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Performance Following: Real-Time Prediction of
Musical Sequences Without A Score

Adam M. Stark, and Mark D. Plumbley, Member, IEEE

Abstract—This paper introduces a technique for predicting
harmonic sequences in a musical performance for which no
score is available, using real-time audio signals. Recent short
term information is aligned with longer term information, con-
textualising the present within the past, allowing predictions
about the future of the performance to be made. Using a mid-
level representation in the form of beat-synchronous harmonic
sequences, we reduce the size of the information needed to
represent the performance. This allows the implementation of
real-time performance following in live performance situations.

We conduct an objective evaluation on a database of rock,
pop and folk music. Our results show that we are able to predict
a large majority of repeated harmonic content with no prior
knowledge in the form of a score.

Index Terms—Performance following, online algorithms, beat-
synchronous sequences.

I. INTRODUCTION

THE DESIRE to create interactive automatic musical ac-
companiment systems for musicians has been the focus of

much research in recent years. This technology has potential
in several areas including facilitating rehearsal when no or
limited human accompaniment is available [1] or easing the
relationship between human performers and computer tech-
nology in live performances [2]. This technology has also
often been used to create new forms of innovative and creative
musical works [3].

One particular area that has received much attention is score
following [4]. Score following is the automatic matching, in
real-time, of notes played in a performance to those in a
musical score. It allows us to discover the current position
of the performance in the score. This positional information
allows us to know the future of the performance and as a
consequence a musical accompaniment can be played.

However, in some cases no score exists for the performance.
This is not unusual for many forms of music, including rock
and pop music. Furthermore, the music may be improvised,
rendering the prospect of producing a score virtually impos-
sible.

In this paper we address the problem of predicting the future
of performances for which no score exists. Solutions to this
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problem, which we will refer to as performance following, can
take advantage of the fact that much music contains repetitions
of musical phrases [5, Ch. 1]. Indeed, it is certainly a skill of
human musicians to be able to recognise repetitions in music
and to be able to make predictions of the future based upon
these repetitions.

Our challenge, then, is to contextualise recent musical
information (the last few seconds) within longer term musical
information (the last few minutes). Assuming the perfor-
mance contains repeats, we should be able to identify any
repeats and therefore make predictions about the future of
the performance. This would allow an automatic musical
accompaniment, such as a bassline or melody, to be generated
to a live musical performance with no prior knowledge in the
form of a score.

Our motivation for attempting to solve this problem is
twofold. Firstly, we believe that automatic accompaniment
systems, such as score followers, should be capable of dealing
with spontaneity in music, such as is the case in improvisation.
Secondly, we believe that there are a number of potentially in-
teresting new applications based upon the idea of performance
following. The prediction of future harmonic content opens up
the possibility of content-informed audio effects or automatic
musical performers that do not require human supervision to
partake in musical performances.

II. BACKGROUND

The repetition of musical patterns is an aspect commonly
found in music, particularly western music [5, Ch. 1]. These
patterns can easily be represented as sequences of notes [6],
chords [7] or other musical features [8], [9].

Given the partially repetitive nature of these sequences a
topic of interest in recent years has been the prediction of
musical sequences.

A. Musical Prediction

Musical prediction is a topic that has been approached
from a number of directions. Some have taken an information
theoretic perspective where models are developed to reflect
the perceptions of human listeners [10], [11]. The process of
“anticipation”, arising from prediction, has also been identified
[10], [12], [13], a full discussion of which is beyond the scope
of this paper. Others make no attempt to model human cogni-
tive processes, employing prediction purely for the operation
of some practical system [14]. In this present paper, as we
are concerned solely with solving a practical problem, we
also make no attempt to model human cognition, and focus
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on making musical predictions by identifying repetitions of
current patterns in the past of the performance.

Early systems for musical prediction were developed to
learn production rules from musical examples. For symbolic
data, Kohonen [15] developed a context sensitive generative
grammar that, given a number of sequences that presented
two conflicting next symbols, dynamically expands the context
length of one or more of the sequences until such conflicts
are resolved. Later, Thom [14] made use of N-gram models
to predict chord transitions in Jazz music.

More recently, Pachet [16] has introduced the Continuator,
a system that learns stylistic information about a performance
as it takes place. Operating upon symbolic data, and based
on an extension of a Markov model, it represents sequences
and sub-sequences of notes either from a performance or from
data stored in a MIDI file. The Markov model is then used to
generate new material in real-time by traversing a prefix tree
according to transition probabilities.

Conklin [17] has argued that music generation and analysis
are highly interconnected and highlighted the limitations of
models that have highly specific contexts such as N-gram or
Markov-based techniques.

Assayag and Dubnov [18] have suggested using the Factor
Oracle structure [19] for musical analysis and generation. The
Factor Oracle is a state automata which, for a given sequence
of length N, is able to represent the presence and location
of repeated sub-sequences of variable length using a linear
number of states (N + 1) and transitions (at most 2N − 1).

Factor Oracles have been used as the basis for the interactive
system OMAX [20] for polyphonic MIDI and its equivalent
for monophonic audio, OFON.

A difficulty associated with Factor Oracles is that they
require a single discrete state for each symbol. This is appro-
priate when processing MIDI data, or for monophonic audio
providing a reasonably reliable pitch detector can convert
audio signals to discrete symbols. However, when considering
polyphonic audio, it is more complicated to convert musical
features, such as spectral vectors, into single discrete symbols.

Two suggestions relating to Factor Oracles are known to
the authors. The Audio Oracle [21] is an extension of Factor
Oracles for use with audio vectors, assigning transitions based
upon a Euclidean distance function. A second suggestion was
made in [22] that by using a “relatively severe quantisation”,
spectral vectors can be reduced to a small number of classes.

Both these techniques rely on a form of thresholding of
distance functions between spectral vectors, either in spectral
comparison or in some form of clustering. However, spec-
tral vectors extracted from musical audio that humans may
consider harmonically similar can vary in their constitution
depending on the instrumentation, intensity of performance,
the register of the instrument as well as several other factors.
As a result, any such thresholding is bound to be imperfect in
some way. Indeed, the process of discretising harmonic vectors
into a number of classes is related to the problem of chord
recognition, which is still an unsolved problem.

We desire for our application a technique that is capa-
ble of 1) comparing sequences of spectral vectors extracted
from polyphonic audio; and 2) allowing the comparison of

sequences that are non-exact, possibly containing substituted,
inserted or deleted elements. We turn our attention now to a
widely used family of techniques for the alignment of musical
sequences based upon similar sub-sequences.

B. Sequence Alignment in Music

Many techniques for the comparison of musical sequences
are based upon several algorithms that have emerged from
the field of computational biology. For the global alignment
of two sequences of amino acids, Needleman and Wunsch
[23] detailed a technique that first calculates a score matrix
based upon the similarity of these sequences. In the simplest
case, a value of 1 is assigned for matching elements and
a 0 for mismatches. A dynamic programming algorithm is
then used to calculate all of the possible pathways through
the matrix. Finally a traceback step is performed to compute
the best alignment of the two sequences. The algorithm is
such that it allows for differences in the sequences such as
inserted, deleted and substituted elements to be taken into
account. Building on this work, Smith and Waterman [24] later
presented a technique for computing the highest scoring align-
ments between sub-sequences of two longer sequences. These
are referred to as local alignments. A faster approximation of
local alignment without ‘gaps’ (originating from inserted and
deleted elements) was presented in [25] with a gapped version
following later [26].

These algorithms have been applied widely to music. Mon-
geau and Sankoff [6] used sequence alignment techniques to
compute a value of similarity between two musical scores.
Representing monophonic scores as ordered sequences of
pitch-duration pairs, an alignment is calculated taking into
account the concepts of insertion, deletion and substitution
as in [23]. However, the concepts of replacement of one note
by several, and several by one, are also considered.

In the field of music information retrieval, Hu et al [27]
describe a technique that, given an audio file, attempts find
the corresponding MIDI file or vica versa. Ferraro and Hanna
[28] investigate various optimisations of alignment algorithms
for music through the consideration of different pitch represen-
tations, different substitution costs for notes and consideration
of note duration. Robine et al. [29] suggest improvements to
alignment algorithms through the incorporation of aspects of
music theory such as the intervals between notes.

For analysing the structure of musical pieces there has been
an adaptation for musical data of the widely used genetic
sequence alignment algorithm BLAST [25] by Kilian and
Hoos [30] and the approach of Dannenberg and Hu [31] for
creating structural descriptions of a piece of music.

C. Musical Sequence Alignment in Live Performances

The systems mentioned above largely process audio files in
an offline fashion. However, we are proposing a real-time, live
music performance system. Several existing real-time systems
make use of the sequence alignment techniques discussed
above.

Many score following systems have made use of sequence
alignment of musical information. Dannenberg [32] compares
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a monophonic performance to a score, using pitch estimation
to create a sequence of pitches from the audio and sequence
alignment techniques to compare it to the score. A set of
adaptations for handling polyphonic keyboard performances
were later presented [33].

Pardo and Birmingham [7] compare polyphonic MIDI per-
formances to partially specified scores or ‘lead sheets’ -
musical notations that indicate the essential elements of a
performance to musicians, for example chord sequences or the
leading melody. From the MIDI information, a chord sequence
is extracted and this is then compared to the lead sheet using
a global sequence alignment.

Dannenberg and Hu [8] have suggested that their technique
for comparing polyphonic audio to a symbolic MIDI file could
be used as part a real-time performance system. They achieve
this comparison by synthesising audio from the MIDI file
and extracting sequences of chroma vectors from both audio
streams before computing an alignment between the two.

Dixon and Widmer [9] present an approach for aligning
polyphonic audio recordings of different performances of the
same piece of music. This is intended to be a useful tool
for musicologists and musicians as it allows the user to
switch between time aligned recordings. Using a spectral
representation linear at low frequencies and logarithmic at
high frequencies, spectral difference vectors for each frame
compared to its predecessor are calculated. A cost matrix is
calculated using the Euclidean distance between vectors and
an alignment is computed through a dynamic programming se-
quence alignment technique. This technique was later applied
to the problem of tracking a live performance in real-time [34].

It should be mentioned that there are score following
techniques that do not make use of sequence alignment. An
example of this has been presented by Raphael [35] who
uses hidden Markov models [36] to compare notes played by
a soloist to a musical score. Based upon this analysis, the
score itself and data from past performances, a probabilistic
distribution is created which is used to schedule MIDI notes
in the future, from a score, to create an accompaniment.
Another example is Cont’s Antescofo [37] which makes use
of a probabilistic framework containing two audio and tempo
agents that use each others predictions to estimate the position
of a performance in a score and the current tempo.

D. Other Automatic Accompaniment Systems

The above techniques compare a musical performance to
some form of score. However, we are attempting to track a
musical performance without a score. Several other systems
have been presented that track performances in some way that
do not make use of a score.

Simon et al. [38] introduced MySong, an offline system for
automatically choosing chords to accompany a vocal melody
provided by the user. Aimed at musically untrained users, a
hidden Markov model, trained on a music database, is used to
select chords for each new melody.

Robertson and Plumbley [2] describe B-Keeper, a system for
tracking a live drummer. An event based beat-tracker is used to
detect tempo changes in a live performance and a pre-recorded

accompaniment is adapted to maintain synchronisation with
the drummer.

These previous approaches either do not operate in real-time
[38] or do not attempt to predict harmonic information in the
future of the performance [2]. We are proposing a real-time,
audio based system for predicting future harmonic content in
musical performances, with no access to a score.

III. APPROACH

We approach the problem of attempting to predict the future
of a musical performance with no prior information in the
form of a score. Our solution is to use the hypothesis that
much music contains repeated themes and patterns. We wish
to ‘recognise’ musical patterns being performed by referring
to the past of the performance. If the current musical pattern
has been previously performed in the piece, we can identify
these previous repeats and use them to make predictions about
the future of the current musical pattern.

The live performance systems mentioned in section II-C
typically make use of a global alignment between the perfor-
mance and some form of existing score. As we are solving the
problem of tracking a performance without a score, we have
no score to match against. Therefore, we instead compare the
most recent few seconds of the performance to the most recent
few minutes. The past information of the performance itself
becomes the ‘score’.

However, in comparing recent audio to longer term audio we
are presented with some challenges. Firstly, the tempo of the
performance may change, making audio-to-audio comparison
non-trivial as the same pattern may be of different lengths.
Secondly, the comparison of high quality audio signals in their
raw form is computationally expensive.

In order to solve these problems, we calculate beat-
synchronous sequences from the audio, with one symbol for
each inter-beat interval. These are discussed further in section
IV.

Once we have calculated these beat-synchronous sequences,
we apply a sequence alignment technique, described in section
V, based upon dynamic programming, to make predictions
about the future of the performance based upon past informa-
tion.

Overview of System

Before discussing the details of its implementation, we give
a brief overview our system.

We use as an input signal the output of a single polyphonic
instrument, such as an acoustic guitar or a piano. This is
transformed, in real-time, in to a sequence of beat-synchronous
chroma features using a chromagram analysis technique and
either a beat-tracker or fixed tempo click. The chroma feature
sequence is then fed into our performance follower which
attempts to predict the content of the next chroma feature from
past information. An overview of our approach is depicted in
Figure 1.
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IV. BEAT-SYNCHRONOUS SEQUENCES

Beat-synchronous sequences are sequences calculated from
music that has been segmented in some way related to the
beat. We take the beat to be the dominant perceived metrical
pulse in a piece of music [39]. The segmentation could be of
the content between two beats, or the interval of half or double
this length caused by performing beat-synchronous analysis at
double or half the perceived tempo.

Through choosing to use beat-synchronous sequences, we
are making the assumption that the music to be used as an
input is based around a strong beat.

Beat-synchronous processing has been used previously by
others to identify cover songs [40], it has been used in [41] and
[42] for analysing the structure of music, and, in a real-time
context, in a remixing and cross-processing tool [43].

A. Advantages of Using Beat-Synchronous Sequences

There are three advantages to representing music beat-
synchronously for our application. Firstly, it drastically re-
duces the amount of information needed to represent an audio
signal. This cuts the computation time of any subsequent
sequence comparison. For example, to represent 60 seconds
of audio at 44.1kHz, using a frame size of 512 samples, we
need over 5000 features. But if we reduce this to one feature
per beat, at 120bpm, we only need 120 features - around 2.5%
of what we needed for frame-by-frame representation.

A second advantage is that the same signal will be repre-
sented by the same number of features regardless of tempo.
This improves our ability to easily compare sequences.

Finally, as we are looking to represent harmonic information
in the signal, beat-synchronous signals take advantage of the

Fig. 1. a) An overview of the performance following technique.
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Fig. 2. A polyphonic beat-synchronous sequence - a sequence of chroma
vectors. This shows the harmonic content for each inter-beat interval. By
inspection we can see some repeated content. For example, the content of
inter-beat intervals 29-36 looks visibly similar to the content of inter-beat
intervals 37-44.

fact that harmonic changes often occur at beat-locations. This
allows us to avoid the problem of attempting to analyse an
audio frame that contains information from both before, and
after, a harmonic change. Beat-synchronous techniques have
been shown previously to increase performance in harmonic
analysis [44].

B. Calculation

We can achieve beat-synchronous segmentation using either
some form of real-time beat tracker [45] or a fixed tempo click
track. Due to the unreliability of existing beat tracking systems
our emphasis is currently on the use of a click track (although
we have also successfully used the system with a real-time
beat tracker). It is quite possible to calculate beat-synchronous
sequences at higher or lower metrical levels, but at present we
choose the level of the tactus, the rate at which humans are
most likely to tap beats.

At the time, in seconds, of the rth beat in the performance,
γr, we calculate a single beat-synchronous feature vector, ∆k,
for the kth inter-beat interval, the time between the beats
[γr−1, γr]. If, in the performance, we have R beats, then we
will have K = R − 1 inter-beat intervals and therefore K
beat-synchronous feature vectors (hence the subscript k for ∆
and r for γ).

For a more detailed discussion of techniques for calculating
beat-synchronous sequences, see [45].

C. Beat-Synchronous Sequences for Polyphonic Audio

In representing polyphonic audio, we use beat-synchronous
sequences of chroma vectors, also known as pitch class profiles
[46]. A chroma vector is a 12×1 vector whose values represent
the energy present in each of the 12 semitone pitch classes
found in western music. To calculate beat-synchronous chroma
features, we downsample the 44.1kHz input signal to 11025Hz
and make use of our previous chroma feature calculation
technique [47]. We calculate as many chroma features as is
possible for the inter-beat interval [γr−1, γr] given the audio
frame size of the chroma feature calculation technique. Then,
for the kth inter-beat interval, we create a single chroma vector,
∆k, by summing the Q vectors within the inter-beat interval.
The vth bin of ∆k is calculated by:
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∆k(v) =
Q∑
q=1

Cq(v) (1)

where Cq is the qth chroma feature in the inter-beat interval,
q = 1, 2, ..., Q, where Q is the number of chroma features cal-
culated in the inter-beat interval [γr−1, γr] and v = 1, 2, ..., 12.
Finally, once the polyphonic beat-synchronous chroma feature
has been calculated, we square it to increase the dynamic range
and suppress the noise floor before normalising it so that each
chroma vector sums to 1. An example of a beat-synchronous
chroma vector sequence can be seen in Figure 2.

V. PERFORMANCE FOLLOWING: SEQUENCE PREDICTION

In order to perform sequence prediction, we maintain two
sequences. The first, A = a1, a2, ..., aN , is a longer sequence
containing the N most recent beat-synchronous vectors, which
we refer to as the long-term memory. The second, B =
b1, b2, ..., bM , is a shorter sequence containing the M most
recent beat-synchronous vectors, which we refer to as the
short-term memory. Specifically:

A = ∆k−N+1, ...,∆k (2)

B = ∆k−M+1, ...,∆k (3)

where ∆k is the kth, and most recent, beat-synchronous vector
and N > M .

We choose the values of N and M according to a likely
tempo of 120bpm. N should be large enough to allow the
storage of recent developments in the music - although larger
values will increase computation time. A value of 300 gives
us a long-term memory length of 2 minutes and 30 seconds
and seems to allow computation in real-time. The value of
M determines the length of the longest sub-sequence match
between the short-term and long-term memory. We discuss the
choice of the value of M in section VII-A but for now suggest
a value in the range of 5 to 50.

Our alignment technique is an adaptation of the Smith-
Waterman algorithm [24]. In order to detect previous occur-
rences of information in the short-term memory, sequence B,
within the long-term memory, sequence A, we compute an
alignment matrix between the two.

The first step is to calculate a similarity score matrix, s(i, j).
We achieve this by calculating the inner product of the beat-
synchronous chroma vectors in sequences A and B:

s(i, j) =
V∑
v=1

ai(v)× bj(v) (4)

where ai(v) is the vth chroma bin of the ith beat-synchronous
chroma vector in sequence A, bj(v) is the vth chroma bin of
the jth beat-synchronous chroma vector in sequence B and
V = 12, the number of pitch classes in each chroma vector.

Next we calculate the alignment matrix H by dynamic
programming. The value Hi,j indicates the score for the
alignment of two sub-sequences ending in ai and bj . Initially
we set all the values Hi,0, H0,j and H0,0 to zero. We then
calculate the rest of the matrix H by:
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Fig. 3. The matrix resulting from the comparison of the most recent 300 beats
of a performance with the most recent 50. As can be seen in the final column
of the matrix, there are three potential alignments (identified by arrows) for
the fragment indicating that the fragment contains a repeated part of the
performance.

Hi,j = max
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Hi−1,j−1 + s(i, j)

Hi−1,j −W
Hi,j−1 −W

0

(5)

where 1 ≤ i ≤ N , 1 ≤ j ≤ M , and W is the gap penalty
which penalises alignments that contain inserted or deleted
elements. We choose W = 4

3 in a similar way to [24]. Figure
3 shows an example of an alignment matrix resulting from the
comparison of two sequences.

Our next step is to find a likely candidate for the next
element in the beat-synchronous sequence. Using the align-
ment matrix H , this involves finding points where the last
elements of sequence B align strongly with sequence A.
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The strength of alignment is based upon the context of sub-
sequence matches between the two sequences. In the example
in Figure 3, there are three potential alignments shown by the
strong diagonals and identified by arrows. To find these points
of strong alignment we reduce our search to the final column
of the alignment matrix and choose the value:

y = arg max
1≤i<(N−β)

Hi,M (6)

where β is a value that allows us to not search the most recent
β elements in the long term memory for a strong alignment.
This is because harmonic content can be slow in changing
and so recent content may provide strong alignments which
can be misleading. This essentially allows us to indicate that
repetitions as recent as β beat-synchronous vectors ago are
unlikely and so should not be favoured over other, longer term
plausible alignments. Smaller values of β allow shorter repeats
to be identified, larger values allow quicker identification of
correct repeats, assuming they are repeated after a longer
period than β. We choose β = 10.

Finally we predict the next element, b̂M+1, of the sequence
B to be:

b̂M+1 = ay+1 (7)

It is possible that there will be two or more equally strong
alignments and the choice of either the first, last or some other
alignment is a design choice.

In addition to the polyphonic approach presented here, we
have also previously presented a version of this technique
for sequences of single discrete symbols such as chords or
pitches [48] which could be used in a purely monophonic
implementation.

VI. EVALUATION

A. Musical Sequence Alignment Database

To evaluate our system, we asked a number of musicians
to compose acoustic guitar pieces. The nature of the content,
such as the repetition of themes, was not mentioned to the
musicians. The result is a database of 32 pieces in rock, pop
and folk styles comprising over 104 minutes of audio, recorded
in mono, 16-bit audio at 44.1kHz. The mean length of each
piece was 3’16 with a standard deviation of 36 seconds. This
database has been made publicly available under a Creative
Commons license, along with a real-time implementation in
Max/MSP and Matlab source code both for our technique and
for performing this evaluation.1

For each audio file, the beats were labelled using a combi-
nation of automated and human annotation to ensure that they
were correct.

When assessing the similarity of predicted to observed har-
monic vectors, our initial tests showed that distance measures
such as the Euclidean distance did not necessarily show a small
distance between vectors that were harmonically similar to
the human ear. This may have been due to variations in the
intensity of the performance or the octave at which a harmonic
sequence was played.

1http://www.eecs.qmul.ac.uk/∼adams/pf/

Fig. 4. The content of inter-beat intervals (IBIs) 1-32 is repeated from 33-
64 and 97-128. This is shown as the three occurrences of section A. In this
example, the content of inter-beat intervals 65-96, labelled B, is not repeated
elsewhere and so is not ‘predictable’. Overall in this example, 50% of content
is ‘predictable’.

As a result, in order to evaluate the performance of our
system objectively, we have created a ground truth as follows.
For each audio file, we have grouped repeated sections to-
gether. For example, the content of inter-beat intervals (IBIs)
1 to 32 may be repeated during 33 to 64 and 97 to 128.
This is depicted in Figure 4. As an annotation, we record that
information as follows:

[[1,32],[33,64],[97,128]].

From this, we can say that an acceptable prediction for IBI
33 is IBI 1, for IBI 34 we accept a prediction of IBI 2 and so
on. For the later repeats, we can have two or more acceptable
predictions - for IBI 97 we can accept predictions of IBI 1 or
IBI 33. From this we develop a list of acceptable predictions
(APs) for each IBI:

IBI APs
1: none
2: none
...

...
32: none
33: 1
34: 2

...
...

97: 1,33
98: 2,34

...
...

To perform an evaluation on the database, we assess predic-
tions as either correct or incorrect depending on whether the
prediction made is in the list of acceptable predictions for each
IBI. We record, for each audio file, the percentage of correctly
predicted IBIs. Some IBIs have no acceptable predictions and
are therefore not ‘predictable’ - for example, the IBIs for the
first instance of a pattern would not be ‘predictable’ as it would
not have occurred before. We do not assess the performance
of our system on these as the results for each audio file would
vary greatly depending on the amount of repeated content.

While the stylistic content of the database is similar to much
popular music, it is interesting to discover that 94.1% of the
content is made up of sections that are repeated elsewhere in
the piece and 76.2% is ‘predictable’ in the terms that we have
described above.
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TABLE I
THE RESULTS OF EVALUATING OUR PERFORMANCE FOLLOWING

TECHNIQUE (PF), A FACTOR ORACLE (FO), AN N-GRAM MODEL
(N-Gram) AND A RANDOM PREDICTOR (Random) ON A DATABASE OF 32
ANNOTATED AUDIO FILES. RESULTS ARE GIVEN AS MEAN PERCENTAGE

SCORES (%) AND THE STANDARD DEVIATION OF THOSE SCORES (σ). THE
PARAMETER M IS THE SHORT-TERM MEMORY LENGTH OF THE

PERFORMANCE FOLLOWING TECHNIQUE, THE PARAMETER D IS THE
NUMBER OF CLUSTERS USED IN THE K-MEANS CLUSTERING FOR THE

N-GRAM AND FACTOR ORACLE MODELS, AND THE PARAMETER L IS THE
LENGTH USED IN THE N-GRAM MODEL.

Model Parameter Score / % σ / %
N-Gram L = 3, D = 13 34.8 15.4
N-Gram L = 5, D = 6 38.0 16.9
N-Gram L = 10, D = 3 42.1 17.7
N-Gram L = 15, D = 3 38.0 20.8

FO D = 4 63.0 19.1
FO Best D Per File 68.5 16.6
PF M = 5 50.6 17.4
PF M = 10 69.6 17.6
PF M = 15 75.1 14.3
PF M = 20 75.3 13.9
PF M = 25 74.3 13.9
PF M = 30 73.2 14.2
PF M = 35 72.6 14.4
PF M = 40 71.5 15.0
PF M = 45 70.4 15.4
PF M = 50 69.3 16.0

Random - 2.2 1.4

B. Methodology

In evaluating our technique we were faced with the problem
that if the beats are incorrectly tracked then it becomes
impossible to tell whether errors are due to poor localisation
of harmonic content or poor performance of our performance
following technique itself. As a result, we decided to use the
beat times from the database, rather than allow for the errors
that may occur using only an automated beat tracker.

It is accepted that, should a beat tracker be used in a real-
time context, inaccurate beat-tracking will have a detrimental
affect on performance. However, reasonably accurate real-time
beat-tracking models exist [45] and it is hoped that more
accurate models will be produced in future. It is also perfectly
possible to largely avoid this problem by playing to constant
tempo click tracks.

We attempted to make predictions for each audio file as
follows. If, for each audio file, we have R beats, γr, then
we will have R − 1 inter-beat intervals. From these inter-
beat intervals we calculate a sequence of beat-sychronous
chroma features as described in section IV. We then use our
performance following technique from section V to attempt
to predict acceptable harmonic content from the past of the
performance. We record the index number of the inter-beat
intervals for predicted beat-synchronous chroma features. We
achieve a score by comparing these predictions to the ground
truth annotations of the database.

C. Comparison to Other Techniques

We also compared our technique to three others. As a
baseline, we implemented a random predictor that would
predict a random inter-beat interval from the past of the
performance as a prediction of future content.

The second was based on a Factor Oracle (FO) implemented
according to [18], using K-means clustering to group indi-
vidual beat-synchronous chroma vectors into clusters so that
a model with discrete states such as a FO could process the
data. By following suffix links we identified previous repeated
factors and used these to make predictions of past IBIs with
similar harmonic content. We have presented the results for
the best single number of clusters (4 clusters) and the results
for a version where the best number of clusters is chosen for
each file. As some random initialisation is involved with the
K-means clustering, we ran the results 20 times and took the
mean for each file.

The third technique was based on an N-gram model [49, Ch.
6]. We again used K-means clustering to create a sequence of
discrete symbols. Using an N-gram model we modelled the
sequences as they were processed in real-time - recording
the best transition given a certain sequence. The recorded
prediction was the inter-beat interval number from the past
of the performance for the transition the last time that the
given sequence occurred. Specifically, we chose lengths L of
3, 5, 10 and 15 for the N-gram model. We used the single best
number of clusters for each value of L and as with the Factor
Oracle approach, each result was the average over 20 runs to
compensate for random initialisations in the clustering.

VII. RESULTS AND DISCUSSION

Our results are displayed in Table I. The best result is for our
performance following technique (PF), with the value of the
short-term memory length M = 20, which achieves a mean
score of 75.3% of predicted IBIs. Given the standard deviation
of 13.9 and the sample size, the 95% confidence interval [50]
for this result is [75.3 ± 4.81]. In addition, we are able to
predict a majority of content overall - 57.4% - given that our
mean score is only on the ‘predictable’ 76.2% of the database.

Furthermore, compared to the other models, our perfor-
mance following technique outperforms the Factor Oracle,
N-gram model and the random predictor. From this we can
conclude that our system works well.

A. Short-Term Memory Length (M)

There are, however, several potential areas for improvement.
While the best value on average of the short-term memory
length, M , was 20 in our evaluation, different pieces reached
their maximum scores with different values of M . Figure 5
shows the number of examples achieving their maximum score
for a given value of M . We can see that the majority of
examples achieved higher scores with values of M other than
20. Ten of them achieved their best score when M = 15. But
another 19 examples (59%) were best suited to values of M
that were neither 15 or 20.

The implication of these findings is that improvements could
be made by implementing M as an adaptive parameter that
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Fig. 5. The number of examples achieving their maximum score for a given
value of M , the short-term memory length.

adjusts its value to suit the characteristics of the piece in
question. Indeed, if we had managed to use the best version of
M for each example, our performance would have increased
by over 3% with a 95% confidence interval of [78.7% ± 4.08].

From informal use of the system in a real-time context,
it appears that smaller values of M , i.e. smaller short-term
memory lengths, cause the system to be more responsive to
fast changes in the music. Meanwhile, larger values of M
provide more context and therefore allow predictions based
upon deeper analysis of the past of the performance.

Also, while our system can pick up on repetitions of varying
lengths up to a size of M (due to the ability to match sub-
sequences), our system may benefit from the combination of
several performance following models with varying short-term
sequence lengths M to capture information about changes
happening at different rates in the performance.

B. The Selection of Features

The use of only harmonic features, such as chroma features,
is a limitation on the system. In particular, there are many other
aspects of music, such as rhythmic and timbral information,
that are perceived as being repeated by humans and that
are also useful in identifying repeated sections in musical
performances.

The use of beat-synchronous chroma features has many ben-
efits to the system. In addition to those mentioned in section
IV-A, the beat-synchronous nature of these features acts as
a form of temporal smoothing, while the chroma features,
independent of octave, act similarly on harmonic data. The
result is that we have been able to compare audio that may vary
slightly but otherwise be considered similar and comparable
by human ears. An example is the comparison of a strummed
guitar chord progression compared to an arpeggiated version of
that same chord progression – i.e. the same chord progression
played in different styles.

There are, however, limitations to using beat-synchronous
chroma features. We may wish to have segmentation at met-
rical levels that give us more detail in terms of the harmonic
development of the performance as many harmonic events
occur at rates faster than the tactus. However, in order to
obtain a required frequency resolution, we must use an audio

frame size of a certain size. If the inter-beat intervals are
too short – due to a combination of the tempo and choice
of metrical level – then we may be unable to achieve the
required frequency resolution. While this could be partially
solved using larger buffers with overlaps, the results would be
to ‘blur’ representations across beat boundaries.

C. Evaluation of the Effect of Beat Tracking Errors

In order to migrate fully from the use of fixed tempo click
tracks to a real-time beat tracker, it would be desirable to
perform an evaluation that examined the effect of beat tracking
errors on the system. Given our use of a ground truth based
upon annotated beat locations, such a comparison is difficult
as a beat tracker may erroneously identify beats and thereby
make impossible a comparison using the ground truth. We have
also mentioned problems encountered using distance measures
such as the Euclidean distance in section VI-A.

Such an evaluation would also allow us to assess the useful
values of the gap penalty, W . This is used rarely in the current
evaluation as it is designed to deal with beat tracking errors
- aligning sequences where there are 5 beats where there
should be 4, for example. Given that we are using ground truth
beat locations we do not encounter such errors in the current
evaluation. We will assess ways of performing an evaluation
using real-time beat trackers in future work.

D. The Annotation Process

An aspect of our evaluation that is worthy of more study is
the annotation process. In the current study, repeated sections
were identified through the subjective human perception of a
musician. However, there are multiple potential interpretations
of what can be considered to be a ‘repeated section’. A formal
definition of a repeated section would be ideal, but due to the
variability and complexity of music, it is complicated to define
(and as complicated to annotate for a human).

For example, if one IBI was the same as the previous one,
it could technically be called a repeated section. However,
this would not be a definition of a repeated section that most
humans would agree with due to its brevity. Likewise, the
suggestion that a certain number of IBIs have to be repeated
before we can label a section as ‘repeated’ is undermined by
the potential for beat tracking at different metrical levels and
the different time signatures of music. Another option would
be to say that there must be a certain number of harmonic
changes. However, if the music is more complicated than a
simple chord sequence then harmonic changes will be more
difficult to identify.

E. Scope of the Work

Our technique is specifically focused upon music that is
based, at least partially, on the repetition of musical patterns,
such as those that occur in the rock, pop and folk genres.
Therefore we make no claim that our technique is extendable
to all musical styles.

We also defend the use of a single instrument, such as a
guitar, as the input signal. In a live performance context, it



DRAFT SUBMITTED TO IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. Y, JUNE 2011 9

is much easier to access a good quality audio signal from an
accompanying instrument such as a guitar than it is to acquire a
good quality signal of an entire ensemble and to then deal with
the multi-instrumental nature of that signal. Our use of only
a single instrument, which may be part of a larger ensemble,
has precedents in research on beat tracking of drums in live
performances [2] and our own work on beat tracking informed
audio effects for guitar [51].

F. Application: Automatic Bassline Accompaniment

Here we outline an application for our performance fol-
lowing technique. For our polyphonic performance following
technique, we are given, at each beat, a prediction of the
harmonic content of the next inter-beat interval in the form of
a chroma vector. Our implemented application is an automatic
bassline accompaniment. This involves playing the root note
associated with each predicted chroma vector. We achieve this
by classifying the chroma vector using our previous chord
recognition technique [47]. We then use the root note of this
chord to produce an accompaniment using a synthesiser.

VIII. DIRECTIONS FOR FUTURE WORK

We have already outlined several areas for future study,
including an adaptive short-term memory length M , the in-
clusion of musical features other than just harmonic features
and a deeper study of the annotation process for evaluations
of the kind we have performed.

While our system performed well in the evaluation, we
believe that it must be improved further in order to be a truly
robust live performance tool. Furthermore, as it currently only
makes predictions based upon the presence of repetition, its
integration into a larger system capable of making predictions
in the absence of repetition would also be useful. Finally,
integration of some form of external meta-data would be useful
so that performing musicians could indicate imminent sharp
changes in tempo or other unpredictable musical changes.

Another clear contender for future study is the generation
of more complex accompaniments. The current real-time im-
plementation only provides an accompaniment in the form
of a synthesised root note bassline, as discussed in section
VII-F. It would be interesting to examine more ‘musical’
accompaniments that take full advantage of the information
contained in the sequence of chroma features predicted by the
system - perhaps looking ahead by several beats to make more
informed choices (although the accuracy of longer term predic-
tions would need to be evaluated). Such accompaniments may
involve arpeggiated chords, or perhaps long slow orchestral
accompaniments, with harmonies complimenting the harmonic
content of the piece.

It would also be interesting to make adjustments to the
representations, or the comparisons between them, so that
transposed versions of the same theme could be recognised
by our technique.

IX. CONCLUSION

We have presented a technique that is capable of predicting
harmonic content in musical performances based upon the

detection of repeated musical themes. Using a combination
of beat-synchronous chroma feature representations and a
dynamic programming alignment algorithm, we have placed
short term musical content in the context of the whole per-
formance to allow predictions of future musical content to be
made.

On an evaluation of polyphonic audio files, we have shown
that we are able to predict the large majority of repeated
content – and a majority of the content overall – with no
additional information in the form of a musical score.

REPRODUCIBLE RESEARCH

We have made available, under a Creative Commons license,
both the data set and Matlab source code so that our results can
be independently reproduced. We have also made available a
real-time implementation of our technique for the Max/MSP
environment. See section VI-A for more information.
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