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Abstract—In glottal source analysis, the phase minimization
criterion has already been proposed to detect excitation instants.
As shown in this article, this criterion can also be used to
estimate the shape parameter of a glottal model (ex. Liljencrants-
Fant model) and not only its time position. Additionally, we
show that the shape parameter can be estimated independently
of the glottal model position. The reliability of the proposed
methods is evaluated with synthetic signals and compared to
that of the IAIF and minimum/maximum-phase decomposition
methods. The results of the methods are evaluated according
to the influence of the fundamental frequency and noise. The
estimation of a glottal model is useful for the separation of the
glottal source and the vocal-tract filter and therefore can be
applied in voice transformation, synthesis and also in clinical
context or for the study of the voice production.

Index Terms—Phase minimization, voice analysis, joint estima-
tion, glottal model, glottal shape, GCI.

I. INTRODUCTION

In voice analysis, using the source-filter model of the voice
production, the filter is often assumed to be excited by a
flat amplitude spectrum. However, many models of glottal
excitation have been proposed [1], [2], [3]. Obviously, these
models have particular shapes in time and frequency domains.
Among their spectral characteristics, the glottal formant and
the spectral tilt are often cited [1], [2], [4]. Therefore, it it
interesting to estimate the glottal model parameters and thus
the spectral characteristics of the source. For example, such
estimates enable separating the glottal source from vocal-tract
influences [5], [6]. This separation is very attractive in voice
transformation since it allows a means to manipulate indepen-
dently the source excitation and the resonating properties of
the vocal-tract. In this article, we use the source-filter model
which is made of three principal elements: the glottal source,
the Vocal-Tract Filter (VTF) and the radiation. The glottal
source is assumed to be produced by the air flow modulated by
the periodic opening and closing of the glottis. This source has
a shape in time and spectral domains and this shape has a time
position in a given period of voiced signal. Then, the vocal-
tract filter transforms this source by means of resonances and
anti-resonances. Finally, this transformed source is radiated
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into the environment through the lips and the nostrils adding
one more filter effect. In this presentation, analyzing a window
of voiced signal, we want to estimate the shape parameter of
a glottal model (a shape model of one period of the glottal
source) and its time position in the analysis window.

Our approach is the following, we focus on the phase
properties of the source and the VTF. Indeed, the glottal source
is a mixed-phase signal [7], [1]. Zeros exist outside of the
unit circle in the glottal source z-transform. Since the voice
production model is made of time convolutions, these zeros
remain in the final voiced signal. On the other hand, the poles
of the VTF are inside the unit circle because it is a stable
filter [8]. Concerning the zeros created by the coupling of the
nasal cavity with the oral cavity, they lie on the unit circle
when the vocal-tract is assumed to be lossless [9]. In our
investigation, we postulate that the losses move these zeros
inside the unit circle because the poles obey this behavior
between the lossless and the lossy cases. Consequently, we can
assume that the VTF impulse response is a minimum-phase
signal. The minimum-phase assumption is more general than
the usual all-pole hypothesis [8] (often modeled by Linear
Prediction (LP) [8] or Discrete All-Pole (DAP) [10]). The
minimum-phase assumption does not exclude zeros which can
occur in nasalized sounds but implies they are strictly inside
the unit circle. In terms of source-filter separation, these phase
properties have been already used in minimum/maximum-
phase decomposition methods, ie. Complex Cepstrum (CC)
[11] and Zeros of the Z-Transform (ZZT) [12]. With this
approach, the well known closed-phase hypothesis is not
necessary [13] and it is thus possible to broaden the diversity
of voices to analyze. In this article, we assume that the mixed-
phase and minimum-phase properties enable us to estimate the
parameters of a glottal model. To focus on these phase prop-
erties, the phase minimization criterion is used. This criterion
is the following: the phase spectrum of a model is fitted to the
phase spectrum of an observed signal. The error of fitting is
computed through the convolutive residual (the deconvolution
of the observed signal by the model). Therefore, the better
the estimate of the model, the closer the convolutive residual
is to a Dirac delta function. In terms of phase, the better the
estimate of the model, the smaller the phase spectrum of the
convolutive residual. This criterion has already been proposed
to estimate Glottal Closure Instants (GCI) resulting in robust
estimators [14], [15]. In these methods, assuming the source
is a Dirac delta and the VTF is an all-pole filter, the phase
spectrum of an LP residual is minimized. In our study, we
propose to use the phase minimization criterion to estimate,
not only the position of the excitation model, but also the
shape parameter of a glottal model. We already proposed a first
method [16] which jointly estimate the shape and the position.
First, this article refines and improves the argumentation of
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that previous publication. Additionally, similarly to the GCI
detection method using the group-delay [15], we propose two
other methods which take advantage of the difference operator
with respect to the harmonics phase: one method balances the
influence of the shape and the position on the error function
and a last method eliminates completely the influence of the
glottal model position on the shape estimate. Compared to
current methods of source-filter decomposition, the proposed
methods try to directly estimate the glottal parameters of a
glottal model without estimating the glottal source. Indeed,
the Iterative Adaptive Inverse Filtering method (IAIF) [17] first
estimates the VTF and a spectral envelope of the glottal source.
In the same way, minimum/maximum-phase decomposition
methods (CC and ZZT based methods) first estimate the
maximum-phase contribution of the speech signal in order
to retrieve the glottal source. In all of those approaches,
the estimated glottal source is fitted by a glottal model in
a second step. In the proposed methods, the glottal source
is not explicitly computed and the VTF is jointly estimated
with the glottal model parameters. One can thus expect more
consistency between the VTF estimate and the glottal model
estimate.

Even though the estimation of glottal parameters is a very
active research field [7], [6], [18], [5], [17], the lack of
ground truth makes the results of such estimators difficult to
validate. A measurement of the glottal flow which is usually
associated with the source of the source-filter model could be
compared to glottal model estimates. However, the acoustic
coupling (between the glottal flow and the vocal-tract) and
the issues related to the measurement of this flow make this
comparison difficult to establish. Nevertheless, in the context
of voice transformation and synthesis, only the perception
of the voice has to be manipulated. Therefore, recovering
the glottal flow precisely may be not necessary for these
applications. In current literature, the validation of analysis
methods is usually avoided by proposing transformation and
synthesis systems to support the analysis/synthesis processes
[5], [19], [20], [17], [21]. However, because such a process
using a glottal model is far from straightforward, forthcoming
publications should address this problem and thus evaluate the
significance of glottal model estimates in real applications. In
this presentation, in order to evaluate the proposed methods
compared to the state of the art of the source-filter separation
methods (IAIF, CC and ZZT), we use synthetic signals and
Electro-Glotto-Graphic (EGG) signals.

The following discussion consists of three main parts. To
make the innovative theoretical ideas as clear as possible about
Mean Squared Phase (MSP) and the phase difference operator,
part II discusses the estimation process and the mathematical
derivations without taking into account the details related to
the realization which are described in part III. That more
practical part III presents the algorithm using the mean squared
phase to jointly estimate the position and a shape parameter
of the Liljencrants-Fant glottal model. Then, the computation
of the phase difference is detailed. The last part IV evaluates
precision and robustness of the proposed methods with syn-
thetic and EGG signals. The estimation of the glottal source by
inverse filtering is discussed and two examples of real signals

conclude the evaluation part.

II. VOICE PRODUCTION MODEL AND PHASE MINIMIZATION

The shape and position parameters of a glottal model
are estimated in an optimization context by means of error
minimization: given hypothetical parameters (θ, φ), the VTF is
first computed according to the voice production model. Then,
to represent the differences between the observed signal and
the voice model, the convolutive residual is used. Finally, the
error related to (θ, φ) is computed using the Mean Squared
Phase (MSP) of the convolutive residual. Below, each step
of the estimation process is described and the conditions of
convergence are discussed. The presentation of the methods
using the difference operator concludes this theoretical part.

A. Voice production model

Within a given window, the voiced signal is assumed to
be stationary and periodic with a fundamental frequency f0.
Therefore, one can build a discrete spectrum Sk where the
k-bins represent all the available k-harmonics in this window.
Using this single period representation, we express the voice
production model as follows:

Sk = ejkφ ·Gk · Ck− · Lk (1)

where ejkφ represents the time position φ of the glottal shape
in the period. Gk is a mixed-phase spectrum representing
the shape of the glottal source. In the following, Gθk will
represent a glottal model where its shape is parametrized by
θ. Ck− is a minimum-phase filter corresponding to the VTF
(the minimum-phase property is denoted by the negative sign).
Finally, Lk is the filter corresponding to the lips radiation.
This filter can be modeled with a time derivative and therefore
Lk = jk [8], [22].

B. Estimation process

First, we define E−(.) as a function computing the
minimum-phase version of a given spectrum:

Xk− = E−(Xk) = exp(F (x̂n−))

where F(.) is the Discrete Fourier Transform and the
minimum-phase cepstrum x̂n− is computed from the power
cepstrum x̂n corresponding to the spectrum Xk [23]:

x̂n− =

 0 n < 0
2x̂n n > 0
x̂n n = 0

and
x̂n = F−1 (log |Xk|)

where F−1(.) is the inverse Discrete Fourier Transform.
Note that E−(.) has no linear-phase component since Xk− is
minimum-phase. Additionally, this function is multiplicative
(i.e. E−(A ·B) = E−(A) · E−(B) ∀|A|, |B| ≥ 0). Then, using
E−(.) and the voice production model (1), by inverse filtering
in the frequency domain, one can derive an expression of the
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VTF which depends on the shape parameter θ of a given glottal
model:

Cθk− = E−
(

Sk
Gθk · jk

)
(2)

Note that this VTF model does not represent the real VTF
because this representation is reduced to harmonic frequen-
cies. This VTF expression (2) can be replaced in the voice
production model (1) to derive the convolutive residual R(θ,φ)

k ,
the ratio of the observed spectrum by the model spectrum:

R
(θ,φ)
k =

Sk
ejkφ ·Gθk · E−(Sk/Gθk · jk) · jk

(3)

In the first proposed method of this article, the Mean Squared
Phase (MSP) of this convolutive residual is minimized to
obtain the optimal parameters which best fit the observed
spectrum:

MSP(θ, φ,N) =
1

N

N∑
k=1

(
∠R(θ,φ)

k

)2
(4)

The multiplicative property of E−(.) allows us to write
equation (3) as:

R
(θ,φ)
k = e−jkφ · Sk

E−(Sk)
· E−(Gθk)

Gθk
· E−(jk)

jk
(5)

One can see that the calculation of the convolutive residual
flattens the amplitude spectrum of Sk, Gθk and jk by their
respective minimum-phase versions. R(θ,φ)

k is thus all-pass
for any chosen glottal model and its parameters: |R(θ,φ)

k | =
1 ∀k ∀θ ∀φ. Consequently, an error of the parameters affects
only the phase spectrum of R(θ,φ)

k . Additionally, R(θ,φ)
k tends

to a Dirac delta when its phase spectrum is minimized because
the Dirac delta has a flat amplitude spectrum and a zero phase
spectrum. Therefore, the smaller the phase spectrum of the
convolutive residual, the closer the model is to the observed
spectrum. Using a Liljencrants-Fant (LF) glottal model [5,
p.19], [24], [3] parametrized by the single Rd shape parameter
[2], figure 1(a) shows an example of MSP(Rd, φ, 12) com-
puted on a synthetic speech signal (see IV for more details on
the synthesis).

C. Conditions of convergence

In this section, we assume that the shape of the real glottal
source Gk can be correctly represented by our chosen glottal
model Gθ

∗

k with an optimal parameter θ∗. In this context, it is
important to known which properties of the glottal model are
necessary to ensure the convergence of (θ, φ) to the optimal
parameters (θ∗, φ∗). In the computation of the convolutive
residual (3), the observed spectrum Sk can be replaced by
the voice production model (1) with optimal parameters:

R
(θ,φ)
k = ejk(φ

∗−φ) ·
Gθ

∗

k · C∗k−
Gθk · E−(Gθ

∗
k · C∗k−/Gθk)

(6)

Then, by distributing E−(.) to the terms of its argument,
the VTF terms cancel from the previous equation because

E−(C∗k−) = C∗k−. Therefore, equation (6) can be rewritten
as

R
(θ,φ)
k = ejk(φ

∗−φ)︸ ︷︷ ︸
position error

· Gθ
∗

k · E−(Gθk)

Gθk · E−(Gθ
∗
k )︸ ︷︷ ︸

shape error

(7)

First, according to equation (7), note that the error function
of equation (4) is periodic with respect to φ since the position
error term is periodic. Therefore, looking for an optimal
position in the interval [−π;π[ is sufficient.

Secondly, we need to express the condition which, if sat-
isfied, ensures that the shape parameter influences the shape
error: The zeros inside the unit circle in Gθ

∗

k and Gθk are
always canceled by their corresponding E−(.) expressions.
However, a zero outside of the unit circle in Gθ

∗

k can be
canceled only by Gθk. Consequently: θ influences R(θ,φ)

k if θ
influences at least one zero outside of the unit circle in Gθk.

Finally, we need to express the condition which has to
be satisfied to ensure that the shape and the position do
not offset each other, at least theoretically: it is sufficient to
ensure that the shape error has no linear-phase component. Gθk
has a linear-phase which depends on the zero-time reference
given by the definition of the glottal model. Therefore, if θ
influences that linear-phase component, a residual linear-phase
exists in Gθ

∗

k /G
θ
k which biases the position error. To have no

offset effect, the condition is: θ does not influence the linear-
phase component of the glottal model. Note that, using the
Liljencrants-Fant model, this condition is satisfied if the zero-
time reference is set to the te instant [5, p.19],[24],[3].

The next two paragraphs describe the main biases which
affect the presented methods as well as voice analysis in
general:

1) Vocal-tract filter reconstruction: One of the main issues
is the sampling of the VTF frequency response by the har-
monic structure of the excitation source. To ensure equation
(2) gives a good approximation of the VTF, the cepstral
coefficients of the VTF above the quefrency 1/f0 have to be
negligible. Therefore, one can expect a rough approximation
with high fundamental frequency (see sec. IV-A1). Addition-
ally, the lips radiation creates a zero at zero-frequency in the
z-transform of the voiced signal. In equation (2), the DC of
the argument of E−(.) is undefined. Therefore, this DC value
has to be extrapolated from the lowest harmonics. Here, we
simply used Cθ0− = |Cθ1−|.

2) Minimum-phase reconstruction: In order for equation
(2) to give a good minimum-phase estimate, the Nyquist
frequency has to be as high as possible. Additionally, in a
real signal, the noise level exceeds the harmonic level in high
frequencies. The number of available harmonics in an observed
spectrum can thus be drastically reduced. In this article, we
assume that the lack of harmonics in high frequencies, due to
the Nyquist frequency or the noise level, does not influence
significantly the lowest harmonics of the convolutive residual.

D. Difference operator for phase distortion measure

To detect Glottal Closure Instants (GCI), it has been shown
that the group-delay can be used instead of the phase [15]. In
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this section, we propose to apply this idea to the estimation of
the shape parameter. Since we used only harmonics in equation
(3), we use the difference operator with respect to the phase
of these harmonics to approximate the frequency derivative of
the phase:

∆∠Xk = ∠Xk+1 − ∠Xk

The corresponding objective function to minimize is the Mean
Squared Phase Difference (MSPD):

MSPD(θ, φ,N) =
1

N

N∑
k=1

(
∆∠R(θ,φ)

k

)2
(8)

Applying the difference operator to equation (7) leads to:

∆∠R(θ,φ)
k = (φ∗ − φ) + ∆∠

(
Gθ

∗

k · E−(Gθk)

Gθk · E−(Gθ
∗
k )

)
(9)

Compared to equation (7), one can see that the linear-phase
error is no longer weighted by the harmonic number k.
Moreover, this conditioning is also promising for estimating
the shape parameter because it represents linearly the time
shifting of a given frequency. Using the LF model, figure
1(b) shows an example of MSPD(Rd, φ, 12). Although the
influence of Rd and φ seems better balanced compared to
1(a), the two parameters are highly dependent on each other.
Indeed, the position error in equation (9) can fit the average
value of the phase distortion of the shape error. Without the
difference operator, the harmonic number k weights the MSP
error function and constrains φ on its ideal value. The example
of figure 1(a) shows that the optimal φ value is not affected
by Rd (a straight horizontal trench is visible at φ ≈ 0.3).

Finally, using the 2nd order phase difference (∆2), the
position parameter φ can be removed from the convolutive
residual:

∆2∠Rθk = ∆2∠

(
Gθ

∗

k · E−(Gθk)

Gθk · E−(Gθ
∗
k )

)
(10)

However, the first order frequency derivative representation
which emphases the phase distortion by the shape error has to
be retrieved. The anti-difference operator (∆−1) is thus used
and the corresponding objective function to minimize is:

MSPD2(θ,N) =
1

N

N∑
k=1

(
∆−1∆2∠Rθk

)2
(11)

where Rθk is computed using equation (3) ignoring the linear-
phase term. Note that, by minimization of MSPD2, the shape
parameter can be optimized whatever the position of the glottal
model. Figure 1(c) shows an example of MSPD2(Rd, 12).

III. METHODS

First, the spectrum of a voiced segment is computed with a
blackman window and the Discrete Fourier Transform (DFT).
A window of only one period would estimate the complex
coefficients Sk directly. However such a duration is not
suitable since the convolutive effect of the window in the
spectral domain has to be negligible compared to the harmonic
amplitudes and phases of the underlying signal we need to
represent. Therefore, 4 periods are used and a harmonic model

(a) MSP(Rd, φ, 12)
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(b) MSPD(Rd, φ, 12)
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(c) MSPD2(Rd, 12)

0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

Rd

Fig. 1. Examples of Mean Squared Phase (MSP) computed on a synthetic
signal. In the upper plots, the darker the color, the smaller the error.

is built from the DFT of these periods [25]. The amplitude and
phase of the kth-harmonic are obtained using the amplitudes
and phases of the neighbor bins of k · f0 in the DFT. A
parabola is fitted to the amplitudes of the bins to estimate
the harmonic amplitude and the harmonic phase is obtained
by linear interpolation.

To synthesize Gθk · jk, the Liljencrants-Fant (LF) glottal
model is used [5, p.19], [24], [2], [3]. The time and amplitude
scaling parameters are the fundamental frequency f0 and the
excitation amplitude Ee respectively. We assume f0 to be
known a priori. Numerous methods can be used to compute
it from the voiced signal directly (ex. YIN [26], Swipep
[27], harmonic matching [28]). Moreover, regardless of the
Ee value, the amplitude spectrum of the convolutive residual
is always equal to one. Therefore, the proposed methods
estimate the shape parameter independently of this value.
The shape of the LF model is controlled by 3 parameters
(Oq, αm, ta). It can be interesting to estimate these 3 shape
parameters. However, in terms of error minimization of an
AutoRegressive model with eXogenous input (ARX), it has
already been shown that the effect of Oq can be partially
offset by αm [29]. Additionally, the same has been shown
from measurements of the first two harmonics [30]. Such a re-
lation creates ambiguities between pairs of parameters raising
serious estimation issues. In our experiments with the phase
minimization, we encounter the same issues. Consequently,
in this article we focused on the methods to estimate glottal
parameters. Investigating the existing glottal models and the
estimation of their multiple parameters should be the subject
of a dedicated study. Accordingly, we used the relaxing shape



5

parameter Rd to reduce the shape parameter space to a single
meaningful curve [2], [5]. When Rd tends to big values,
the time-derivative glottal model approaches a period of a
sinusoid. If Rd tends to small values, it approaches roughly
a negative Dirac delta. In the context of this presentation,
it is important to note that this drastic reduction of the LF
model shape space implies that the methods, as presented in
this article, can be applied to a reduced number of voices.

A. Iterative algorithm using MSP

To minimize MSP (Rd, φ,N), since only two variables are
estimated, only a small number of harmonics should be nec-
essary to find the global minimum of the corresponding error
surface. However, the glottal model definitely does not corre-
spond perfectly to the real glottal pulse. Therefore, an average
solution with the different contributions of all the available
harmonics is preferable. N is therefore set to bflim/f0c, where
flim is the Nyquist frequency or a Voiced/Unvoiced Frequency
(VUF) [31]. As one can see in figure 1(a), the error function
corresponding to a linear-phase deviation is a deep and narrow
valley in a noisy neighborhood. In such an error surface, the
search for a global minimum is difficult. However, the high
frequency behavior of the error function comes from the high
frequencies of the convolutive residual. Therefore, to smooth
down the error function, R(Rd,φ)

k is first low-passed at the
3rd harmonic (N = 3). Then, a Preconditioned Conjugate
Gradient (PCG) algorithm is used to find the nearest minimum
of the error function from starting values. Then, N is increased
one harmonic by one harmonic up to its maximum value
while using the PCG algorithm at each incrementation to refine
(Rd, φ) obtained at the preceding step (see Algorithm 1 and
Fig. 2). In order to start this optimization method, initial values
are necessary. Therefore, the results of this method depend on
the choice of these initial values.

Algorithm 1 Iterative algorithm using MSP (Rd, φ,N)

Build Sk using a sinusoidal model
Initiate Rd and φ with rough estimates
for N = 3 to bflim/f0c do

repeat
Synthesize GRdk · jk with LF model and Rd
Compute the VTF CRdk− with eq. (2)
Compute convolutive residual R(Rd,φ)

k with eq. (3)
Compute MSP(Rd, φ,N) with eq. (4)

until PCG algorithm find a minimum of MSP(Rd, φ,N)
end for

B. Phase difference computation for MSPD and MSPD2

To avoid any problems with the phase wrapping in a limited
range (ex. [−π;π[ ), the phase difference operation of equation
(8) is computed in the complex plane:

∆∠Xk = ∠
(Xk+1

Xk

)
From our observations with synthetic signals, the function
MSPD(Rd, φ,N) has always only one minimum. However,
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Fig. 2. Error surface corresponding to MSP(Rd, φ,N) while increasing N .
Starting values of each step are indicated with a circle and Preconditioned
Conjugate Gradient (PCG) final step with a cross.

with real signals, since the glottal model does not always
correspond to the real glottal pulse, more minima can exist.
Algorithm 1 is not necessary in order to find the global
minimum of MSPD(Rd, φ,N), since the position error is not
weighted by the harmonic number as in MSP. Instead, a regular
Preconditioned Conjugate Gradient method can be used with
N = bflim/f0c.

To minimize MSPD2(Rd,N), the 2nd order phase differ-
ence centered on each kth-harmonic is first computed in the
complex plane:

∆2∠Xk = ∠
Xk+1 ·Xk−1

X2
k

Then, applying the anti-difference operation, the previous
equation leads to:

∆−1∆2∠Xk = ∠
k∏

n=1

Xn+1 ·Xn−1

X2
n

Finally, like the MSPD error function, MSPD2(Rd,N) has
usually only one minimum with N = bflim/f0c. A Brent’s
algorithm [32] is therefore used to find the global minimum
of MSPD2(Rd,N). Note that no initial values are necessary
for this optimization method.

IV. EVALUATION

First, the influence of the fundamental frequency on the pro-
posed methods is evaluated using synthetic signals. Secondly,
glottal and environment noise are used for the estimation of
the reliability of the proposed methods. Then, the methods
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are compared to EGG signals with real speech signals. The
GCIs estimated by the method using MSP are compared to
reference GCIs computed from Electro-Glotto-Graphic (EGG)
signals. Since the EGG signals are close to a ground truth, we
consider that the evaluation of the detected GCIs with synthetic
signals is not necessary. The estimated shape parameters using
MSP and MSPD2 are also compared to the open quotient
computed from EGG signals (Oq = (te − t0) · f0 in [3]).
Finally, the estimation of the glottal source by inverse filtering
is discussed and two examples of parameter estimates on real
speech recordings are shown.

In the evaluation tests with synthetic and EGG signals, three
other methods are compared with the proposed ones:

1) The Iterative Adaptive Inverse Filtering (IAIF) [4], [17]:
This method is designed to estimate the glottal source and not
directly the parameters of a glottal model as in the proposed
methods (see fig. 7). In order to obtain parameter estimates of
a glottal model, the LF model is fitted to the estimated source
with a Preconditioned Conjugate Gradient (PCG) algorithm
by minimizing the mean squared error in the time domain.
In its original implementation available in the Aparat toolkit
[33], the 3 LF shape parameters are estimated as well as the
excitation amplitude Ee. To obtain a valuable comparison with
the proposed methods, that implementation has been replaced
in order to estimate the Rd shape parameter (note that, Ee has
to be estimated jointly with Rd because the mean squared error
is sensitive to the glottal model amplitude). Additionally, the
fitting process has been corrected according to the assumptions
made by the PCG method. Firstly, the error function has to be
continuous. The position of the pulse is thus optimized using a
linear-phase on the spectral representation of the glottal model
and not with an integer shift of its time domain representation.
Secondly, the dependency between the optimized parameters
has to be as small as possible. Whereas the original implemen-
tation optimizes the time domain parameters (tp, te) which are
both dependent on the linear-phase of the glottal model, the
implementation used in this presentation optimizes the linear-
phase of the glottal model and the Rd parameter, which does
not influence this linear-phase. Finally, in order to obtain a
smooth influence of the time position of the glottal model
on the error function, the mean squared error is weighted in
time domain by a two-period hanning window centered on
te. Taking into account these considerations, the results of the
IAIF have been significantly improved.

2) Complex Cepstrum (CC) and ZZT: The
minimum/maximum-phase decomposition by means of
the complex cepstrum has been already proposed to
retrieve the maximum-phase component of the glottal pulse
[11]. However, this method is known to be sensitive to
the unwrapping of the phase spectrum involved in the
computation of the complex logarithm. Bozkurt et al. [12]
proposed to use the Zeros of the Z-Transform (ZZT) to obtain
this decomposition but noise seems to also decrease the
efficiency of this method [34]. Like the IAIF method, these
two methods estimate the glottal source and not directly the
parameters of the glottal model. Therefore, in this evaluation
section, the LF fitting process discussed above for the IAIF
method is used on the glottal source estimated by the CC

and ZZT based methods. In plots at the bottom of figure 7,
one can see that the glottal pulse is damped to the left by
the analysis window used in the decomposition algorithm.
Therefore, during the fitting of the LF model, the same
window is applied to the glottal model in order to reduce
a possible bias between the observed pulse and its model.
In this article, the implementations of the CC and ZZT
decomposition methods are the ones used in [35].

In the following, for all of the compared methods, the
analyzed signal is resampled to 16kHz and the error measure
is limited to a Voiced/Unvoiced Frequency fixed to 2kHz. For
synthetic signals, this value is kept constant in order to have
all of the compared methods equally affected by this limit.
The influence of this value on the results of the methods is
discussed for real signals in section IV-B2.

A. Synthetic signals

The synthetic signal (eq. 12) is controlled by the LF shape
parameter Rd∗, the delay φ∗ between the first GCI and the
start of the signal, the known fundamental frequency f0,
one Gaussian noise nσg [n] called glottal noise of standard
deviation σg added to the glottal source and one Gaussian
noise nσe [n] called environment noise added to the voiced
signal. Filters Cp−(ω) are designed to model 13 different
voiced phonemes p covering the vocalic triangle. Among these
phonemes, 4 are nasalized. The transfer function of Cp−(ω)
is computed using the Maeda’s digital simulator [36]. The
main advantage of such VTF models compared to estimated
frequencies and bandwidths of autoregressive models on real
speech signals is the complete independence of the generated
formants from the influence of the source. The following
synthetic voiced signal can thus be generated:

E(ω) = ejωφ
∗
·GRd

∗
(ω) ·

[∑
l∈N

ejωl/f0
]

+ F(nσg [n])

s[n] = F−1
(
E(ω) · Cp−(ω) · jω

)
+ nσe [n] (12)

where F(.) is the discrete-time Fourier transform and F−1(.)
its inverse. The amplitude of the Gaussian noise is set so as to
control the Signal to Noise Ratio (SNR) with either the glottal
source or the voiced signal.

1) Error related to the fundamental frequency: In this first
test, knowing the issue raised by the sampling of the VTF
frequency response by the harmonic structure of the source
(see sec. II-C), the influence of the fundamental frequency on
the reliability of the estimators is evaluated. For each f0 value,
the estimation error of the compared methods is computed for
the 13 VTFs and a random delay φ∗. For the methods using
MSP and MSPD, the initial shape value is given by the method
using MSPD2 and the initial position is given by the ideal
value φ∗ delayed by a random variable in [−0.1/f0; 0.1/f0]
to simulate an initial error of position. The error is computed
8 times with different initial positions in order to obtain a
valuable statistical estimate of the mean and standard-deviation
of the error. Finally, to focus on the influence of f0, the noise
signals are set to zero. Figure 3(a,b) shows the mean and the
standard-deviation of the estimation error.
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As expected, the variance of the estimators increases with f0
since the sampling of the VTF by f0 does not provide enough
information to reconstruct the VTF perfectly. The MSPD is the
worst of the proposed methods because the position parameter
can offset the shape error as discussed in section II-D (This
method is thus discarded in the evaluation using real signals).
Additionally, the 2nd order phase difference of the MSPD
and MSPD2 removes the information provided by the average
phase spectrum of the glottal model. Therefore, the method
based on MSP is more precise than the two other proposed
ones. Moreover, in the two last ones, the phase frequency
derivative is approximated by the difference operator using
discrete frequencies.

2) Error related to the noise levels: This second test
evaluates the influence of the noise levels σg and σe on the
compared methods. To obtain a valuable statistical evaluation
according to these levels, the error is computed 16 times for
each σ value with the 13 different VTFs and a random position
φ∗. To focus on the influence of the noises, f0 is fixed to
128Hz. In addition, when one noise is tested, the other one is
set to zero. The results are shown in the right plots of figure
3.

One can see that, for equivalent SNRs, the estimators effi-
ciency is less disturbed by environment noise than by glottal
noise. Moreover, the methods efficiency decreases rapidly
when increasing the glottal noise level. This can raise a serious
issue in the presence of turbulence noise in breathy vowels.
Moreover, for low noise levels the most reliable methods are
the proposed ones. However, for important environment noise,
the IAIF method is the most robust although its efficiency
reduces significantly with glottal noise. The results of the CC
and ZZT methods are close to each other. These methods are
outperformed by the other methods in low noise conditions
whereas, in high noise conditions, their efficiency are between
those of methods using MSP and MSPD2.

B. Comparison with Electro-Glotto-Graphic signals

The Electro-Glotto-Graphy (EGG) is a non-invasive tool
used in phoniatry to retrieve features of the motion of the
vocal-folds. Among these features, one can obtain the instants
of closure of the glottis (GCI) using the SIGMA method [37].
Additionally, the open-quotient Oq can be estimated using the
DECOM method [38]. Assuming high correlation between the
glottal source and the motion of the vocal-folds, reference sets
of GCIs and Oq parameters can be created and compared to
the estimation of the parameters of the proposed methods (in
the evaluation, more than 5000 comparison pairs are used).
In the following, the initial values used by the algorithm 1
using MSP are given by the MSPD2 and the GCIGS [39]
methods. The fundamental frequency f0 is estimated using
the YIN method [26]. Moreover, the evaluation is made on
voiced segments only and these segments are computed from
the EGG signal: a time in the EGG signal is defined voiced
if there is a reference GCI closer than half a period.

1) Evaluation of GCI estimates: The reference GCIs of the
EGG signal are compared to the GCIs described by the LF
model (te instant in [5, p.19], [24], [3]). Additionally, due to

the propagation time between the EGG and the waveform, the
reference GCIs and the detected GCIs are synchronized for
each utterance by maximizing their correlation. Four methods
are compared: the proposed method using MSP, the previously
proposed method using a Glottal Shape estimate (GCIGS)
[39], the DYPSA method [14] and another method based on
Group-Delay (GD) [15], [18]. Figure 4 shows the evaluation
results on three CMU Arctic databases [40]. Note that each
database is made of only one voice.
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Fig. 4. Evaluation of GCI estimation methods with Arctic Databases. STD is
the standard-deviation computed through the interquartile range of the duration
between the reference and the detected GCIs, given in milliseconds [ms] and
in percent of the period [%T0]. The Gross Error Rate (GER) is the percent
of that same durations> 0.1 · T0.

In conclusion, as expected, the method based on MSP
slightly improves the precision of the GCIGS method. Indeed,
by joint minimization of the shape and the position, the phase
spectrum of the convolutive residual is closer to linear than
without joint estimate. However, the GCIGS method assumes
that a prominent peak exists in a period of the time derivative
of the glottal source [39] whereas the method based on MSP
assumes that the whole phase spectrum of the glottal source
corresponds to the one of the LF model. The hypothesis of
the GCIGS method is thus weaker than the hypothesis of the
MSP based method. With real signals, it can explain why the
GCIGS method is more robust than the MSP based method
(less Gross Error). Finally, compared to the state of the art,
the joint estimation of the shape and the position seems not
to improve the results much more than the GCIGS method
does. Removing the source amplitude when computing the
VTF has much more impact on the results (has been done in
both GCIGS and MSP) than using the phase spectrum of the
LF model (has been done with MSP only).

2) Evaluation of the shape parameter estimate: The open
quotient Oq measured on EGG signals can be compared to
the one predicted from the estimated Rd parameter (using the
prediction formula in [2]). Note that the weighting of the error
functions varies among the compared methods. The methods
based on glottal source estimation (ie. IAIF, CC and ZZT)
weight the mean squared error of the LF fitting in the spectral
domain according to the estimated glottal source. The glottal
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Fig. 3. (a,b): mean and standard-deviation of Rd error with respect to f0. (c,d): standard-deviation of Rd error with respect to σg and σe. Theoretical limits
are given through the mean estimator: in plots (b,c,d), the mean method return the mean value of the Rd parameter range, without taking into account the
input; in plot (a), the black thin lines represent the mean absolute error of the mean estimator.

formant around the first three harmonics is thus reinforced
compared to the spectral tilt in high frequencies. Conversely,
in the proposed methods, the weighting of the mean squared
phase is uniform. In order to evaluate the influence of the
weighting on the estimators efficiency, figure 5 shows the Oq
estimation error related to the number of harmonics taken into
account in the error measure.

According to this figure, although it can be interesting to
estimate the high frequency properties of a glottal model
(ex. spectral tilt), increasing the frequency band in the error
measure seems to substantially decrease the efficiency of the
MSP based method. More generally, all of the methods have
the same behavior except IAIF. Additionally, the method using
MSPD2 outperforms all of the compared methods. Note that,
conversely to the evaluation with synthetic signals, the MSPD2

outperforms the MSP based method in this comparison with
real signals. Although the optimization algorithm 1 might
not find the optimum, a grid search algorithm has shown
the same results for the MSP. Therefore, we assume that the
following can explain this difference of results: The difference
between the glottal model and the real glottal pulse introduces
a distortion in the phase spectrum of the convolutive residual.
With the method using MSP, φ and Rd can offset each other in
order to minimize the error function. Conversely, the MSPD2

can be systematically biased by this distortion but it has a
smaller variance. In figure 5, the significant difference between

MSP and MSPD2 median values support this explanation.
According to figure 5, one can select the number of harmon-

ics implying the smallest variance for each method: 5 for MSP,
CC and ZZT; 6 for MSPD2 and 7 for IAIF. Figure 6 shows
the corresponding standard-deviations of the methods for each
database separately. In conclusion, whereas the results of the
MSP based method vary significantly among the evaluated
voices, the method using MSPD2 clearly outperform all of
the compared methods.

C. Glottal source estimation

The estimation of the glottal source is a straightforward
application of the estimation of a glottal model. In this
section, we will focus on the radiated glottal source, the
time derivative of the glottal source. Conversely to IAIF, CC
and ZZT methods, the proposed methods do not estimate the
glottal source explicitly before estimating the glottal model
parameters. However, using the estimated parameters, the
radiated glottal source G̃k can be retrieved through the VTF
expression (eq. 2):

G̃k =
Sk
CRdk−

with CRdk− = E−
(

Sk
GRdk · jk

)
Examples of G̃k are shown in the top of figure 7. Note that
the function E−(.) changes only the phase spectrum of its
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argument. The amplitude spectrum is kept. Therefore, in terms
of amplitudes, one can write the previous equation as:

|G̃k| =
|Sk|
|Sk|

· |GRdk · jk| = |GRdk · jk|

Consequently, the amplitude spectrum of the estimated radi-
ated glottal source is the one of the radiated glottal model.
Only the phase spectrum can reveal behaviors of the under-
lying real glottal pulse. Additionally, compared to the other
methods, the proposed methods use a harmonic model for
both the observed signal and the VTF estimate. Therefore,
only a single period of the glottal source can be represented.
Conversely, the IAIF method estimates an autoregressive filter
(using the Discrete All-Pole method (DAP) [10]) in order
to obtain a representation of the VTF which covers all the

frequencies. The speech signal can thus be inverse filtered
to retrieve multiple periods of the glottal source (4 periods
in figure 7). The glottal source estimated by CC or ZZT is
made of 2 periods because the decomposition algorithm has
to avoid zeros made by the periodicity of the speech signal
[35]. Its anti-causal part contains the estimated maximum-
phase component and the causal part remains to zero. One
can see that the ripples in the estimated glottal source are
more significant with the IAIF method because of the lack
of precision of the DAP method. Conversely, the MSP based
method shows nearly no ripples because the VTF expression
is based on the amplitudes of the harmonic model which can
be estimated almost perfectly. Ripples made by the CC or ZZT
methods are difficult to evaluate because the anti-causal part
is damped by the analysis window and the causal part is set
to zero by the decomposition algorithm.
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Fig. 7. Estimation of the glottal source in thin solid black line using MSP,
IAIF and ZZT. The synthetic glottal pulse is shown in dashed lines and the
estimated LF pulse in thick gray line.

D. Examples on recordings

Figure 8 shows estimated Rd values of real recordings using
MSP and MSPD2. A sustained open /e/ from breathy to tense
phonation is shown in the upper plot. As expected from the
physiological behavior of the vocal folds, the estimated Rd
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value moves from a relaxed shape to a more tense shape.
The bottom plot shows the start of the first utterance of
the Arctic bdl database: ”Author of the danger [...]”. In the
speech utterance, one can see that significant changes of
the Rd parameter exist in short time intervals. We can see
two different explanations. First, the harmonic model can be
erroneous in transients (see time 0.35). Second, if the GCI is
missestimated, the Rd estimate is also missestimated by the
MSP based method (time 0.74). However, one can see that the
voice quality can vary inside a single phoneme (see interval
[0.9; 1.1]).
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Fig. 8. Examples of Rd estimates on real recordings: The upper plot shows
a sustained open /e/ from breathy to tense phonation. The bottom plot shows
the analysis of the utterance ”Author of the danger [...]”. The estimate using
MSP in plain line and the estimate using MSPD2 in dashed line. The Oq

value computed from the EGG is shown in thin line.

V. CONCLUSIONS

We argued that the main difference between the glottal
source and the vocal-tract filter is their mixed-phase and
minimum-phase property. Accordingly, we showed that this
difference can be used in the estimation of the shape pa-
rameter of a glottal model. Firstly, a method minimizing the
Mean Squared Phase (MSP) of the convolutive residual of a
voice model has been proposed to jointly estimate the shape
parameter and the time position of a glottal model. In order
to estimate the parameters of a given glottal model with the
proposed methods, we discussed the conditions which have
to be satisfied by the glottal model and its parametrization.
Secondly, to estimate the shape parameter only, we saw that
the glottal model position can be ignored using the 2nd order
phase difference with respect to the harmonics (leading to the
method using MSPD2).

Using synthetic and EGG signals the efficiency of the
proposed methods was evaluated. In terms of GCI detection,

the method using MSP outperformed the compared methods
and slightly improved the precision of a previously proposed
method. However, its robustness can be lower than the other
methods because it is possible that the phase of the LF model
does not correspond to the phase of the real source. To evaluate
the shape parameter estimates, the proposed methods have
been compared to the IAIF, Complex Cepstrum and ZZT
methods. The last methods estimate the glottal parameters
after a separation of the Vocal-Tract Filter and the glottal
source whereas the proposed methods jointly estimate the
shape parameters of the glottal model and a representation
of the VTF. Additionally, we saw that the weighting of the
error functions involved in the different methods influences
the methods efficiency. In order to obtain the best efficiency
for each of the compared methods, the number of harmonics
taken into account in the error functions must not exceed 6. In
conclusion to the evaluations, whereas the method based on
MSP seemed to imply more precise estimates using synthetic
signals, evaluation with EGG signals showed that the method
using MSPD2 outperformed all the compared methods. More-
over, in addition to being independent of the glottal model
position, another advantage of the MSPD2 is that it does not
need initial values. Finally, the estimated glottal source using
the proposed method showed less ripples compared to the IAIF
method and two examples on real recordings showed that the
estimated Rd values are highly correlated to the breathy/tense
voice quality.
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