for 
source distance judgements in listeners [3-6]. Distance 
judgments are more accurate in a reverberant space than in an 
anechoic space, with small inter-test variation in judgements in 
the same environment [3]. Listeners may use reverberation as 
an absolute distance cue given that accurate distance judgments 
were obtained at first stimulus presentation [4]. Zahorik [7] 
suggested that the principal role of the DRR cue was to provide 
absolute distance information rather than support fine distance 
discriminations and was poor as a relative cue. Zahorik also 
suggested that DRR was perceptually more salient than an 
intensity cue, especially in a situation where prior knowledge of 
natural speech level could not be used due to other more 
variable and complex acoustic information in the surrounding 
environment [8]. 

Attempts have been made to exploit the DRR cue both 
monaurally and binaurally. Bronkhorst and Houtgast [9] 
proposed a computational model to predict human distance 
judgement in a controlled condition where the DRR cue is 
dominant. Their model demonstrated accurate prediction of 
subjects’ distance responses based on prior knowledge of 
certain acoustical properties of the environment (room volume, 
reverberation time and source directivity) using monaural data. 
Relying on blind identification of the room impulse response 
from the monaural signal, Larsen and colleagues [10] 
developed a technique to compute DRR based on certain 
assumed room acoustics parameters, such as the duration of 
direct sound. They found that source distance could also be 
determined as an intermediate output and arrived at 
underestimated judgments for sources at moderate and large 
distances (further away than 2 m), similar to the pattern found 
with human listeners. Other models based on binaural signals 
utilised either prior knowledge of the environment (e.g. room 
impulse responses [11]) or extensive spectral training data [12] 
to formulate source distance inference using the DRR concept. 
While these studies attempted to demonstrate that distance 
inference can be further improved with binaural input, neither 
study, surprisingly, emphasised the role of directional 
information. 
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sound localisation is described in [24, 25]. Details of the PF 
architecture used in the current study can be found in [19].  

In essence, PF operates by iterating 3 steps: prediction, 
update and estimation. Each iteration alters the particles (i.e. 
independent hypotheses over the system state) and associated 
particle likelihood weights based on a predictive model of the 
sound source dynamics with the likelihood transformed by 
updated observations. Estimated source location is then 
calculated as the weighted mean across all particles. The 
implementation of these steps in the current study is described 
next. 

A. PF prediction stage 
If available, a model of source dynamics can be used to 

modify particle hypotheses at the PF prediction stage. Since no 
prior knowledge of source dynamics is assumed here, source 
motion is approximated by a zero-mean Gaussian noise term 
which is characterized by an adaptive standard deviation, itself 
a function of the corresponding particle likelihood weight. The 
observed dynamics in the current study is due to motion of the 
target source. Noise terms are applied to relocate source 
location hypotheses of all particles in both azimuth and distance 
in the PF prediction stage. Specifically, the state variable (i.e. 
hypothesised source location in distance n

trx ,
and azimuth n

tx ,φ
) 

corresponding to particle n at time t is determined by 
 

],[ ,,
n

t
n

tr
n
t xxx φ=  (14)

 
where the evolution of source azimuth location n

tx  is 
formulated as an increment to the previous location n

tx 1−
 with 

noise term n
tμ  As defined in (15), n

tμ  is a zero mean Gaussian 
variable with a time-variant standard deviation n

tσ , which is a 
function of the particle likelihood weight n

t 1−ω  and the constant 
maxσ . 

 
max1

2 )12(],)(,0[ σωσσμ ⋅−⋅== −
n
t

n
t

n
t

n
t N  (15)

 
Since n

t 1−ω  ranges between 0 and 1, maxσ  specifies the 
maximum value of the standard deviation. The effect is that a 
weaker particle is more likely to possess a larger noise term, 
encouraging a wider range of exploration of the state space. The 
altered location hypotheses are subsequently evaluated with the 
observation model introduced next to update particle weights. 

A fixed maximum standard deviation, empirically 
determined as 15o ( φσ max, ) and 2 m ( rmax,σ ) in azimuth and 
distance coordinates respectively, was applied across all 
particles. Note that the source azimuth is measured relative to 
the medial plane, as a function of head orientation. Particle 
hypotheses for source azimuth therefore need to be adjusted in 
accordance with head rotation. 

B. PF update stage 
At the PF update stage, cues were fused by multiplying the 

likelihood functions associated with the two different 
localisation cues, namely ITD and EC-DRR, for updating each 
particle’s likelihood weight. The derivation of the EC-DRR 
likelihood function according to the current observation and the 
pre-collected training data was demonstrated in Section IV. The 

cross-correlation function, (2), computed from the input 
binaural signal can be directly used as the ITD likelihood 
function for source azimuth as in the pseudo-likelihood 
approach of Ward et al. [25]. The length of the delay line is M = 
65 samples corresponding to 0.75 ms at the sampling frequency 
of 44.1 kHz used here. As illustrated in the lower plots of Fig. 3, 
the cross-correlation function acts as a weight for each time 
delays, which are further mapped into source azimuths through 
the transfer function described in Section II.A. 

In parallel to PF, the peaks of the likelihood function produce 
instantaneous estimates of source azimuth and distance. 
Instantaneous azimuth information is also used to calculate 
EC-DRR and select the correct GM for generating the EC-DRR 
likelihood function for a given azimuth range, as outlined in 
Section IV.  

C. PF estimation stage 
The mean of the 20% of particles with the highest likelihood 

weight was used to generate source location estimates. This 
approach minimises the negative effect of weak particles and 
results in a degree of resistance to noisy observations. Since the 
instantaneous azimuth estimate is made without exploiting the 
head rotation cue, substantial localisation degradation is 
expected resulting from front-back reversals. This estimation 
error, which may be up to π , is principally on account of the 
use of the ITD cue rather than the detrimental effects of noisy 
environments. Therefore, the judgements suffering from 
front-back reversals occurring in the instantaneous estimation 
approach were rectified to the hemispheres used to generate the 
input stimuli. In this way, the advantage of sequential 
integration provided by PF can be properly assessed. 

VI. EVALUATION 

A. Stimuli 

The “Roomsim” room simulator [26] was used to generate 
binaural stimuli for various listener-source configurations and 
reverberation conditions. Non-individual HRTFs recorded with 
a KEMAR dummy head [20] with inter-ear distance of 0.152 m 
were used to generate binaural room impulse responses based 
on the image method [27]. Stimuli were generated at a sampling 
rate of 44.1 kHz. Temperature and relative humidity were set at 
20o C and 40% respectively during the simulations. The virtual 
room was an 18 m by 18 m by 10 m gym space. This was 
generated in two reverberant conditions with T60= 0.2 s and 0.7 
s. 

Training and test stimuli were generated by convolving a 
speech or pink noise source with the binaural room impulse 
responses. The simulated listener was static and placed in the 
south-west corner of the room in order to permit the use of quite 
large listener-source distances, all of which greater than 2 m, at 
no near-field distance cues are available [2], allowing a focus 
on the range where DRR cues are expected to dominate 
distance perception. 

Variation of listener-source geometry at each time frame 
simulated motion of the sound source. The sound source was 
either static, moved linearly, or exhibited more complex motion 
which we refer to here as “zigzag motion”. Each simulation run 
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PF particles close to the true source position are constantly 
supported by that part of the likelihood function, which may 
produce a lower weighing due to the existence of spurious 
peaks. This effect is depicted in the lower panel of Fig. 18. A 
rather smoother azimuth error is found for PF than non-PF 
despite the fact that the latter has been improved by correcting 
for front-back reversals. It seems likely that the sequential 
approach embodied in the PF framework provides some 
robustness to occasional observation errors, leading to more 
stable performance as a result of temporal cue integration. 

It is generally found across conditions that the PF-based 
estimate for the azimuth component exhibits a faster 
convergence (sometimes showing convergence as early as the 
second frame, as exemplified in Fig. 18) than that for distance. 
This suggests that EC-DRR may be too sensitive to 
instantaneous energy fluctuations to be able to provide as 
precise a localisation estimate as ITD. 
 

VII. DISCUSSION 

The current study describes a system to extract useful 
information for determining sound source distance from 
reverberant binaural input. The direct-to-reverberant energy 
ratio was measured by assuming direct and reverberant signals 
can be separated with their differential incoming directions. A 
binaural equalization-cancellation (EC) technique was 
proposed to separate energy belonging to each lateral direction 
corresponding to a resolution of one delayed sample in a 
delay-line structure. The EC-based direct-to-reverberant energy 
ratio (EC-DRR) was calculated by dividing the energy aligned 
with the target location over the energy sum of the remaining 
directions. A cross-correlation based azimuth estimator was 
used to determine the target location. 

During the evaluation of its potential as a distance cue for 
both simulated and real data, estimated EC-DRRs with 
substantially varying values even from a static sound source 
were commonly observed due to energy fluctuations of both 
target and background. Their correlation with source distance 
was only be observed in the longer term, i.e. under sequential 
examination over a few seconds. 

An EC-DRR based likelihood function was developed in 
combination with interaural time differences to update 
estimates of sound source location in both distance and azimuth. 
The likelihood function was derived based on a given 
reverberation-related prior as a function of source azimuth, in 
the form of a set of Gaussian mixtures, uniquely determined for 
each room. Only the information of azimuth offset from the 
median plane is needed when integrating the 
reverberation-related prior. The latter can be derived as part of 
the process of learning the acoustics of the room. Our approach 
is hence insensitive to front-back reversals and consistent with 
Simpson and Stanton’s finding [28] on the irrelevancy of head 
movements to distance perception. 

The framework of particle filtering (PF) integrates evidence 
over time to reduce the distorting effects of errors associated 
with instantaneous observations. The use of PF nearly halves 
the error in localisation compared to instantaneous estimates. 
Further, PF smoothes out the variation in reverberation effects 

caused by the changing geometry between room surfaces and 
target source (or listener). PF also allows the learning of room 
acoustics (here, in terms of  GM prior) independent from the 
positions of sound source and listener, and may offer a less 
complex alternative to the distance learning problem than 
presented in [12].  

The auditory horizon effect was observed in both real and 
synthetic stimuli as a function of room reflection properties and 
probably led to the under-estimation of distance found over the 
upper part of the distance range (e.g. see Fig. 14). The auditory 
horizon is effectively an upper limit on perceived distance and 
may result from the mechanism that human listeners use to 
separate direct and reverberant energy components [9]. In the 
scheme used in the current study to separate direct energy from 
reverberation via a delay-line structure, an auditory horizon 
may be established if the direct signal is too weak (being 
sufficiently far away from the listener) to dominate the energy 
arriving from the target source azimuth. 

The performance drop compared to real listeners suggests 
that the EC-DRR approach to distance estimation does not fully 
exploit the DRR cue. One weakness of the evaluated distance 
estimator is that EC-DRR was designed to operate principally 
in the non-near-field range i.e. for listener-source distances of 
greater than 2 m. It is known that other cues, such as interaural 
differences, are implicated in near-field distance estimation [2]. 

The evaluation used synthetic stimuli which reproduced the 
diffuse field with limited fidelity, perhaps resulting in a 
substantial amount of distance-dependent but non-direct energy. 
Further, the acoustic properties of synthetic stimuli were not 
completely unknown to the computational models during 
simulation: reverberation time served as a prior for configuring 
associated likelihood function parameters. Further work using 
both real stimuli and methods to learn reverberation time is 
required to overcome these limitations. The analytic function 
describing the relationship between DRR and listener-source 
distance can also be improved to reduce GM parameters by 
simplifying the learning of room reverberation. 

A further development of the equalization-cancellation 
technique for identifying multiple source energies in the 
delay-line structure may be necessary to improve EC-DRR 
accuracy by removing strong early reverberation or interfering 
sources. 
 

VIII. CONCLUSIONS 
The direct-to-reverberant energy ratio has long been 

considered as an absolute auditory cue in human distance 
perception. Traditional methods for extracting this energy ratio 
are based on the post-processing of room impulse response, 
whose estimation is computationally expensive and inaccurate 
in practice. An alternative, which was employed here, is to 
estimate the energy arriving from the direction of the direct 
source, under the assumption that reverberant components 
result in a spatially-diffuse sound field. We proposed a binaural 
equalization-cancellation technique to calculate this energy 
ratio (EC-DRR) by locating the direct energy in a delay-line 
structure. 

Simulations using synthetic stimuli indicated that the 
degrading effect of reverberation could be effectively mitigated 
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by sequential cue integration for both distance and azimuth 
estimations. The localisation error of the PF approach is in this 
way reduced to 47% of that for instantaneous estimation. The 
advantage of particle filtering was found to be mainly 
attributable to better localisation in distance, suggesting the 
importance of sequential integration for auditory cues based on 
energy measurements. 

The performance of source distance estimation using DRR 
can be accounted for largely in terms of a competition between 
auditory horizon and energy fluctuation effects. As found for 
the sources with non-linear motions, better distance localisation 
performance for PF was obtained in the more reverberant space 
with a farther auditory horizon. Although energy fluctuations 
increased with the level of reverberation, their detrimental 
effect was smoothed by PF cue integration over time. 
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