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Abstract—The time delay of arrival (TDOA) between múltiple 
microphones has been used since 2006 as a source of information 
(localization) to complement the spectral features for speaker di­
arization. In this paper, we propose a new localization feature, the 
intensity channel contribution (ICC) based on the relative energy 
of the signal arriving at each channel compared to the sum of the 
energy of all the channels. We have demonstrated that by joining 
the ICC features and the TDOA features, the robustness of the lo­
calization features is improved and that the diarization error rate 
(DER) of the complete system (using localization and spectral fea­
tures) has been reduced. By using this new localization feature, we 
have been able to achieve a 5.2% DER relative improvement in our 
development data, a 3.6% DER relative improvement in the RT07 
evaluation data and a 7.9% DER relative improvement in the last 
year's RT09 evaluation data. 

Index Terms—Intensity channel contribution (ICC), speaker di­
arization, speaker segmentation, speech processing in meetings. 

I. INTRODUCTION 

S PEAKER diarization is the task of identifying the number 
of participants in a meeting and creating a list of speech 

time intervals for each participant. Speaker diarization is useful 
as a flrst step in the speech transcription of meetings in which 
each spoken sentence has to be assigned to a deflned speaker. It 
can also be used for speaker adaptation in speech recognition. 

In some speech research áreas, like automatic language iden-
tiflcation, automatic speaker identiflcation and veriflcation or 
text-to-speech synthesis, state-of-the-art algorithms are evalu-
ated over a common framework, in order to learn the goodness 
and weakness of each algorithm in comparison with the others. 
These evaluations [l]-[3], have contributed to a rapid improve­
ment in the technology in those áreas. In case of speaker diariza­
tion, NIST evaluations for meetings started in 2002 and have 
been held after that in 2004, 2005, 2006, 2007, and 2009 [4]. 

In [5], a detailed overview of automatic speaker diarization 
systems is given. Common speaker diarization systems consist 
of fhree main blocks: the voice activity detection module (VAD), 

the feature extraction module and the segmentation and clus-
tering module. The accuracy of the VAD module is essential 
for the purity of the speech frames that would be used by the 
clustering module. VAD algorithms differ, depending on the 
type of non-speech sounds that appear next to the speech or 
mixed with it, from Gaussian mixture models (GMMs) to Lapla-
cian and gamma probability density functions [6]. If speech is 
mixed with music, some authors have used extra features as the 
modulation energy [7]. Other authors have detected speech by 
using integrated algorithms that treat VAD and speaker diariza­
tion simultaneously [8]. Some speaker diarization systems use 
bottom-up agglomerative clustering [9], [10], while others use a 
top-down universal background model (UBM) as a starting point 
to apply iteratively adaptation techniques to build the speaker 
models [11]. Clustering algorithms are typically based on the 
Bayesian information criterion (BIC) distance [12] although 
recent studies have also presented great improvements using 
other alternatives based on the t-test distance [13]. Most systems 
extract spectral features related to the spectral envelope such 
as the Mel frequency cepstral coefflcients (MFCCs) [9], [14], 
although some studies have presented improvements with the 
fusión of spectral envelope and pitch features [15]. In [16], an 
exhaustive analysis of the goodness of prosodic and long-term 
features in speaker diarization is presented. 

In speaker diarization with múltiple distant microphones 
(MDMs), redundant information is available (one signal per mi-
crophone) in comparison with single distant microphone (SDM) 
diarization. Commonly, all speech signáis are combined into 
one [17], from which some acoustic features (such as spectral or 
prosodic features) are extracted. The other source of information 
used in MDM scenarios is the information related to speaker lo­
calization [18], such as the time delay of arrival (TDOA) features 
[19]. TDOA features permit short-term speaker segmentation 
but do not provide any speaker identity information. On the other 
hand, acoustic features provide long-term speaker identity but 
require minimum durations to build reliable acoustic models. In 
[20], it was demonstrated that TDOA between channels could be 
combined with spectral features to obtain improved performance 
over a base system that only used spectral features. This TDOA 
information combined with theMFCC information has been used 
by all systems in the latest Rich Transcription evaluation [4]. 

The shortcomings of TDOA methods are because of distant 
microphones. There are noises and reverberation in the record-
ings and the results are not free from errors. In speaker diariza­
tion in MDM scenarios, not only the improvement of the VAD 
module or the segmentation and pattern classiflcation modules 
is necessary. It is also important to search for new features that 
convey additional information to improve system performance. 
In this paper, we propose a new source of information related 



to speaker localization that complements current TDOA fea-
tures and by extensión the MFCC features. We propose to use 
the information on intensity channel contribution (ICC) to carry 
out speaker diarization by itself and combined with current Sys­
tems. We demónstrate that by using this new feature, previous 
state-of-the-art systems can be improved. 

The paper is organized as follows. Section II presents the 
datábase used and the experiments carried out, Section III 
presents the system architecture and the mechanisms for 
obtaining the new features, Section IV describes the system 
setup, Section V presents experiment results, Section VI is the 
discussion, and Section VII ends with the conclusión. 

II. CORPORA 

In this paper, a subset of the NIST Rich Transcription of 
2002-2005 and RT06 has been used for development and RT-07 
has been used as the test set. Additionally, results are given for 
RT-09 [4]. 

A subset of RT02, RT04, and RT05 [named develOó in [21] 
and RT-06 together (named all06 from now on)] is made up 
of more than 13 hours of audio data divided into 20 different 
meetings, and RT-07 comprises more than flve hours of audio 
data divided into eight different meetings. 

The segments (UEM parts) deflned by NIST for the offlcial 
evaluations have been used to measure the performance of 
the systems described in this work. These parts consist of 
16793.56 seconds (1679356 frames) for all06 and 10819 
seconds (1981900 frames) for RT-07 and 10 858.49 seconds 
(1085 849 frames) for RT-09 that are taken into account to 
calcúlate the statistical signiflcance of the results. 

III. SYSTEM DESCRIPTION 

A. System Architecture and Baseline Features 

Fig. 1 shows the system architecture. The input coming from 
M different microphones ({.Tm [£.']}) is flrst Wiener flltered in 
order to reduce the background noise. 

Then, in order to estimate the TDOA between two segments 
from two microphones, we use a modifled versión of the Gener-
alized Cross Correlation (GCC) called "generalized cross cor-
relation with phase transform" (GCC-PHAT) [22]. First, one of 
the channels is selected as the reference channel (a;,;[A;], the one 
with highest SNR). Then the GCC-PHAT between Xi[k] and 
XJ [k] is estimated as 

^ . „ m - Mf)[XÁfW 

where X¡(/) and Xj(f) are the Fourier transforms of the two 
signáis and [ ]* denotes the complex conjúgate. The TDOA for 
these two microphones is estimated as 

TDOA = d(i,j) = argmax,] \RPHAT(<I) ) (2) 

where RpHAr(d) is the inverse Fourier transform of (1). The 
set of TDOAs from each microphone to the reference channel 
will form what we cali the TDOA vector ([tdoo]). 

Once the [tdoa] vector is calculated, a weighted delay-
and-sum algorithm is applied in the Acoustic Fusión module, 
where the input signáis {xm[cS + k]} are delayed and added 
together with a triangular window a[k] to genérate a new 
composed signal 

M 

y[cS + k] = a[k] • Y^ wm[c] -xm[cS + k- TDOAm[c]] 
ra—\ 

M 

+ (1 - a[k]) • ̂ 2 wm[c\ 
m=l 

• xm [cS + k- TDOAm [c - 1]] (3) 

y[cS + k] is the composed signal, c is the segment being pro­
cessed, S is the segment length (we use 250 ms), k is the sample 
within the segment being processed, TDOAm[c\ is the delay 
between channel m and the reference channel for segment c and 
wm [c] is a weight factor applied to the channel m of segment c 
that is dynamically calculated; see [17]. 

The composed signal is then processed by the MFCC estima-
tion module, where MFCC vectors of 19 components ([mfcc\) 
are calculated every 30 ms using a window shift of 10 ms. 

The VAD module is a hybrid energy-based detector and 
model-based decoder. In the flrst stage, an energy-based de­
tector flnds all segments with low energy, while applying 
a minimum segment duration. An energy threshold is set 
automatically to obtain enough non-speech segments. The 
segmentation is used to train speech and non-speech models in 
the second module and then several iterations of Viterbi seg­
mentation and model retraining take place, flnally outputting 
the speech/non-speech segmentation when the likelihood con­
verges. More information about the VAD module can be found 
in [23]. 

The segmentation and agglomerative clustering process 
consists of an initialization and a segmentation and merging 
process [24]. The initialization process segments the speech 
into K blocks (equivalent to an initial hypothesis of K 
speakers or clusters) uniformly distributed. We have set K 
to 16 empirically. 

An individual cluster model consists of a set of sub-states, 
where the number of sub-states is determined by the minimum 
duration of each cluster. Every sub-state is modeled using a 
Gaussian mixture model (GMM) containing a number of com­
ponents that has to be specifled initially. After the initial seg­
mentation a set of training and re-segmenting steps is carried 
out using Viterbi decoding. Then the merging step takes place. 
When a merging takes place, the GMM for the new cluster is 
retrained with the data now assigned to it and the number of 
parameters (mixtures) of the merged model is the sum of the 
number of mixtures of the component models. The segmenta­
tion and clustering steps are repeated until a stopping criterion 
is reached. 

To decide which clusters to merge, and when to stop the 
merging, the BIC criterion has been used. The penalty term A in 
the BIC score is eliminated because we constrain both hypoth­
esis to have the same number of parameters [24]. When all pos-
sible merge pairs give a negative A BIC the merging is stopped. 
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Fig. 1. Block diagram of the diarization system. The solid black flow diagram represents the baseline system, while the red/gray dash flow diagram represents the 
new modules and flow added to the system. 

The baseline features used in the diarization task are the 
MFCC combined with the TDOA. In the implemented system 
[20], [21], the first 19 MFCC coefficients are extracted and 
treated as the [x] stream and the TDOA features are treated as 
the [y] stream. Each source of information is modeled using 
a statistical model whose individual likelihoods are combined 
using 

logp([x],[y]\Qa) = wx-logp([x]\0ax)+wy-logp([y]\6ay) (4) 

keeping wx + wy = 1. 6a is the compound model for any 
given cluster a, 6ax is the model created for cluster a using 
the stream [x], and 9ay is the model created for cluster a using 
the stream[í/]. 

B. Intensity Level Features 

In this paper, we propose the use of intensity measures as an 
additional feature related to speaker localization. The red/gray 
dashed flow diagram in Fig. 1 shows the new modules added 
to the diarization system. The hypothesis proposed is based on 
the assumption that the position of the speaker has an impact 
on the speech intensity level captured by each microphone, and 
consequently to its location, analogous to the TDOA. 

The energy captured by each channel is related to the distance 
of the speaker to that particular channel: when higher energy is 
detected, it means that the speaker is closer to that channel. This 
is related to the localization of the speaker similar to the infor­
mation conveyed by the TDOA features. The difference is that 
the signal delay information used in the estimation of the TDOA 
feature is proportional to the distance, while the intensity is in-
versely proportional to it. The consideration of both features, 

TDOA and the proposed energy related features, assumes that 
the speakers do not move around the room. 

In order to confirm the hypothesis presented, two new fea­
tures are considered: 

• the absolute intensity ene[n, m] of each audio channel m 
at frame n; 

• the speech intensity channel contribution (ICC), icc[n, m] 
the contribution of the absolute intensity per channel m at 
frame n to the sum of speech intensities coming from all 
the channels at frame n; see (5) 

icc\n,m\ = 
ene\n,m\ 

m = 0 ene[n,m] 
(5) 

where A c c is the dimensión of the ICC feature vector 
(equivalent to the number of microphones). 

An initial oracle study was carried out using Multi-Dimen-
sional Scaling (MDS) analysis over part of the develOó set. MDS 
strategies [25] consider "proximity valúes" between two objeets 
as their input (Euclidean distance between speakers model in 
our case). The result of the MDS analysis is a DMDS -dimen­
sional space in which each object is represented by a single 
point. MDS defines the localization of the points in the output 
space by minimizing the disparity between the Euclidean dis-
tances given the dissimilarity matrix (Le., the proximity data) 
and the Euclidean distances in the object space, in the least 
squares sense" [26 p. 2169]. 

Using the speakers' references, we estimated a DTDOA -di­
mensional Gaussian model (-DTDOA is the number of audio 
channels minus one) for each speaker using TDOA features and 
a Dice-dimensional Gaussian model using ICC features. An 
MDS analysis was conducted on speaker models to obtain a 
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Fig. 2. Two-dimensional multi-dimensional scaling output space for the NIST20030623-1409 meeting using TDOA features and ICC features, respectively. 

TABLEI 
DER OBTAINED IN A SUBSET OF SIX RT-02 AND RT-04 MEETINGS, WHEN 

THE ABSOLUTE INTENSITY VALUÉ (ENE) FEATURES OF EACH AUDIO 
CHANNEL OR ICC FEATURES ARE USED 

MEETING 

I ICSI_20000807-1000 I 
ICSI 20010208-1430 
LDC 20011116-1400 
LDC 20011116-1500 
NIST 20030623-1409 
NIST_20030925-1517 

ALL 

ENE features 

[ene] 
59.66% 
59.25% 
46.57% 
51.53% 
61.06% 
40.66% 

53.59% ±0.16% 

ICC features 

[ice] 
67.48% 
33.22% 
34.55% 
51.54% 
6.32% 

30.64% 
37.40% ±0.16% 

TABLE II 
DER OBTAINED IN THE ALL06 SET, WHEN USING MFCC, TDOA, ENE, 

OR ICC FEATURES SEPARATELY OR WHEN THE TDOA FEATURES ARE 
JOINED IN A COMMON STREAM WlTH ENE OR ICC FEATURES 

[mfee] 
18.73% ± 0.08% 

[tdoa] 
33.87% ± 0.09% 

[tdoa + ene] 
35.36% ± 0.09 

[ene] 
55.65% ± 0.13 

[ice] 
39.71% ±0.10% 

[tdoa + ice] 
31.85% ±0.09% 
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Fig. 3. DER as a function of the weight associated to the first stream used by the 
system (always the stream with the MFCC features). The dashed line establishes 
the DER baseline to be improved (DER obtained only using MFCC features). 
Results obtained on the all06 meetings set. 

mapping of those models on a 2-D space with a goodness of 
fit measure (GoF) higher than 90%. 

As an example, in Fig. 2 the 2-D MDS output space using 
TDOA and ICC features for the NIST_20030623-1409 meeting 

TABLE III 
DER OBTAINED IN THE ALL06 SET USING ONLY [mfee] FEATURES STREAM 
AND CONSIDERING [ice] IN ADDITION TO [mfee]. RESULTS OBTAINED WlTH 

OPTIMAL WEIGHTS (0.9 AND 0.1) IN THE LAST CASE 

[mfee] (baseline) ifcc] [ii RDER (%) 

18.73% ±0 .08% I 18.12% ±0 .08% 3.3% 

[mfcc][tdoa] 
[mfcc][tdoa+icc] 

0.7 0.Í 
weight of Iststream 

Fig. 4. DER as a function of the weight associated to the first stream used 
by the system (always the stream with the MFCC features). The dashed line 
establishes the DER baseline to be improved (DER obtained using [mfee] and 
[tdoa] streams). Results obtained on the all06 meetings set. 

TABLE IV 
DER OBTAINED IN THE ALL06 MEETINGS SET USING [mfee] AND [tdoa] 

FEATURES STREAMS AND CONSIDERING THE JOINED [tdoa ± ice] IN ADDITION 

TO [mfee]. RESULTS OBTAINED WlTH WEIGHTS (0.9 AND 0.1 IN BOTH CASES) 

| [mfee] [tdoa] (baseline) | [mfee] [tdoa + ice] 11 RDER (%) | 13.40% ± 0.07% 12.70% ± 0.07% 5.2% 

can be seen. The MDS approach shows the distance between 
speakers, using TDOA or ICC features. One of the character-
istics of the MDS analysis is the relationship (direct or indi-
rect) of the output dimensions with some physical dimensión 
related to the objeets (coordinates in the room map in this case). 
The Pearson Coefficient between the speakers' localization in 
the two MDS is 0.86. This correlation is high, supporting a 
certain relationship between both features. Unfortunately, in-
formation on the geometry of the meeting room, information 
on the speakers and microphone localization, instant video in-



TABLE V 
DER, USING THE OPTIMAL WEIGHTS, OBTAINED FOR EACH MEETING OF THE RT-07 MEETINGS SET 

MEETING 

CMU_20061115-1030 

CMU_20061115-1530 

EDI_20061113-1500 

EDI_20061114-1500 

NIST_20051104-1515 

NIST_20060216-1347 

VT_20050408-1500 

VT_20050425-1000 

AVERAGE DER 

[mfcc] 

| 24.26% 

11.85% 

19.10% 

21.74% 

6.05% 

11.42% 

7.53% 

18.49% 

14.91% ±0 .05% 

[mfcc] [tdoa] 

22.15% 

10.62% 

20.42% 

28.90% 

5.39% 

7.43% 

3.48% 

16.42% 

14.12% ±0 .05% 

[mfcc] [ice] 

24.50% 

12.00% 

21.41% 

20.89% 

6.06% 

12.16% 

7.58% 

20.66% 

15.49% ± 0.05% 

[mfcc] [tdoa + ice] 

24.02% 

10.87% 

13.06% 

29.29% 

5.36% 

7.75% 

3.95% 

16.05% 

13.61% ±0 .05% 

formation, etc. is not available for the evaluated corpora, not 
being possible to confirm empirically the relationship between 
the axes and the location of the speakers. 

Further research with additional labeled corpora needs to be 
carried out to find an interpretation of the MDS output dimen-
sions. However, in the last instance, the goodness of the pro-
posed ICC features must be assessed using the diarization error 
rates (DER) which will be done in the next section. 

IV. SYSTEM SETUP 

A. Preliminary Experiments 

In order to assess the intensity related features relevance, the 
DER has been calculated on a subset of six RT-02 and RT-04 
meetings. Table I presents the results obtained when using the 
absolute intensity features ([ene]) and the ICC feature [as de-
fined in (5)], respectively. 

Results show that intensity level features carry information 
related to the location of the speaker. Much better results are ob­
tained with ICC features (37.40%), that clearly outperform the 
results obtained with absolute intensity level features (53.59%). 

Table II presents the results obtained on the all06 set when 
the system uses only one feature stream ([mfcc], [tdoa], [ice], 
or [ene]), or when all information related to the speaker location 
([tdoa] and [ice]) is considered in the same stream (joint vector 
[tdoa + ice] with dimensión equal to £>TDOA + ^icc)- F° r 

completeness the results with the combination of [tdoa] and 
[ene] (joint vector [tdoa + ene]) are also presented. Separately, 
MFCC features clearly provide the best system performance 
(18.73%), surpassing TDOA features (33.87%) and ICC fea­
tures (39.71%). However, when these last two features are 
jointly considered (31.85%) they outperform their sepárate per­
formance indicating that ICC features can be combined with the 
TDOA information to improve performance. No improvement 
is obtained when the TDOA features are joined with absolute 
intensity features in the same stream (35.36%). This fact may 
well be explained by the fact that energy features alone provide 
bad results (55.65%) and instead of complementing the TDOA 
features performance, they degrade it. Note that although 
apparently both absolute energy and ICC features are obtained 
from the same measure (the energy) if the same speaker at a 
certain location augments his intensity level from one turn to 
another, the absolute energy features computed at each channel 
will have a bias corrupting the speaker models while the ICC 

TABLE v i 
DER, USING THE OPTIMAL WEIGHTS, OBTAINED FOR 

EACH MEETING OF THE RT-09 MEETINGS SET 

MEETING | 

EDI_20071128-1000 
EDI_20071128-1500 
IDI_20090128-1600 
IDI_20090129-1000 
NIST_20080201-1405 
NIST_20080227-1501 
NIST_20080307-0955 

AVERAGE 

[mfcc] [tdoa] 

1 77T9% 
55.85% 
11.39% 
18.60% 
61.85% 
11.87% 
32.83% 

25.67% ± 0 . 1 1 % 

[mfcc] [tdoa + ice] 

7.70% 
55.85% 
11.39% 
18.60% 
61.02% 
11.94% 
19.45% 

23.64% ± 0 . 1 1 % 

features will not have this problem resulting in a more robust 
set of features. 

B. Integrating ICC Features in the Final System 

After the preliminary experiments, we have carried out re­
search in a system that integrates all the three features, MFCC, 
TDOA, and ICC. 

Our baseline system ([mfcc][tdoa]) is based on the MFCC 
and the TDOA features treated as separated streams. More in­
formation regarding the experimental framework using this con-
figuration can be found in [21]. 

In this paper, the inclusión of the ICC features has been ana-
lyzed using two different alternatives: 

• [mfcc] [ice]: MFCC and ICC are considered as DMFCC 

and Dice -dimensional separated streams, respectively; 
• [mfcc] [tdoa + ice]: TDOA and ICC are modeled jointly in 

one -DTDOA + -Dice-dimensional stream. 
It can be seen in Fig. 3 that there are several points in which 

the results obtained with MFCC alone can be improved by 
merging them with ICC features similar to what was presented 
in [21] with the merging of MFCC features with TDOA fea­
tures. Table III presents the optimum results for weights 0.9 
and 0.1, respectively. The relative reduction of the error rate 
compared to the use of MFCC alone is a significant 3.3%. 

Finally in Fig. 4 the results of the all06 set are presented 
changing the weights for the first and second string using MFCC 
features as the first string and TDOA+ICC features as the second 
string. The baseline system has a performance of 13.4%! which 
has been outperformed by joining TDOA and ICC in the same 
vector. Table IV presents the optimum results. A significant 
5.2% reduction in the DER has been obtained. 

Weights 0.9, 0.1, see [21]. 



TABLE VII 
NUMBER OF IDENTIFIED SPEAKERS (ID SPK), FALSE ALARMS (FA), MISSES (MISS) FOR RT07 AND RT-09 DATA SETS. # CHAN 

MEANS NUMBER OF MICROPHONES, AND # SPK MEANS THE NUMBER OF ACTUAL SPEAKERS AT EACH MEETING 

MEETING | 
CODE 

RT-07 

RT-09 

1 CMU 20061115-1030 
CMU 20061115-1530 
EDI 20061113-1500 
EDI 20061114-1500 
NIST 20051104-1515 
NIST 20060216-1347 
VT 20050408-1500 
VT_20050425-1000 
EDI 20071128-1000 
EDI 20071128-1500 
IDI 20090128-1600 
IDI 20090129-1000 
NIST 20080201-1405 
NIST 20080227-1501 
NIST_20080307-0955 

ALL 

#CHAN 

3 
3 
16 
16 
7 
7 
4 
7 

24 
24 
8 
8 
7 
7 
7 

-

#SPK | 

4 [ 
4 
4 
4 
4 
6 
5 
4 
4 
4 
4 
4 
5 
6 
11 
63 

[mfcc] [tdoa] 
ID SPK 

1 ^ 4 
3 
3 
4 
6 
5 
3 
4 
3 
4 
4 
4 
6 
5 

52 

MISS 

-
-
1 
1 
-
-
-
1 

-
1 
-
-
1 
-
6 
11 

FA 

"i~n 
i 
-
-
i 
-
-
-
i 
-
2 

-
-
-
-
6 

[mfcc] [tdoa + 
ID SPK MISS 

4 : 
4 
4 
3 1 
4 
6 
5 
3 1 
4 
3 1 
4 
4 
4 1 
6 0 
6 5 

54 9 

ice] 
FA 

r~i 
i 
-
-
i 
-
-
-
i 
-
i 
-
-
-
-
5 

V. SPEAKER DIARIZATION OF RT-07 AND RT-09 

To assess the validity of the previous analysis, we have calcu-
lated the DER for the evaluation set (RT07) using the optimum 
weights obtained in the previous experiments with the all06 set. 
It can be seen in Table V that the use of the energy together with 
the TDOA improves the previous system by a significant 3.6% 
relative. 

This contribution has been part of the system presented by 
Universidad Politécnica de Madrid (UPM) at RT 2009. To further 
demónstrate the validity of this approach, recent post-eval ex­
periments performed with the recently released RT09 set (used 
as a second evaluation set) gives a result of 23.64 DER with 
ICC features compared to 25.67% without the ICC features, a 
relative improvement of 7.9%. Results are shown in Table VI. 

VI. DISCUSSION 

From the presented experiments, it is demonstrated that the 
ICC features constitute an additional source of information that 
can be used in conjunction with the previously used TDOA fea­
tures. Results show a consistent improvement in the develop-
ment set and the two RT evaluation data sets (5.2%, 3.6%, and 
7.9% relative on all06, RT-07 and RT-09, respectively). These 
improvements suggest that ICC features might contribute to the 
improvement of alternative state of the art systems evaluated in 
the 2009 Rich Transcription Evaluation. 

While the ICC features alone do not outperform the TDOA 
features alone, the join vector ([¿ce][tdoa]) outperforms both of 
them. In addition, while the simple unión of ICC with MFCC 
features ([mfcc][icc]) does not outperform the improvement 
obtained when TDOA features are joined with MFCC features 
([mfcc][tdoa]) when both location features are combined with 
MFCC ([mfcc] [tdoa+icc]) the overall DER decreases. This re­
sult proves that both location features complement themselves 
and are more robust than any of them separately. 

If we analyze the results in detail meeting by meeting 
we notice that the combination of ICC features with 
TDOA features provide very large improvements in the 
EDI_20061113-1500 (RT-07) meeting (36% relative) and in 
the NIST_20080307-0955 (RT-09) meeting (41% relative) 
while the variation of DER in the other meetings is very small. 

TABLE VIII 
EDI_20061113-1500 AND NIST_20080307-0955 SPEAKER IDENTIFICATION 

RESULTS OBTAINED WITH [mfcc] [tdoa] AND [mfcc] [tdoa + ice] 
SYSTEMS, RESPECTIVELY 

EDI_20061113-1500 
SPKREF 

fee097 
feelOO 
mee098 
mee099 

[mfcc] [tdoa] 
MISSED 

ID 
ID 
ID 

[mfcc] [tdoa + ice] 
ID 
ID 
ID 
ID 

NIST_20080307-0955 
SPKREF 

302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 

[mfcc] [tdoa] 
MISSED 

ID 
MISSED 

ID 
ID 

MISSED 
ID 

MISSED 
MISSED 

ID 
MISSED 

[mfcc] [tdoa + ice] 
ID 
ID 

MISSED 
ID 
ID 

MISSED 
ID 

MISSED 
MISSED 

ID 
MISSED 

However, the big improvement in these two meetings is enough 
to result in an overall significant improvement. 

What can be done is a detailed analysis of the errors that we 
have got. In Table VII, we show the number of microphones and 
the number of reference speakers for each meeting of RT-07 
and RT-09 to search for relationships between these two vari­
ables. A Pearson Coefficient of 0.3 shows a low correlation be­
tween the number of channels and DER. Table VII also presents 
the number of identified speakers (ID SPK), missed speakers 
(MISS) and false alarms (FA) obtained with [mfcc] [tdoa] and 
[mfcc] [tdoa + ice]. Results show that the inclusión of the ICC 
features reduces the FA (from 6 to 5) and the MISS (from 11 
to 9) improving the number of identified speakers (from 52 to 
54). These improvements come from the EDI_20061113-1500 
meeting and the NIST_20080307-0955 meeting (the ones with 
higher relative improvement in DER). 

We have also analyzed which speakers have been identified 
correctly and those missed with the [mfcc] [tdoa] system and 
the [mfcc][tdoa + ice] system. The analysis is presented in 
Table VIII. Both systems present a similar behavior, so most 



of the time both systems make the same errors. However, 
the [mfcc][tdoa + ice] system identifles speaker /ee097 and 
speaker 302 while [mfcc][tdoa] is not able to identify fhese 
two speakers resulting in an overall improvement in fhese two 
meetings. 

VIL CONCLUSIÓN 

We have researched additional localization features to im-
prove the results of a previous speaker diarization system. 

We have proposed the use of a new measure, the ICC, as an 
additional source of information. We have successfully merged 
this information with TDOA and MFCC features to obtain an 
enhanced system, better than our baseline system which only 
used MFCC and TDOA features. 

The enhanced system improves the baseline system signifl-
cantly by 5.2% relative in the development set, as well as 3.6% 
and 7.9% relative in the RT-07 and RT-09 evaluation sets, re-
spectively, thus demonstrating in all cases the robustness of the 
approach. 
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