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Abstract—In this work, we present a model-based approach by Ephraim and Malah [1][2] preserve relatively high levél o
to enhance noisy speech using an analysis-synthesis franw@ki  speech naturalness as they are able to maintain relativalg m
Target speech is reconstructed with model parameters estiated formant and harmonic information. However. the side effect
from noisy observations. In particular, spectral envelopeis . - . N . ,,
estimated by tracking its temporal trajectories in order to is that r_nany annoylng artifacts (I.<nown as “musical tones”)
improve the noise-distorted short-time spectral amplituce. Ini- and residual noise are also remained. In contrast, subseque
tially, we propose an analysis-synthesis framework for speh STSA variants that incorporating speech presence unogyrtai
enhancement based on harmonic noise model (HNM). Acoustic (SPU)[3][7] are shown to be superior in terms of noise rerhova
parameters such as pitch, spectral envelope, and spectrabl 54 mysical tone elimination capability. However, the @tic

are extracted from HNM analysis. Spectral envelope estimain . . .
is improved by tracking its line spectrum frequency trajectories pay is that they further distort the harmonic structure a8 we

through Kalman filtering. System identification of Kalman filter @S the spectral envelope, which would potentially penahee

is achieved via a combined design of codebook mapping schemesignal quality and intelligibility. This may also accouor fthe

and maximum likelihood estimator with parallel training data. reason why the target speech processed by these approaches
Complete system design and experimental validations are \gn often sounds clean but unnatural.

in details. Through performance evaluation based on a studyf | ¢ tt ts h b de to i ¢
spectrogram, objective measures and a subjective listergrtest, it n recent years, atlempts have been made 10 Incorporate

is demonstrated that the proposed approach achieves sigrééint harmonic structure of speech in speech enhancement [8][9].
improvement over conventional methods in various conditias. A These methods generally work as a post-processing tool that
distinct advantage of the proposed method is that it succesly  js combined with classical priori SNR estimation to restore

tackles the “musical tones” problem. missing harmonics that are deteriorated both by noise and by
Index Terms—Harmonic noise model, Speech analysis, Speechconventional enhancement process. In [10][11], a complete
synthesis, Kalman filter, Codebook mapping, Vector quantiation  analysis-synthesis framework based on harmonic noise imode
VQ). (HNM) is proposed to re-synthesize clean speech signals
based on acoustic cues (e.g. pitch, spectral gain and apectr

I. INTRODUCTION envelope) extracted from noisy observations. In doing so,

PEECH enhancement is concerned with improving tﬁgrget speech is reconstructed with Speech related infmma

quality and intelligibility of speech degraded in the presonly and background noise is automatically removed. This
ence of background noise. It has been widely studied fapproach is attractive as it can retrieve damaged harmonic
decades and various algorithms have been proposed. Amé&Hgcture and at the same time eliminates residual noisgs an
them, the short-time Spectra| amp|itude (STSA) based mefﬁUSiCéﬂ tones. However, to ensure accurate model parameter
ods attract a great deal of interest [1][2][3] and generalEstimation, a pre-processing filter is often required to- pre
outperform algorithms in other categories in various noig§jéan the noisy signals prior to HNM analysis. It is reported
conditions [4][5]. The main reason is twofold. First, thdn [10][11] that pitch and spectral gain estimation applied
former are optimized in a best spectral magnitude estima®t Pre-cleaned spectrum can give satisfactory result aven i
sense by noticing the unimportance of the phase in speatty Iow SNR environments. Nevertheless, most pre-cleanin
enhancement [6]. Second, they take advantage gfriori algorithms (conventional speech enhancement methods) fai
knowledge estimated using a Bayesian framework. Howevt}, recover the spectral envelope which has been distorted by
due to inaccurate noise ana priori signal-to-noise ratio background noise. In even worse conditions, noise-coeclipt
(SNR) estimation, STSA-based algorithms often suffer pogpectral envelope is further modified by the pre-cleanirag pr
performance in non-stationary and/or low SNR environmen€£ss, results in mismatched harmonic magnitude generation
It is observed in STSA-based approaches that there is alwdys @ consequence, improved spectral envelope estimation is
a trade-off between noise suppression and speech natssaln@esired to restore the original spectral shape, so as tirapr

The original STSA and log-spectral amplitude (LSA) estionat the overall quality and intelligibility of synthetic speec

_ _ ~ The method to improve the spectral envelope estimation can
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hcso@ee.cityu.edu.hk). known that Wiener filtering is correlated with linear predic
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tion, and clean AR parameters can be iteratively estimat&eéction Il, the combined design of analysis-synthesis é&am
from noisy speech using Wiener filtering [12]. To improvavork and dynamics tracking is presented. In Section lll,
the estimates of clean speech and noise statistics, existaxperimental validation and practical issues such as peteam
works [13][14] choose to train speech and noise codeboodsoice are discussed. In Section 1V, the performance of the
of AR parameters, which are served as intra-frame conssraiproposed method is evaluated and compared with conveitiona
for iterative Wiener filtering (IWF). Besides, exploitatioof methods. Finally, conclusion is drawn in Section V.

Kalman filter in speech enhancement is also widely studied

[15][16][17]. In these methods, speech and/or noise are-mod II. SYSTEM DEVELOPMENT

eled as stochastic AR process, and AR parameters are repreeyq oy diagram of the complete system design is shown
sented in state-space form to model the state transitiavelest in Fig.1. During enhancement, noisy speech is initially-pre

time samples. Paramgterestmjapon_and lterative updatb_e:a cleaned on a frame basis. HNM analysis is then applied
achieved by expectation-maximization (EM) type algorithm

. . . and acoustic cues such as pitch, spectral envelope (hazmoni
[17]. Their common feature is that they assume ConStam"memagnitude), and spectral gain are estimated from the pre-

deplen(_jerfme betwe((jen tirEe domaianspIeech fﬁ?malest WiLhitnc?erhned signals. To further improve the spectral distortio
analysis frame, and make use ot xaiman Mer 1o track Mgy, qceq by additive noise as well as the pre-cleaning
intra-irame. correlation betweep speech and noise SambiE¥cess, a dynamic tracking scheme is incorporated. Fdr eac
An attempt h{;\s been made in [18] to Ipok at thg Inte rame, it looks for a block of LSFs observed up to this
frame .correlatlon between speech dynam|c_s. In their Wo.rilfame to form the feature matrix of noisy observation. A
the trajectory of each frequen_cy cpmponent is modeled USIk is established between this observation and its matche
an AR model, and a Kalman filter is incorporated to track tr]galman filter parameters via offline training. Online Kalman

_temp:)rlal d'sﬁref Fourlcir ttrar:rs]forn;f (DtFT) trajec;orlﬁlgaﬁf— adaptation is applied and smooth estimates of enhanced LSFs
Imental results demonstrate the efiectiveness of utibea of current frame are obtained. Spectral envelope consiiuct

inter-frame correlations between speech dynamics. Hawevbey the enhanced LSFs is adopted to replace the original one

emp;]lc:cymg a Kaln;]an f||t|e_r for eac? I_reqL:Iency component Which is estimated from pre-cleaned signals. All estimated
ealc t;}e_zquency channet 1S cotmpu a |one;] y dexpen_swe;[ k_and enhanced speech parameters are sent to the synthesizel
n this paper, we present a speech dynamics Wackifg . .qnstryct the target speech. Detailed proceduresdibr b

approac_h used in conjunciion With. HNM baseq analysiﬁ;'e HNM-based framework and the dynamic tracking scheme
synthesis framework to enhance noisy speech signals. H shown as follows

removes background noise by generating clean harmonics
while dynamics tracking scheme further enhances the spectr ] )
envelope after noise removal. More specifically, it incogtes A HNM based Analysis-Synthesis Framework
Kalman filter to track the temporal trajectories of line dpem HNM is a speech production model that is widely exploited
frequencies (LSFs) obtained from linear prediction arialysin speech coding and synthesis. In these applications, with
The major difference between the proposed method and ctoese bit-rate requirement, very high quality of speech can
ventional Kalman tracking approaches is twofold. First, the reproduced with HNM modeling, owing to its flexible
captures the inter-frame evolution of spectral shapeserattand effective decomposition of speech. It assumes the Bpeec
than the intra-frame evolution of time samples. Secondeats signal to be composed of a deterministic/voiced part and of a
of using AR modeling, the linear dependence between statechastic/unvoiced part. The voiced part is assumed ttacon
transition and state-observation mapping are modeled by fanly harmonically related sinusoids while the unvoicedt par
matrices, respectively. The proposed design is supporyed dan be modeled by random signals [21]. The major motivation
previous investigations on long-term correlations betwe®8F of applying HNM in speech enhancement is to take advantage
coefficients [19][20] and by experimental validations, efhis of its organized harmonic structure as priori knowledge
discussed in details in Section Ill. The system identifarati to improve the estimate of clean speech signals degraded by
of Kalman filter is achieved via codebook and maximuradditive noise. The proposed speech enhancement framework
likelihood (ML) based offline training. The enhanced LSFs arcomprises two stages, namely, speech analysis and spaech sy
then directed into the analysis-synthesis framework taawe thesis. At speech analysis stage, the general idea is tacextr
the spectral envelope estimation, and hence the perfonanaly the speech related features from noisy observatiods an
of HNM based speech enhancement. send them to the HNM synthesizer. In practice, the acoustic
The distinguishable difference between this proposedydesparameters of interest are pitch, harmonic magnitude tispec
and conventional speech enhancement methods is twof@din and voiced/unvoiced (V/UV) information. It is worth
On one hand, it takes advantage of the analysis-synthasisntioning that, in practice, it is very difficult to diregépply
framework to effectively eliminate musical tones and reald HNM analysis in adverse environment (e.g., SNR10dB).
noise. On the other hand, it looks for long-term speech evolin such cases, a preliminary de-noising step is required to
tion to obtain smoothed estimates of spectral shapes throyme-clean the noisy signals. The major steps of the proposed
dynamics tracking. Both objective and subjective evatrati HNM-based speech enhancement system are given as follows.
results demonstrate the effectiveness of the proposedoeheth 1) Pre-cleaning: The goal of the pre-cleaning step is to
over conventional methods in various noisy conditions. filter the noisy signals such that it is more suitable for the
The remainder of this paper is organized as follows. IHNM analysis. In this sense, there are two major reasons for
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Fig. 1: Block diagram of the proposed system design

incorporating a pre-processing filter in the proposed desig . ‘
First, the pre-cleaning step de-emphasizes the portiopex-s e e
trum which is dominated by noise for frequency domain pitch o0 0dB noisy_ ||

detection algorithms. In doing so, it improves the accuracy
of spectrum matching error function in noisy conditions and
thereby contributes to robust pitch estimation. Second, it
provides a rough estimation of speech and noise statistids a
therefore it is possible to estimate an overall spectrah gai
which is close to that of clean speech. Experimental results
[10][11] show that STSA-based methods are basically capabl
of doing the work.

2) Pitch detection: Due to the inaccuracy in noise and
SNR estimation, it is typical that in the STSA enhanced 00 500 1000 1500 2000 2500 3000 3500 4000
magnitude spectra, only harmonic bands with haylpriori frequency (H2)

SNR are retained while the rest of spectrum are flattengely . Short-time log-magnitude spectra of original clean
Fig.2 illustrates this phenomenon by showing the shoretlnhoisy (white noise, SNR = 0dB), and pre-cleaned voiced
log-magnitude spectra of a voiced speech segment, andsﬁﬁ%ech signals

degraded (by 0dB white noise) as well as pre-cleaned (by
[3]) version. Motivated by the fact that several dominant
harmonics and their frequency locations are preserved afte
pre-cleaning, it is able to develop a frequency domain pit&Pectrume(r, k) as

detection algorithm based on [22] to match certain portibn o M(7) bon ()

the pre-cleaned spectrum with the excitation spectrum. The Z Wy (T) Z [|S(E)| — A (T)|E(T, k)|]?
optimum pitch periodr, is obtained by minimizing an error me—1 ke=am ()

function «(7) with respect to the searching variableas a(r) = M) bm(T)

" (1-7B)Y 3 ISk

To = arg H{rin{a(T)} m=1 k=a,,(7)

(2)
The cost function is constructed by matching the input speeawhere)M (1) is the total number of harmonic bands, (7) and
spectrumsS (k) with the pitch-dependent synthetic excitatior,, () are the lower and upper boundaries of th€ harmonic
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band,B is a weighting factor for biasing the pitch dependent 4) Spectral gain estimationtn LPC model, over an anal-

error,w,, (1) is a frequency dependent weight that is imposegsis frame, speech signals are modeled as a combination of

to selectively emphasize on various frequency regions, amgical tract parameters (spectral envelope) and an exuitati

A, (1) is the harmonic magnitude obtained by minimizingain. The excitation gain indicates the overall energylleye

the matching error in each harmonic band, which gives: current frame while the energy-normalized spectral empelo
represents the spectral shape. By taking advantage of this

bm(7) decomposition, spectral envelope and excitation gain @an b
Z [S()IE(T, k)] adjusted independently within the proposed analysiskegis
A7) = k=am(7) (3) framework. Assume thag,(m) are the sampled input magni-
bm (7) tude spectrum and,(m) are the sampled energy-normalized
Z |E(7, k)|? envelope spectrum, both having a total () harmonic
k=am (1) bands at the/t" frame, respectively. The overall gaip is

By noticing the characteristics of pre-cleaned speatra(r) obtained by minimizing

can be derived witha priori SNR estimated in each har- M, (7o)
monic band. In doing so, the retained harmonic region would Z [|Se(m)| — ge|Se(m)]]? (6)
contribute more to the overall error function as compared to m=1

remaining over-suppressed regions. However, as pointéd ou -
in [23], (2) does not penalize the mismatch between ianfth respect tage, giving

and excitation for small energy harmonic bands, in case they Ma(ro) Ma(ro) —1

are located between two adjacent high energy voiced bands. _ 1S5 (m)[|Se(m)| Z 15, (m) 2 )

As a consequence, gross pitch errors such as double pitcff ~ eAm)floem — em

errors may occur. To tackle this issue, a similar correaiver "= "=

function 5(r) is also required to emphasize the mismatch by 5y \//yv mixing function:HNM is able to remove back-
normalizing the band energy before applying weights:  ground noise and then generate clean harmonics. However,
due to the physical mechanism of human speech production,

b (T)
_ 2 noise-like components such as fricatives also occur inegbic
M(T) k:az:(T)[|S(k>| Am(T)E(T, k)] utterance. Therefore, pure clean harmonic generationdvoul
B(1) =~(7) Z W (T) = e introduce buzziness in synthetic speech. To tackle thiseiss
m=1 "’Z: 1S (k)2 controllable amount of noise could be artificially inserted
to compensate this effect. To achieve this, a V/UV mixing

k=am(7) (4) function within each frame is imposed to allow certain amtoun

where~(r) = [M(r)(1 — B)]~!. There is always a trade-Of noise to be added in the harmonic portion of speech

off between the emphasis on voiced and unvoiced bands, Shgctrum. It has been shown in [24] that clean speech spectra

a compromise is reached by combining these two measu,%gyelope inherently correlates to the degree of V/UV mixtur
resulting in the final error function(r): and a spectral flatness measure is defined as

€(r) = da(r) + (1 - B(7) © 16)= 5 [ sl - mo)Pas @

where\ € (0, 1) is a weighting factor.

3) Harmonic magnitude estimationtn clean conditions, 1 ’T _
given the optimum pitch periot), harmonic magnitudes could m(f) = p— /9 log [S(w)|dw ©)
be estimated straightforwardly using (3). However, in adee
conditions, the use of either noisy or pre-cleaned spectrldi comparing to a predefined threshdly,, a smooth V/UV
would result in large matching errors, and hence signiflgantnixing function p(6) is defined from the spectral flatness
degrades the enhancement performance. To tackle this isgi@asure as:

where

magnitude spectra are modeled using linear predictivengodi 7(0)

(LPC) spectral envelopes in this work. In doing so, spectral ~ o J(0) < Ty

modification can be achieved by simply manipulating the p0) =4 1,7 (10)
LPC coefficients. This configuration allows us to incorperat W’ f(0) > Ty

a time-frequency tracking scheme to re-estimate the enve-

lope spectrum with reduced dimensions. Consequently,dn tNote that the V/UV transition is ai(#) = 0.5, and the voiced
proposed design, harmonic magnitude for the each harmoaid unvoiced regions are correspondingptd) < 0.5 and
band is determined by sampling the enhanced LPC envelggé) > 0.5, respectively. In this proposed design, the mixing
spectrum at each integer multiples of pitch frequenciesil&Vhfunction is derived with the envelope spectrum construbted
the enhanced LPC envelope spectrum is obtained by trackthg tracked LSFs, and small amount of randomly generated
its LSF trajectories and the detailed procedure of the dyoamvhite Gaussian noise, which is weighted by this mixing
tracking scheme is discussed in Section II-B. function, is added to the synthetic harmonic spectrum.
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6) Voiced speech synthesiét synthesis stage, voiced and Measurement model:
unvoiced signals are reconstructed with different stieteg —H

. . . . Ye=Hx¢+ vy
A time domain approach is adopted as suggested in [22] to NOR
allow continuous variation in HNM parameters. Voiced sjeec ve~N(O,R)
signals at time instaritof the ¢ frame is re-synthesized usingwhere F is the state transition matrix anBl is a linear
a sum of sinusoids running at the harmonics of the estimatepping matrix for state and observation. Additionallyisit

(13)

pitch frequency as assumed thaw, andv, are uncorrelated, zero-mean Gaussian
M (7o) vectors with covarianceQ andR. Thus we can construct our
ve(t) = Z Ag i (t)c0s[0p.m (1)] (11) best guess of state, and its covarianc&, at the('" frame
el ’ based on data observed untik ¢, that is
where/lgym(t) and ég,m(t) are the estimatedr'” harmonic %os = Elxe|ys] (14)

magnitude and phase, respectively. Harmonic magnitudes at
each frame index are sampled from the enhanced envelop&s = Cov[x¢lys] = E[(x¢ — %¢s)(xe — %¢5)" lys]  (15)

spectrum which is constructed from the tracked LSFs With'lehen the transformations between noisy and clean LSFs are

pre-cleaned excitation gain. Harmonic phases extractat frcharacterized by & set of Kalman recursion equations desbri
noisy input signals are employed as phase information & 1e§ y q

important in speech enhancement [6]. For each intra-frafie
time instantt along temporal track, the time-varying magni- Ropo—1 = F&y_101 (16)

tude functionA,. .(t) is linearly interpolated while the time- T
. A . ) . Yope-1 =F3, 4 F 17
varying phase functiord, ,,(¢) is quadratically interpolated fe=t -1jet +Q (17)
based on linear interpolation of harmonic frequencies. e =ye— HXyo (18)
7) Unvoiced speech synthesigt frequency domain ap- e, = Hzm,lHT +R (29)
N @)
R = Xyje—1 + Koey (21)

and is then converted to autocorrelation data. An all-p&H€L
model is fitted to compute the residual gain of the synthesis o0 = Bepe—1 — KeZe, K (22)
filter. Random Gaussian noise is generated and fed into te
synthesis filter to produce the unvoiced portion of speebtle. T
final target speech is produced by simply summing the voic
and unvoiced speech signals in time domain.

fen a series of noisy observations for each analysis block

the basic idea is to train a specific set of system parameters
to initialize the Kalman filter/smoother. The system pa-

rameters includ® = {F H, Q, R, %1, ¥}, wherex; and

B. Speech Dynamics Tracking 3, are initial state mean and error covariance, respectively.

Subsequently, with a series of noisy observations and rsyste
As discussed in the previous section, the highly distort (g d y y %y

L . rameter® at hand, one performs the above set of Kalman
en\{elope spectrum IS stil yet_to be improved to accurate %cursion equations to obtain clean estimates of LSFs. In
estimate the harmonic magmtud(_a for HNM, based SPE€LHdition, a set of backward recursions [25] could be peréatm
enhancement system. LSFs obtained from linear predictign j,. i+ 2 smoothed non-causal estimate of clean LSFs.
analysis are widely used in speech applications to reptesen

. 2) System identificationin this work, an offline learning
the spectral envelope. Pr_ewous works [19][20] h"?“’e rGma"’llsystem is designed to train a codebook to initialize the Kalm
certain long-term correlations between consecutive LSBs,

o . . . ilter that runs online adaptation. The proposed designtis co
it is reasonable to exploit a linear dynamlcgl system (LD ructed using the framework of well-known Linde-Buzo-%ra
mode_l to track ”_“? temporql LSF trajectories. In _add!t'orZLBG) algorithm [26] with split vector quantization (VQ).
ordering and stability properties of LSFs also make it diéta Nevertheless, the major difference is that a block concept
for recursive filtering problem. '

9T ) . . is introduced in the proposed design. In conventional LBG

1) Kalman tracking:In this LDS modeling, noisy and clean . .
. : - algorithm, vectors of LSFs are clustered in a sense thatefsam
speech signals are chopped into sliding blocks and eack bloc?, " ..
. ; : with similar spectral patterns are grouped together. Wdwere
containsK overlapping frames. Both the block shift and the ", . .
. : o in this design, blocks of vectors of LSFs are clustered sb tha
frame shift arél’ samples. It is assumed that within an analysis :
. - . matched temporal correlations between blocks are alsatake
block, there exists certain inter-frame (between consezut.

. . ._into account when calculating the distortion measureidlihyt
clean LSFs i.e.x; andx,41) and intra-frame (between noisy . . .
. . ) . .’ a parallel database is adopted, both noisy and clean sigreals
and clean LSFs i.ey, and x;) linear relationships. In this chooped into sliding blocks with overlapping frames acguid
context, the clean LSFs, of the ¢! frame are modeled as PP 9 bping g

the internal states and the noisy LSFsare modeled as theto the proposed Kalman filtering structure. The focus of this

. . fdesign is to capture and cluster the spectral shape ewolutio
observations, and they can be represented in state-spawe Ot is | .
as: that is independent of the impact of overall spectral energy

System dynamic model: level. Consequently in linear prediction analysis, autosla-
' tion coefficients of each frame are normalized by its short-
xpp1 = Fxg +wy (12) time energy and LSFs are computed from the normalized data
wy ~ N(0,Q) to achieve energy-independent training. LePax K matrix
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Y = [y1,...,¥x] and X = [x3,...,xk| denote noisy and negative log likelihood for all. blocks of observations, which
clean LSF blocks, respectively, whefds the linear prediction is given by:

order, andK is the number of frames per block. Intuitively, I

the distortion measure between training blocks and codebog(X’Y Q) Z‘C X:,Y:,©)

entries should be constructed by minimizing a sum of total
log spectral distance (LSD) within this block. Neverthsles
this implementation is computationally expensive, and #te
centroid of LSD measure is difficult to compute. Based on
the modified Itakura-Saito (IS) measure [26], an approxémat
guadratic distortion measure between direct LPC filter form
of noisy blockA and thej* entry in codebookij is defined

K

S - Fx? TQ (% — Fx))

2

[
Mm

1

&~
I|

~.

"
M=
M=

1

~
I

1

<.
Il

as. e Tt/ ()
N +> 07 = %)= (k) — &) + LI |3
=1
= (ax—a;5) Re(ar —4;x)  (23) + L(N — 1)In|Q| + LN In |R| + constant
k=1
Assume that there is no constraint imposed on the tem ma-
where A = [ay,...,axk], A]- = [&41,...,4; k], and the ssu N straintimpos sYys

weighting matrixR, is the autocorrelation matrix Theoreticaltrices’ the estimates @ are derived as a multiple-observation
ghting k ' extension of the results obtained in [28] as

analysis of LPC parameters in [27] shows that (23) can be

reformulated as a quadratic measure between LSFs as LK -1
_ (4)
K F— (ZZXZ ) (ZZ ) (28)
. . R i=1 (=2 i=1 (=2
d(Y,Y5) = (yi = 56) " W(ye — §x) (24) LK L K -1
k=1 H = < 3 y&”xﬁ”T) (Z Zx?’x?”) (29)
where W, = JTR;J; is the sensitivity matrix withJy i=1 =1 i=1 (=1
i i i i i L K L K
belng fche Jacobian matrix transforming LSFs to direct LPCQ _ 1 ) OT _p @ ()T
coefficients [27]. There are two reasons to adopt the LSF form LK - 1) Z er X Xe—1%y
rather than the direct LPC form. First, diagonalized seéuitsit i=1£=2 i=1¢=2 30
matrix indicates scale quantization of LSFs does not affect (30)
each ot.her, and hence results in less quantigation errconge _ 1 XL: i O OT _ 1 L K T a
the weighted mean square error (WMSE) is easy to computeR LK y ¢ Y
1=1 (=1 1=1 (=1

compared to general quadratic measure. As a result, an input

noisy blockY is clustered based on a codebook searchlngA _ lix(o (32)
index jmin, Which is defined as L&
jmin = arg mln{d(Ya YA‘)} (25) 1 L i i " -
J ! =7 S x x0T (&) (R)” (33)

Assume that a total of. LSF blocks are grouped into the i=1
chosen cluster. The block centroid of this specific cluiter 3) lterative update: To achieve iterative update of the
[¥1,-..,¥k] is then obtained by sequentially minimizing  tracking scheme, instead of using (32) as the initial guess,

I enhanced LSFs of last analysis block are used as the initial

Z(Yi v = 90) Wi k(yir — $%) (26) state LSFs for the next block.

=1
which results in I11. VALIDATION AND PRACTICAL ISSUES

A. Robustness of HNM Parameter Estimation

=0 Wie) 'O Wiryix) (27)  The performance of the proposed speech enhancement sys-
= = tem relies heavily on the estimation accuracy of acoustic pa

One performs LBG algorithm to iteratively update (24)rameters, and to a large extent, the accuracy of pitch fregue
(27) and subsequently obtain a parallel training subset afid harmonic magnitude estimation. The proposed pitclcdete
both observation and state LSF blocks for each cluster @sn algorithm offers flexibility in weighting matching enrs in
{Y1,..., Y, Xy,...,X}. This indicates that for each se-each harmonic band. As a result, it can be customized for spe-
guence of observed noisy LSFs, a specific set of noisy bloakific pre-cleaning algorithms, and hence robust pitch dietec
with similar spectral patterns and evolution trajectoaesvell results can be obtained in different adverse conditionss It
as their original clean pairs can be identified. Assume tiee pconfirmed from our experiment that over 90 percent accuracy
diction errore, in (18) has a multivariate normal distributionis achieved for voiced speech segments corrupted by white
so that parameter estimation for Kalman filter can be ackieveoise at 0dB SNR level.
with ML estimator. More specifically, for each cluster, the In contrast to the spectral envelope which reflects the
system parameter® are obtained by minimizing the totalvariations in different frequency regions, the spectrainga
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derived in (7) indicates the overall spectral energy level o

current frame. It is mentioned that the spectral envelopgdco 2ol 5 speaker—Dependent | |
be distorted both by noise and the pre-cleaning process. It ' —<)— Speaker-independent
is interesting to evaluate the impact of overall spectrah ga o ]
in noisy and pre-cleaned conditions. Fig.3 shows the oleral 34y

et
N}
T

spectral gain contours derived in various conditions. It is
observed that this gain fluctuates significantly if it is dihe
measured from noisy signals. Nevertheless, it approxisnate
the original clean gain contours after applying pre-clegnlt
implies, by means of this envelope-plus-gain decompasitto

is possible to accurately estimate harmonic magnitude by co

IS distance
Ing
] w

T

Ing
o
T

241

bining enhanced spectral envelope with a pre-cleanedrspect 221
gain. Experiments have been carried out on four variants of 2 o o o1 o o om o
STSA-based methods, including the classical STSA method Time (in Second)

[1], the LSA method [2], a LSA method that incorporating
SPU (LSA SPU) [7], and an optimal modified LSA estimator
(OM_LSA) [3]. and it is found that the the LSA estimator
gives best gain estimation results when working as a pre-
cleaning tool for gain estimation. fairly low pitch (e.g., older male). Conversely, the LSFrfor
of LPC coefficients model the spectral envelope with small
dimensions, and the desirable statistical properties o th
representation also make it more suitable for quantizadimh

Fig. 4: IS distances for linear dependence test

clean

o
©
T
 —

noisy(SNR 10dB) | state tracking. It is confirmed in our experiments that LSF
08 “ J o gfe's_yc‘l':::‘egfgmm )] coefficients would result in less spectral distortion as paraed
07 ‘ \/ | q ~ — — pre-cleand(SNR 0dB) || to direct LPC coefficients and reflection coefficients. Ferth
n

more, the latter could result in unstable tracking of Kalman
filters. Consequently, only LSF representation is adoptet a
evaluated in this validation.

The next step is to determine the effective block length for
the proposed design. In the proposed Kalman tracking scheme
constant linear dependence between consecutive clean LSFs
within an analysis block is assumed. Therefore, it is desra
O - = : - 4 - to evaluate and determine the best effective block length to

Time (in Second) validate this assumption. On one hand, short block length is
i i . , _desired such that less modeling and clustering error odours
F|g. 3: Spectral gain contours of original clean, noisy tehi the linear state transition. On the other hand, long blongtle
noise, SNR = 0dB and 10dB), and pre-cleaned speech SgOs oterred as more meaningful statistics could be aitaife
ments take into account this trade-off as a combined effect of bloc
VQ and Kalman filtering, effective block length is determdne
by evaluating the IS distance [29] defined as follows.

B. Practical Design of Offline Training (a—a)TR(a—a)

The goal of offline training is to enhance the energy- a’Ra
normalized spectral envelope. The first step is to deterthime wherea and & are the direct LPC filter coefficients of the
feature representation of noisy observation for each aiwlyreference and enhanced signals, respectively.the reference
block. This paragraph explains the reasons why the L$Etocorrelation matrix. IS distance is adopted as it messur
representation is employed. Within the proposed LDS tragkithe spectral difference independent of energy impact, vhic
scheme, it is computationally prohibitive to track the DFTs suitable for the proposed energy-independent trainimd) a
coefficients with sufficient frequency resolution. Altetimaly, tracking process. Fig.4 shows the IS scores obtained for
harmonic magnitudes could be adopted to represent the spgeath speaker-dependent (SD) and speaker-independent (Sl)
tral envelope. However, parameters from LPC analysis amgesessments with various block length settings. It is oser
preferred for several reasons. First, the total number of hén both evaluations that lowest IS score, which indicates
monic magnitudes varies from frame to frame, and henseallest tracking error, is achieved with the effectivecklo
variable length VQ is required. Second, the total numbé&ngth around 96ms.
of harmonic magnitudes is pitch dependent, thus gross pitcht is worth mentioning that, in practice, the effect of spatt
error could potentially penalize the tracking enhancemeadt envelope distortion is quite different in various noise dien
but not the least, the order of harmonic magnitude coutibns. To cover all possible observed features, it is dbkra
also make it practically infeasible for speech segments wito train a fairly large corpus with a great number of clusters

o
)

Normaized Spectral Gain
o o
» (4]

o
w

o
N

o
=

IS(a,a) = (34)
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In our experiment, an effective solution to reduce the size »
training set is to apply a rough estimation of noise spectru
for each frame, and subtract it from the observed spectri soo
before feature extraction. This step minimizes the effdct 3,
noise corruption in various color noise environments ad W(%
as various SNR conditions, and hence effectively reduce t=*®

cluster size requirement. The simplest approach is to egim o

4000

I N
~n o
o

Frequency (Hz)

N} w IS
o S S
o o o
o o o

-
Q
S
S

0.1 0.2 0.3 0 01 0.2 03
and update the noise spectrum during silent period, using -. Time (sec) Time (sec)
voice activity detector (VAD). More complicated continusu @ (b)

noise tracking algorithm is also possible.

C. Tracking of Spectral Envelopes 3000 o

To validate the design of the energy-independent dynam gzooo -20
tracking scheme, comparison of energy-normalized shog-t g, "
envelope spectra and spectrograms is performed in this s ==y .
section. Fig.5 shows the short-term envelope spectrarsatai % e 60 0 Ol 03
from clean, noisy (white noise, 0dB), pre-cleaned, and Kam © @
tracked LSFs. It is noticed that unlike conventional me#jod
no isolated spectral peaks and accurate formants are @asefvd. 6: 2D view of energy-normalized (a) original clean, (b)
from the spectral envelope which is tracked by Kalman filtepoisy (white noise, SNR = 0dB), (c) pre-cleaned and (d)
Fig.6 and Fig.7 illustrate the temporal correlation bemed<alman tracked spectral envelope trajectories
consecutive spectral envelopes by showing its time-freque
trajectories. In contrast to the spectral fluctuations olhesk

Frequency (Hz)

either in noisy or pre-cleaned spectrograms, very smoath &

natural envelope evolution is noticed in the tracked titajec /;,f
Meanwhile, common problems in conventional methods su r.f"

as “musical tones” are completely avoided. m_zg e

-60 N
0 1000 0.2Time
20 T T T T T T T 2000 2000
i Frequeney 3000 400" O° Frequency 3000 4909
15- 1Y clean B
= = = pre—cleaned (a) (b)
or oY 0db noisy 1
= = tracked
v ’! -~
of A o] A

0 1000

0
1000
Frequaney 3000 4000

Freauéndy 3000 4000
(© (d)
500 1000 150%9@230!; (HSQOO 3000 3500 4000 Fig. 7 3D_ view _of energy-normalized (a) original clean, (b)
noisy (white noise, SNR = 0dB), (c) pre-cleaned and (d)
Fig. 5: Short-time envelope spectra of original clean, yoiKalman tracked spectral envelope trajectories

(white noise, SNR = 0dB), pre-cleaned and Kalman tracked
speech segments

-30
0

order of LSF,K is the block length and is the total number
of entries in the codebook. However, the computational cost
_ ) can be significantly reduced as the distortion for previous
D. Computational Complexity frames in this block has been calculated in previous blocks
Computational cost for the real-time implementation of thend hence can be reused with a memory system. Furthermore,
proposed system is discussed in this subsection. There #e diagonalized sensitivity matrix in (24) shows that the
three major issues that constitute the core computatioaal | distortion can be calculated in a WMSE form. As a result,
in the online enhancement system. First, for each analysispractice, only2P.J multiplications are needed. Second,
frame, the block codebook searching requires to calculdt8F estimate of current frame is computed online through
the distortion (in general, a quadratic measure) between tRalman filtering with length/s’. To achieve the iterative update
observation LSF block and all block entries in the codebooks in section 11-B3, a Kalman smoother is desired to obtain
It requires(P x P + P)KJ multiplications, whereP is the accurate estimate of earlier frames in this block based bn al
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the frames inside this block (including future frames). Thef the final synthetic speech are studied. Fig.8 and Fig.9
online implementation of Kalman smoother is relatively eonmdemonstrate the improvement of spectrum amplitude. Fay.8(
putational demanding, and one way to reduce the computatgitows the noisy (0dB, white noise) input short-time speech
is that the initial state is derived using (32), in which casly spectrum, with many weak harmonics dominated by noise
the estimate of last frame is needed and the original Kalmam high frequency region. Fig.8(b) and Fig.8(c) show that
filter is sufficient. Third, the spectrum matching based tpitdhe LSA and OMLSA methods are able to preserve strong
searching algorithm can also be computational intensiverwhharmonics and at the same time suppress the average noise
a full search of possible human pitch range is performed. floor. However, it is observed that spectral shape is furdier
practice, similar to the methods in [9] and [11], maximuntorted and the harmonic structure is damaged. Fig.8(d) show
rate of change of pitch frequency between consecutive fsanthe magnitude spectrum constructed by HNM re-synthesis,
is defined. Consequently, given the pitch value of last framasing pre-cleaned spectral envelope. It is evident that the
the current search could be limited to a small portion of fuharmonic structure is restored to a large extent. Neversisel
range and hence the computation is significantly reduced.the harmonic magnitudes are not well-fitted with the origgna
summary, in the proposed system, the setting of the systeloe to the mismatched spectral envelope. Fig.8(e) shows the
parameters is relatively flexible, and it can be fine-tuned foe-synthesized spectrum using tracked spectral envelbpe.
applications with different computational requirements. is observed that the harmonic magnitudes are close to the
originals, and even some high-frequency weak harmonics
are restored. The spectrograms shown in Fig.9 demonstrate
the effectiveness of the proposed method in time-frequency
Performance of the complete speech enhancement sysprspective. Fig.9(c) and Fig.9(d) show the trade-off leetv
is evaluated in this section. Both SD and Sl assessments @@sidual noise suppression and spectral distortion. (&}ig
conducted. In SD assessment, clean speech is taken filastrates the restored harmonic structure. Fig.9(f) destrates
the IEEE sentence database which contains 8KHz-samplihg further enhancement by showing the extended harmonic
sentences spoken by a single male speaker. In Sl assessnstmnicture as well as the improved spectral envelope.
clean speech is taken from TIMIT corpus, which contains a
mix of utterances (both male and female speakers, from dif- L _
ferent dialect regions) with 16KHz-sampling (down-sandplg™ ©OPiective Evaluation
to 8KHz in this experiment). In both experimental settings, Three objective evaluation tools, namely IS, LSD and per-
noise is taken from the NOISEX-92 database. Three typesasfptual evaluation of speech quality (PESQ) measures [81] a
stationary noise, namely, Gaussian white noise, car orteremployed to assess the proposed speech enhancement from
noise and F16 cockpit noise and two types non-stationatifferent perspectives. Experimental results for both 3@ a
noise, namely, babble noise and factory noise are employ&dl.tests are shown in Table | and Table Il, respectively. As
Clean speech is manually corrupted by additive noise at SNReviously discussed, IS measure compares the dissityilari
level of 0dB, 5dB and 10dB. The parallel training set is hetween two energy-normalized spectral envelopes atttioeir
pool of mixed noisy features at different SNRs, along witenergy levels. Therefore, it is convenient and effectivadopt
their true clean representations (many-to-one mappinigg Tthis measure to evaluate the improvement in spectral epgelo
total length of training data is approximately 40 minutes foestimation of the proposed design. It is observed from the
both SD and Sl assessments. Separate testing data (diffetf8rscores that white noise results in largest spectral epeel
from training, approximately 5 minutes) for both assessmertistortion as it distorts the spectrum uniformly. The LSA
are also extracted from their own corpus. The proposed HNMethod generally causes smallest spectral distortion gmon
based method with Kalman tracking (denoted as HRM) conventional approaches. The original HNM method uses the
as well as the original HNM-based approach [10] (denotgute-cleaned envelope so that the result is close to comespo
as HNM) are compared with four variants of STSA-baseidg selected pre-clean algorithm, and hence is omitted lleTa
methods, including the classical STSA method [1], the LSAand Table Il. The KEHNM method causes least spectral
method [2], the LSASPU) method [7], and the OMLSA envelope distortion in all SNR settings, which indicates th
method [3]. The degraded speech without enhancementtriacked spectral envelope is closest to the original inowesi
denoted as NOISY. To simulate the frequency charactesistimnditions.
of telephony communication, all speech and noise signalsBesides, LSD measure compares the difference between
are filtered by the modified intermediate reference systdoy-scale magnitude spectra of noisy and enhanced speech.
(IRS) filters as suggested in ITU-T P.862 [30]. Other systemis defined as:
parameters are determined by experimental validations as
follows. The block and frame duration are 96ms and 32ms N 1 (7 S(w)
respectively. Both block shift and frame shift are 8ms. ThelSD(S(w), S(w)) = %[ 10log,g () dw (35)
order of LPC analysis is 18. The total number of clusters for "
SD and Sl training are 64 and 256, respectively. To emphasize on the overall spectral improvement as a com-
To evaluate the re-synthesized speech as a combined efféoed effect of spectral envelope plus gain decomposition,
of estimated pitch, spectral gain as well as the tracked-spét{w) andS(w) represent the gain-normalized envelope spectra
tral envelope, short-time magnitude spectra and speemagr rather than the magnitude spectra in this evaluation. @bder

IV. PERFORMANCEEVALUATION
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from the LSD results, it is evident that the proposed enwelop
plus-gain decomposition is effective as it correlates wéth  conventional methods in terms of objective measures inyear
the IS score and an average of over 2dB improvementd# (different SNR and noise environments) conditions. &m-p
achieved using tracked envelope plus pre-cleaned gaintigular, the performance gain increases as the SNR desrease
various conditions.

In contrast to previous two measures, standard PESQ mea- . )
sure examines the overall quality of the re-synthesizeddpe B. Subjective Evaluation
as a combined effect on the complete system design. InSubjective evaluation comprises an informal listening tes
addition, it takes into account the psychoacoustic progert which is designed to follow the procedure suggested in [5].
It is noted that an average of around 0.7 point improvemeft total of 10 car-noise-corrupted speech sentences (5 by
over degraded speech (without enhancement) and an averagée and 5 by female) are randomly extracted from the SD
of around 0.3 point improvement over the best conventionaisting set at SNR of 5dB. 20 listeners are instructed to
method are achieved in both SD and Sl tests in variosaccessively attend to and rate the enhanced speech (also
conditions. To summarize, the proposed method outperforthe noisy speech for benchmarking) on signal distortion
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TABLE I: Objective evaluation results of speaker dependequeriment

Speaker-dependent Experiment

IS Distance LSD (in dB) PESQ (out of 4.5)
Noise Input SNR Input SNR Input SNR
Type Method 0dB 5dB 10dB  0dB 5dB 10dB 0dB 5dB 10dB
Gaussian  NOISY 16.39 855 425 1051 922 788 168 192 221
White STSA 15.15 3.15 1.48 877 712 624 208 236 271
Noise LSA 6.88 195 1.11 837 6.69 572 209 241 273

LSA_SPU 1466 3.26 2.06 8.67 738 689 195 222 261
OM_LSA 17.89 6.58 3.71 9.18 818 7.68 173 217 2.60

HNM - - - — — — 221 239 265
KF_HNM 242 153 0.84 6.54 542 464 242 261 282
Car NOISY 3.01 225 172 6.25 538 556 198 225 255
Interior STSA 335 285 238 6.78 6.23 571 224 258.92
Noise LSA 253 198 174 6.03 542 493 225 255 286

LSA_SPU 405 3.65 3.02 731 6.94 642 214 246 290
OM_LSA 6.06 5.34 3.70 803 7.63 683 188 228 272

HNM - - - - — — 229 261 270

KF_HNM 201 176 1.54 574 512 458 245 2.742.88
F16 NOISY 458 284 193 832 728 559 181 209 239
Cockpit  STSA 549 232 1.39 784 653 545 219 253 2.86
Noise LSA 250 137 121 709 589 556 223 256 287

LSA_SPU 6.17 259 181 8.03 6.92 6.62 202 242 282
OM_LSA 9.26 4.06 2.58 869 765 750 169 228 265

HNM - - - - — — 231 259 272

KF_HNM 1.97 120 0.96 6.41 547 459 247 271 2.88
Babble NOISY 445 233 193 10.00 8.89 747 192 223 244
Noise STSA 6.24 457 412 1093 894 787 206 243 265

LSA 547 3.09 289 1076 859 7.75 202 240 261

LSA_SPU 10.17 6.17 6.05 1191 958 852 194 223 252
OM_LSA 1139 878 812 11.79 989 881 183 209 243

HNM — — — — — — 211 245 255

KF_HNM 3.22 221 190 719 535 479 233 253 268
Factory NOISY 521 3.37 2.09 9.74 878 6.36 174 207 2.38
Noise STSA 749 543 392 951 857 721 210 243 283

LSA 520 2.89 213 9.01 8.02 630 206 242 284

LSA_SPU 957 828 4.73 994 892 742 190 229 281
OM_LSA 10.26 896 591 10.07 9.21 8.09 159 221 266
HNM — — — — — — 217 240 275

KF_HNM 228 2.07 0.67 535 477 382 240 256 2.86

(SIG)—[1=very unnatural, 5=very natural], background inquality. However, lower BAK scores reflect the downside,
trusiveness (BAK)-[1=very conspicuous, very intrusivenesswhich is the negative impact of annoying artifacts. Conelsts
5=not noticeable], and overall effect using the scale of )meauperior BAK scores show that the LS8PU and OMLSA
opinion score (OVRL)-[1=bad, 5=excellent]. Fig.10 showsmethods did a good job in noise suppression. Nevertheless,
the mean scores of the listening test for the three scales. poor SIG scores reveal the severe degradation of signatyjual
The OVRL scores suggest that more participants prefer the
5 former approaches. The proposed _KRM method serves
as a compromise between the above-mentioned trade-off. On
one hand, it is observed that the SIG score of the HIRM
method is lower than the STSA and LSA methods. Since
msig the enhanced speech is constructed by means of re-synthesis
signal degradation mainly comes from the modeling and
estimation error of the proposed design. On the other h&ed, t
BAK score of the KEHNM method is much higher than those
of the STSA and LSA methods, owing to its automatic noise
removal capability. It is noted that the BAK score is slightl
lower than that of the OMLSA method. The potential reason
is that several re-synthesis artifacts are perceived asenoi
Fig. 10: Subjective evaluation results of speaker dependey the subject and hence result in reduced BAK score. The
experiment OVRL score of the KEHNM method is among the best for all
evaluating methods. Although the mean OVRL scores of the
Mean scores in Fig.10 demonstrate the trade-off betwekfA and KF_-HNM methods are close, individual assessments
signal distortion and background intrusiveness for vario@nd comments vary for each subject. Based on the feedbacks
enhanced signals. Higher SIG scores indicate that the ST8AM participants, some of them prefer the KINM method
and LSA methods preserve relatively higher level of signas it successfully removes the annoying tonal effect, wasere

H BAK
OVRL

Noisy STSA LSA LSA_SPU OM_LSA KF_HNM
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TABLE II: Objective evaluation results of speaker indepentdexperiment

Speaker-independent Experiment
IS Distance LSD (in dB) PESQ (out of 4.5)
Noise Input SNR Input SNR Input SNR
Type Method 0dB 5dB 10dB 0dB 5dB 10dB 0dB 5dB 10dB
Gaussian  NOISY 8.05 582 381 895 801 706 151 179 213
White STSA 8.72 532 3.16 851 748 6.82 190 234 270
Noise LSA 467 299 1.89 792 691 6.15 192 234 271
LSA_SPU 860 537 351 844 768 738 179 215 256
OM_LSA 9.68 6.44 589 871 843 835 148 187 221
HNM — — — — — — 209 239 265
KF_HNM 342 253 164 6.04 542 484 221 253 272
Car NOISY 3.18 255 204 740 6,50 555 173 206 240
Interior STSA 3.16 283 256 6.97 6.65 6.37 225 2.562.89
Noise LSA 272 231 211 6.82 6.20 571 219 252 283
LSA_SPU 351 3.63 4.02 740 739 7.18 196 238 276
OM_LSA 560 529 510 834 812 804 153 201 242
HNM — — — — — — 229 253 265
KF_HNM 195 1.75 1.64 532 507 488 240 2.642.80
F16 NOISY 278 221 149 778 711  6.17 167 197 232
Cockpit  STSA 440 295 223 8.00 721 6.63 213 247 279
Noise LSA 250 171 1.32 733 655 591 212 2.472.80
LSA_SPU 453 328 3.10 814 756 728 189 225 271
OM_LSA 6.15 576 564 882 851 804 154 193 233
HNM — — — — — — 228 239 265
KF_HNM 191 157 1.30 571 517 499 238 2.622.78
Babble NOISY 415 217 1.74 871 748 625 159 204 236
Noise STSA 6.01 347 312 9.10 835 7.01 176 227 254
LSA 574 298 251 893 7.84 675 168 224 250
LSA_SPU 6.47 3.69 355 981 824 734 155 216 239
OM_LSA 719 521 497 1001 879 768 150 216 240
HNM - - — - - - 1.87 225 250
KF_HNM 342 215 171 7.04 6.15 501 213 248 259
Factory  NOISY 375 284 192 808 758 625 155 1.86 232
Noise STSA 425 378 296 834 806 695 192 218 271
LSA 3.20 281 227 781 7.67 674 195 221275
LSA_SPU 571 428 345 854 829 731 171 207 267
OM_LSA 6.29 496 3.65 877 861 741 161 184 251
HNM - - — - - - 201 221 267
KF_HNM 252 211 127 7.12 6.34 598 210 2.302.73

some prefer the LSA method as they are more sensitive to ti@se-robust clustering and identification strategiesd 8h

noise-like component caused in synthetic speech (sounds airicorporating more sophisticated dynamic speech modeling

hoarse). techniques to accurately model the target speech in transie
periods.

C. Discussion
V. CONCLUSION

To summarize the findings in both objective and subjec-
tive evaluations, it is observed that the proposed HNM
method achieves obvious improvement in various objecti

We have proposed a new speech enhancement system which
explores the inherent time-frequency characteristicpeésh.
Y—?NM based analysis-synthesis framework is employed to

assessments. While subjective listening test results sebw . .
. . - S : take advantage of the harmonic structure of speech while
atively diverse opinions, which is not necessarily coteda . : e .
a_dynamics tracking scheme is incorporated to exploit the

with the objective measures. Listening test results Sugg?és'rpporal correlation between spectral envelope trajexstor

that the proposed method is preferred by some subjects, i e proposed system provides robust parameter estimation

still several shortcomings exist. The major reason is tha orithms. and hence operates consistently aood in \Griou
several perceivable distortion is occasionally observethe 9 o P . y good In,
noisy conditions. Furthermore, it offers flexibility in ied

synthetic speech. This is mainly due to the error in modelin . o
. L T . 8endent parameter adjustment and hence could be optimized
clustering, and estimation strategies in adverse comdititn . . . L -

— according to various noisy conditions. Both objective and
summary, the proposed method offers a new direction fglrjb'ective evaluation results demonstrate the effectisgrof
speech enhancement and it already exhibits many advantat%%é roposed system
(such as musical tone removal and harmonic structure gestor prop y '
tion). In addition, owing to its flexible decomposition, ghi
approach can be improved in many perspectives. In future
research work, we suggest investigating three issues, Ipame The authors wish to thank the anonymous reviewers for
1) forming more robust and informative feature represéntat their careful reading and valuable comments that improved

for various noisy observations, 2) improving the corresing the quality of this paper.
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