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Acoustic Source Localisation
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and Tracking of a Time-Vagyin
f Speakers

Maurice F. FallonMember, IEEEand Simon GodsillMember, IEEE

Abstract—Particle Filter-based Acoustic Source Tracking algorithms
track (on-line and in real-time) the position of a sound souce - a person
speaking in a room - based on the current data from a distribued
microphone array as well as all previous data up to that point This
paper develops a multi-target tracking (MTT) methodology to allow for
an unknown and time-varying number of speakers in a fully prdoabilistic
manner and in doing so does not resort to independent modulefor
new target proposal or target number estimation as in previais works.
The approach uses the concept of an existence grid to propog®ssible
regions of activity before tracking is carried out with a variable dimension
particle filter — which also explicitly supports the concept of a null
particle, containing no target states, when no speakers arective.
Examples demonstrate typical tracking performance in a nunber of
different scenarios with simultaneously active speech sotes.

Index Terms—Tracking Filters, Sequential Estimation, Particle Filter-
ing, Acoustic Source Location, Multi-target Tracking.

HE application of particle filtering to speech source logatiion

and tracking (AST) is an increasingly active area of redeakc
seemingly simple problem at the outset, AST is complicatgdhle
existence of noise sources, reverberation, other speagicesoand
- possibly most challenging of all - the non-stationarity spleech.
The field has developed from tracking single-source reogsdiin
synthetic environments [1], to real and challenging envinents [2].
Approaches have however assumed that a single sourcevs &otin
the start of the algorithm to its end without any major silpatises
— clearly an over-idealisation.

Previously we introduced a methodology for multi-targeicking
of acoustic sources [3] which avoided data association yguhe
track-before-detect (TBD) paradigm [4] and tracked midtipources
simultaneously. Again this technique assumed knowledgehef
number of sources as well as their initial positions. In tbiofving,

a fully probabilistic algorithm is proposed which identifies newly
active sources, keeps track of them and removes them when t
become inactive. Likely targets are proposed using anendst grid
[5] before being accurately tracked using TBD [3]. In part&r the
approach does not resort to a seperate modules for targaigaioor
removal.

Before detailing this framework we will briefly discuss othe
approaches suggested to solve this problem (Sec II). Sewillll
present in detail the particle filter tracking algorithm wdlwse.
Particles will be proposed using an existence grid, detaileSec V.
Finally, in Sec V typical performance with audio data re@atdising
a 12-element microphone array will be illustrated. Notet ttree
Steered Beamformer Function (SBF) is used to isolate lkeat@tin
information from each frame of audio, as previously usedin [B].
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Il. TRACKING TARGET ACTIVITY

Some ad-hoc approaches have attempted to determinigtidaii-
tify active speech targets based around heuristic decisén to
then perform tracking. Sturirat al [6] first proposed a Kalman-filter
tracking solution of this form. Similar methods using pelsifilter-
based tracking followed [7]. Alternatively, Lehmann andili&mson
[8] introduced an algorithm which allows for switching betn
conversational sources (i.e non-simultaneously activeces) when
one of the speakers stops speaking. The system does notydrpwe
attempt to determine if a source is actually active — withtipke
states spreading out across the room when the speaker vetisena
As a result, recovering from silences was dependent on uaing
large number of particles. It did not probabilistically papt particles
with no active sources. Application of random finite set (RRFS
theory to this field has also been proposed [9]. That approach
used a Generalized Cross Correlation (GCC) measuremectidon
however the GCC is not well suited to AST because when targets
cross in front of a microphone pair the pairwise measurefttent
source assignment is ambigous. For the SBF inter-pair letiors
(ignored by the GCC) resolve this ambiguity.

Recent research such as [10] have retained the TBD apprdatsh w
adding an ‘initialization filter’ to propose new speakerpa@te to the
tracking filter. Meanwhile [11] carried out explicit datasasiation
of all possible source locations before carrying out ragiasition
tracking on a robot.

Meanwhile, within the general field of (military) trackingramber
of methodologies have been introduced to keep track of theeu of
active sources in a more principled manner such as the Indepé
Partition and Joint Probabilistic Data Association filteAgoustic
targets are, however, discontinuous with a dramaticaltying SNR.
Our proposal instead maintains a single joint target staeated
Hging observations drawn from acoustic data. Before d@sgriour
target proposal mechanism (in Sec 1V) and the likelihoocctiam,
we will first outline the higher level tracking algorithm wwitwhich
the proposed targets will be tracked.

Il1. TRACKING FRAMEWORK

In this section a variable dimension particle filter is pregd in
which each particle represents a single un-partitioneichagt of the
underlying state space. It will keep track of the time-vagynumber
of sources present in the room, including the possibiliat tio targets
are active at all, which is a novel contribution of the paper.

The number of targetsyy, within each individual state vector may
vary in the rang€0, . . ., Smax}, representing the number of speakers
deemed to be active at any given tifeSmax is the maximum number
of speakers and is chosen to be 3 in our experiments, although
principle the methods extend to more ‘crowded’ environraeas
well. See Sec. VI for more discussion. An individual statetog
containingS;, targets at timek, is defined as follows

A = (ah, ..., al* k)

@)

Each targetq;,, contains position and velocity components in ttie
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and Y-dimensions, as follows componentspo (3, ¥r) Will be initiated as a Gaussian around zero
s s s s s velocity to give
ar = (Tk, Yi> Tk U ) 2 ) . . s
The aim of the particle filter is to update the posterior plolity Po(@k) = Po(@k, yic) X po(Er, i) ®
density for the entire vector (Eq 1) using information frommet Thus the overall pl’iOl’ distribution of the full state vegtar,, can be
measurementZ;,. These measurements are defined on a dense Btated as follows

i i i i i 2y 1Sy
discrete grid ofJ cells covering the tracking space of interest, andp(AkIAkq) _ pa(ai S’“Iock,f LSk, Sty 8 )ps(Ses 8| Sk1)

computed using a specially optimised steered beamformBF)(S 9)
directed at each cell's centre. where the portion of the prior related to the target positican be
broken down as follows

A. Prior Speaker Models pa(aizsk\aiff*l,sk,sk,hs’) =

ithi Sk_ N . .
‘ \.Nltrnn our framework we propose to model the random appe&ran T4 plaglog ) if epe_y = —1,e=0
(‘birth’) and disappearance (‘death’) of speakers. Thesar pnodels Sk_1 (@slat ) if e =0
are unrelated to the audio data and attempt to capture thavioein = Plo% shl L R (10)
of speaker and/or the environment in question. For exarhjgecould po(o‘g ) % H%:l,s#s/ pleglag 1) if epp1 = —Liep =1
support information about typical sentence length and t@tibn po(eg®) x TILE ! paglag ) if epjp—1 =06, =1

of inter-syllable silences. It could also be tuned to shertences | hare s is the target removed at time (if any). Note that when
(e.g. a speaker controlling a television) versus longetesees (e.g. a target is added, the new target is added at the posftiom the
lecturing scenario). We have endeavored to use only a weak pr,

S ) vector A, whereas deletion can occur randomly to any target from
model so as to maintain generality. , o1, randomly chosen with probability/ S .
a) Prior target number modelThis is carried out as two con-
secutive transition processes. First, the removal proagsprovide
a prior model of how the number of targets is likely to chanyeny
the possibility of removing a target

B. Sequential Monte Carlo Methods

Our goal is to estimate the joint posterior distribution loé target
states recursively, and we adopt the standard two step Bayagdate
Sklk—1 = Sk—1 + €xk—1 (3) rule. As the evaluation of the integral and update steps tisnof
intractable, sequential Monte Carlo methods are used tmaippate
do so with a prior removal probability distribution the recursion for such complex measurement or dynamicaktsod

The idea is that a complex probability distribution can heresented
| Pregp—1 =—1)=hq as a set of weighted Monte Carlo importance samples.
P(Skix-11Sk-1) = { Pr(egip—1 =0)=1—hqg “) The problem at hand has many state variables and a timeagaryi
Pumber of speakers. Hence, instead of sampling from thendigad
model alone (as in bootstrap filtering), [12], we will insdesample
]ihe pth particle for the new state vector from a data—dependent
proposal function

to give an intermediate estimate of the target numBgp, ;. It will

wherehy; = 0.05 is the probability of decrementing the number o
targets - that is the prior probability that a speaker witpsspeaking
at that specific time. This means that we expect a speakempo s
speaking every few seconds. The target for removals&aig chosen
randomly with probabilityl /Si_;. AP~ q(AR AP Z0) (11)

Then the addition of a new target will be carried out in a samil ~ ga(afFalSIE ) gUS®) 708y S 1SP)) Zuk)
way as follows

Sk = Skjk—1 + €& (5) whereq.(-) andgs(-) are importance sampling functions for the posi-
tion/velocity and target number states respectively, andpgpropriate

to give the final target number estimatg. It will do so with a prior  cqrrection is then made for the bias introduced in the ingyare

addition probability distribution weighting step. According to (Eq 11), we first propose the tenget
Prler = 0) =1 — hy number in time-frame: by removing unsupported targets and then
P(Sk|Skjk-1) = { Pric, = 1) = hy 6)  add targets to newly active regions of an existence grid éismetl

. . . ) in Sec IV) as follows.
wherehy is the probability of incrementing the number of targets — 1 Removal of targets:A decision on whether to remove a target

that is the prior probability of a speaker (spontaneoustsjtieig to  om a particle is randomly made according to probability
speak.h, and hy are set equal, except whe#),_; = 0 where we

will set hg = 0, or whenSy_1 = Smax Where we will seth, = 0. q(Skik_1]SP)) = { Priegjp—1 = —1) =1-"Fo (12)
The overall prior probability distribution for the numbef targets Pr(exir—1 = 0) = Ko
is then simply the product of the individual probabilities Should a removal be decided upon, a random draw from the set

, B , of properly normalised removal probabilitiesi(s, ,) is then made
P(8'1Sk, Skje—15 Sk—1) = P(Skik—1|Sk-1)P(s)(SklSkik-1) (1) 5 choose a target’ for removal. The evaluation of these removal

and thens’ and Sy, may be discarded moving to tinie+ 1. probabilities is explained in Sec IV-E. Having removed ayédy the
b) Prior Distribution of new target positions:Secondly, the intermediary target number is decremented:

prior state distribution of new target birthge (), may be chosen s® _ g 4 (13)

to reflect areas of the room in which new speakers are mordy like klk=1 Bt

to appear — such as near the doorways of a room. No sugiherwise no action is taken.

information will be used at this stage and the prior distiiu of 2. Initiation of new targets: In a similar manner to the above an

the location parameters will be set to be uniform across i c addition decision is then made as follows
po(zy,yi) = Ur(zy,yi), whereT will be the area of the entire Pr(ex, = 0) = 1o

(p)) q(p) _
surveillance region. Furthermore, the prior distributairihe velocity 9(x |Sk\k*1) o { Prlex =1)=1—1po (14)
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Should a new addition be decided upon, a random draw is madeatad the known microphone position is Ty, (r) = ||r — rw||. The

choose a cell for the new target using the set of normaliséitiad SBF cells have a 10cm spacing and are integrated over theeiney

probabilities £1.5,), again see Sec IV-E for details. range(2 € [200,6000]Hz, in practice implemented as a summation

Having selected the cell, the target position is initialisesing a over DFT bins.

weighted combination of a uniform distribution within théysical To better define the measurement function a nonlinear mgpgin

region of cell,7;, and a normal distribution centred on the weightethe SRP values;(r) = ®(S(r)), will redistribute measurements on

mean of any particle states currently existing in that @iﬂl and the rangez(r) € {0, 1} using a normal CDF

with variance equal tair,f“i, th.e idea pging.that some particles may 2 = B(S(r)); S, Ug) (19)

have detected the correct object position in an earlier fiaae,

s(p) s where the mean and variance of the distribution will be sebeo

Ok ~  qo(ak|Zir) S = 5500 andos = 500. These parameters are chosen after careful

~ BN (ag; o‘cg)p&i(]i) + (1 - B)Ur; (o) (15) review of the data — such that typical measurements recoimled

noise will be at the lower end of this range, while measuraméor

. . e active sources will be at the upper end of the range.
3. Updating of persistent target positions:Finally the states of S S . . .
2. . . The likelihood ratio is calculated as a ratio of the signialsmoise
targets persisting from time-stép— 1 to k are propagated using the ., . . ) S L
. . h . . likelihood function and the noise only likelihood functiarsing the
Langevin dynamical model which has been used previoushhis t following expressions
field, see [2], [8],az<p) ~ q(az|az<j’{,zk). While more advanced 9 exp

The parametep is set to be).7 in what follows.

dynamic mod_els cou_ld have been used, this model sho_wgd afgequ (2 |as<”)) _ p5+N(zis|o¢Z(P)) (20)
performance in practice. Parameter values used were sitoithose e 1Tk o o (zi |as(p))

mentioned in these works. The use of a more accurate model (fo s(p) ok

example learned from typical user motions) could possielguce psn(zila ™) = aWl(zi;101) + @)

the required number of particles. pN(ZiS|OLZ(p)) = ¢o(N(zi,;0,00) + qo)

In this way four distinct events can occur: one target mayitibdxl
to a particle, one may be removed from a particle, a target beay
birthed and another removed and, finally, no change in thcfes
target set may occur from the previous time-step except rdice
propagation.

where the likelihood functions are both normal distribntowith
variancesoo = 0.5 ando; = 0.01 and the constants were typically
set to zerogs = 25 and ¢ = 20 so as to support some heavy
tailed behaviour. Finallg, andc; are normalisation constants. Using
likelihood ratio is important as it allows us to avoid evdlng
this (continuous) function across the entire region, whiebuld

C. Importance Weights be required for proper normalisation of the underlying litkeod
Having determined the particle set for the current itergtithe function, as outlined in [4]. To our knowledge this issue wext
importance weights will be updated using dealt with in previous works.

(p) (P)) g(P)
0 o ) [ZA AL LAD,)

k—1 (16) IV. EXISTENCEGRID
q(AI(gp)|A](€z?17 Zl:k)

An important part of our approach is an effective proposatime
nism for initiating new targets and deleting old ones. Witha care-
fully designed data-dependent proposal mechanism theithigois
likely to suffer from poor exploration of the variable dinston target
space. To achieve this we adopt an existence grid approasiedb
closely upon [5], but with likelihood functions carefullyesigned
for acoustic localisation. This existence grid is a low fegon grid
reflecting our belief in the existence of target(s) in eachhef grid
cells and is used to evaluate the removal and addition piiitis

Hl (25, |0 ®) an mentioned in Sec I1I-B.

where the likelihood term(Zk|A§f)) is determined up to a constant
of proportionality by using a likelihood ratio calculatioas in [4],
[3]. The formulation as a likelihood ratio implies that welypmeed
evaluate this function at the grid cells that contain tesgand the
computation need only be made once for each grid cell (se&f3]
more details), and used by each particle containing a tawvghtn
that cell. The likelihood ratio is calculated as

Zk A(P)

s o o ) A. Design Choices
wherel(z;,, o ") is the individual target likelihood ratio for target ) )
s located in celli,. As mentioned previously, the Steered Beamformer funct®BR
As already implied, dat&, are obtained on a discrete grid of Spasee Eq 18) provides an indirect measure of how likely it ist tha
tial cells, covering the tracking region of interest. Theasiwement a speech sample originated at a particular location. Thetium
value, z;, is derived from the steered response power of the S ows f_or two _free de5|g_n parameter_s_(a) the frequepcy_eranged
steered to the centre of that cell, evaluated using or the integration (affe_ctlng the precision of _the Iocatlest_lmates)
and (b) the set of locations evaluated (affecting the spatitent of
the evaluated surface).
/ dw (18) Evaluating the entire surface using the full range of frewies
is, of course, impractical and hence a compromise is negessa
at the cell centre,rj = (:cj,yj) where X,,,(£2) is the Fourier Evaluating the SBF function using a low band of frequencie(r
transform of a frame of audio recorded at microphen@ndw is the case we have chosen € [100, 400] Hz) reduces the peaked nature
set of integration frequencies. The total number of micom@s is of the underlying surface as it is limited by the signal wawejths.
denoted asV.,,,. The measured quantity(r) is known as the Steered Fig 1 illustrates the SBF evaluated using two different regy
Response Power (SRP). The exponential term is used to tormamges. Thus a low resolution grid with cell dimensions ie ¢nder

for the time-of-flight between the speech source and eachkosen of 60-120cm across, can provide a coarse estimate of spaetiaty.
™m = Tm(r)/c, where the distance between the steering locatiddgsing the Bayesian update framework discussed by Moreédral

2
)e]WTm(T)/C
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Fig. 1. Comparison between SBF functions for a 12 microphone auaiod.
Left: the SBF surface for the frequency range 100-400HzhtRitpe same
surface for 200-6000Hz. The true source position Wa$§.92,0.80]. Only ) ) ) ) ) ) ) ) )
a low-density version of lower frequency surface will be evaluated for the 0 1 2 3 e [SSC] 6 7 8 9
existence grid in Sec IV.

o
IS

4
N

Existence Value - g

o

_ @) (b) (©) Fig. 2. Upper: Evolution of existence grid values for a single seutcower:
Frequencies used 200-6000 | 100-400 | 2000-6000 Two moving sources speaking simultaneously. The Magerig ls®e and
3dB peak width 5cm 50cm 5cm dotted black is the evolution of the existence grid valuethefsource cells,
Grid cell size N-A 80cm ~5cm while dashed red is the maximum existence grid value of exglly. See

No. Frequencies 742 38 742 Sec IV-D.
Total evaluations ~100 100 ~6400

Relative Computation|| ~742x100 | 38x100 | ~742x6400

Used in this algorithm Yes Yes No ments

TABLE | ; g (2t oh = 1)
Computational comparison between (a) Likelihood-SBF,Ekistence-SBF 9; p(zt)

and (c) Likelihood-SBF Grid B
g p(tol = 1)

= - - (22)
97" 'p(ztlol = 1) + (1 — g} p(=tlot = 0)

which gives us the existence measure for the current iterahlote
that g% is bounded within the rangf, 1]. o} is a binary label of
ither inactivity 6% = 0) or activity (0; = 1). A large value means a
igh chance of the existence of a target in that cell but itas n
probability, per se. To implement this update rule we nexd t
formulate the likelihood functiong(z;|o; = 1) and p(z;)|o; = 0).

[5], the obtained values can be combined with previous dagivie
a posterior estimate of cell activity — the existence grid.

Finally, because of the two design choices mentioned aboze
computational draw of this module is very small — especiall
when compared with the ensuing particle filter. Table | pidegi a
comparison between the evaluation of this surface, the fiagicle
filter likelihoods and also a full density SBF grid.

D. Existence Grid Likelihood Functions
The likelihood functions we shall propose will simply be as

. . i _ follows, for cell 5:
In determining source activity, we will choose to place kigh

weight on quickly finding newly active sources than on qujckl
removing sources that have become inactive. Operating Hiz,30
activity will be recognised within an existence cell aftest a couple

of cycles. Conversely when the source becomes inactiveavetea where ¢; and ¢o allow some heavy-tailed behaviour in both active
grid cell, the existence cell value will die away graduallyeo the and inactive casegg andc; are the normalising constants necessary

to normalise the probability density functions in the intr[0, 1].
z; is the (CDF-transformed) low frequency steered responsepo
evaluated at the centre of cell After optimisation the following
C. Evaluating the Grid parameters were used: active source = 0.018 and ¢ = 15;

First the SBF function (as in Eq 18), will be evaluated for m@f inactive sourcero = 0.54 andqo = 25.

J cells each of size(Axz, Ay), spread across the surveillance region. The likelihood functions highly reward measurements detioe
The cells will be numberegi = 1, ..., J. Again the SRP values will have originated from the source (modified SRP valué) but only
then be transformed onto a range 1] using the CDF mentioned in very mildly weight against less informative clutter measuents
Sec. IlI-C. In this case the mean and variance chosen Were450 (modified SRP value~ 0). Fig 2 illustrates the evolution of the
andos = 50 - as only the low band of frequencies are involved igXistence function for two recorded samples: while the griokides
the SBF integration. Using this measurement grid as an jnpat an indication of source activity, it does so in a somewhaelizinle
will now update an existence grid across the surveillangéone manner. This issue is returned to in Sec V.

Moreland et al, [5], presented a two step Bayesian updaéefoul The entire procedure produces, at each time franaad for each
the measure of the evidence that a source exists in a particell Cell j, a measurg; of the activity of target(s) within that cell. These
which is defined ag;*l for cell j at timet— 1 (Eqs 48 and 49 from values are used, with the active targets from the previone frame,
their paper). First, the previous estimate is updated usimgprior to propose target initiations and deletions within the iptfilter,
information of how we expect the source’s activity to evolve which is now described.

t—1 t t—1\ t
g9 =G+ —g; e @D g Target Proposal Mechanism
tt—1

where g; is the updated measure. Subsequently we update theHaving evaluated the existence grid values, next we findgiiib
existence values using information drawn from the curreeasure- ties for adding a new target or removing an existing targatkvivill

B. Desirable traits of the Existence Grid

aN(z3l,01) +aq), 0<z <1 (23)
co(N(25;0,00) + ), 0< z; <1

pzslot = 1)
plzlot =0)

course of a second — returning to the background level.

tlt—1 _

9;
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be used to propose the particle set. To do so we will use atlsligh
modified approach from [5], given here in shortened form.

Mean Location Error [m]
o
o [

c) Addition Probabilities:: Consider a particle at timé — 1
made up ofs*~! targets, A = (a1,...,au-1), located in cells
(l1,...,l,x—1). The relative probability of adding a new target to 5 s I I pn
a specific cell,j, will be the product of the probability of a target w00
existing in that cell with each of the probabilities of a wirgnot 3 400
existing in each of the other (vacant) cells, §300,
5 200
Vi = gf H (1_ k) (24) 2 100}
(R gj‘ ) i ° 10 15 20
ic Ak

§

and the probability of no target being added will be as foow

[
o

vy = H (1—g) (25) E 1
icAt ERN
or e 3666666066
The normalised set of addition probabilitied,= {vo,...,vs}, are 0 5 10 i 20

denoted wherezjzoj‘] v; = 1. g is the probability of no target
being added while the sum of the remaining values repregéets Fig. 3. Tracking of a single intermittent speech source moving & ghth
probability of any of the targets being added illustrated in Fig 5. Top figure: position error; centre figeirthe number of

e . s active particles; bottom figure: mean number of estimategrcas (crosses)

d) Rem.ov.al Probabllltlei..'l'.he set of relative p!robgbllltlles of a Uersus the true number (line). See Sec V-A for details.
targetnot existingin the celll$ given a target combination is found
using Eq 53 from [5]: .
A. Tracking Examples
= ) 26 Intermittent Single Speakeig 3 shows the performance of the
(- gl;;) algorithm for a single intermittent speech source movinghia path
indicated by Source 2 in Fig 5 over the course of 25 seconds. Th
?/stem correctly identified source activity and inactivig intended
This set of values correspond to the existence arid val ? the source activity was more quickly determined than inégti
P 9 YPS: position error is typically below 0.1m, although the averagror

ﬁg?mifssdse\?e:;;?;? the revrcr?i\(/;l Eg?gib'gﬁ?}ikiﬁ(’):end i;[/r(]eer:rinis effected by periods in which the source becomes silenbbfdre
0:Sk 1 P 9 the tracking particle set disappeared.

the previous section for addition. While the method allowdyca Two Conversing Speakersig 4 depicts tracking performance

fr'gg]lg t?hr%et tl? ngg?:c??“ieeﬂr 'gzccé?im?%tg:%st a pEttme . e y and Y-dimensions for two alternating speakers taking part
Thuls tIhiSWI rovides us vL\l/ith ;" Iogical ﬁgrlnev:/ork for bro osinin a 20 second conversation. The location of each sourcengluri
. p Jogical 1 lor prop Uctive speech is indicated by a red dashed line, while the algoisthm
particle sets to reflect the underlying activity of the diéiet regions {racking performances is indicated by a solid blue lineiafaze of the

of the surveillance space which can in turn be used to updmee - B . .
osterior distribution of the number of targets and theisibons estimate is indicated by error bars. The algorithm is seeroteectly
P 9 pons. identify and track the active source and to quickly switclween

An alternative approach would be to propose completely ne
P prop P y t\ﬁe speakers.

i 3 nirseny before being randiend fo e maiure tageusen W0 Overlapping Speaker$i 5 lustates the tracking of

reinforced by subsequent audio frames. This would make for éources aIternatmg_ between activity ar_1d inactivity idafg when

interesting comparison with our proposed method. oth sources are S|multa_neously speaklng._ The upper hlstrites
éracklng performance while the lower plot illustrates themiber of

Due to the temporal discontinuity of speech, one must trétle . . . .
the better tracking accuracy of a dominant source againgtoved sources estimated to be active. As mentioned previouslgxistence
grid gives a coarse indication of regional activity. Havipgpposed

tracking stability of weaker, less active sources. A cdrefwice of . . . i

likelihood and resampling parameters is required. For @@nwhen particles in these broad Ioca}tlons, the more accuraFectmrlh iter

two sources are active one can typically expect only 45% arhérs then tracks the source location precisely. The algorithreeisn to
preform tracking of both of the sources successfully — botiernv

to give accurate location estimates while a similar praporiwill th i d where th inacti
contain contain clutter measurements. Because of thisntpertant €y were active and where they were inactive.

to ensure that re-sampling occurs infrequently to avoidedegacy.

1——9%

k k
TS - Bs
1/sk—1
where 3% is prior target occupancy constant which can be used
reflect regions which are more or less likely to be occupied.

B. Monte Carlo Simulations
V. EXPERIMENTS ) ) )
Finally we will present the results of a series of Monte Carlo

S_O as t_o test the _algorlthn_‘l, a set of recordings were made Nsithulations to present performance in a quantitative madsemen-
typical office room with 12.m|clrophones spaced around thgh!tyu tioned previously, the proposed algorithm is unique in aeieing
5m x 5m space illustrated in Fig 5. The setup and other det&ite o osance activity and continuity of speech sources iandirely

idoe;ticr?l ;]O tlrat udsefzd in [?] The num.ber. of particles Wanm:’ probabilistic mannérand as such no method which can be compared
200 which allowe lor realtime operation in Mﬁ‘TLAB onl;a tygc ith the proposed algorithm. Hence the results presentes aily
PC (1.20GHz, Dual Core, 2GB RAM). Note that given the size n illustrative example of the algorithm’s performance.

the room available for these experiments the mean velodithe Tracking of one intermittent source is examined here udieditst

speakers is quite low - corresponding to a slow walking p&Ce. o, o6 from Sec V-A which follows the path of Source 2 in Fig 5
higher walking speeds it is anticipated that more particiesild P P g

be required to support diverse dynamics as well as possierl 1Although the approach taken by Ma et al. [9] has the capaiffitye-
frequency of accurate measurements. implemented using the SBF measurement framework, to besieitarly.
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Fig. 4. Tracking two sources in conversation using the algorithrspnted
in Sec Ill. Solid lines show the estimated position whiletetbis the ground
truth. Note how at 10 seconds the error bars indicate higheatainty in the

silent gap between the speakers before continuing acctrac&ing.
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Fig. 5. Top figure: tracking of two intermittent and overlapping akers
(see Sec Ill). Lower figure: the estimate of the number of cesudeemed
active (crosses) compared to the number that actually wetiwe (line).

was used (before the linear addition of Source 1). This stediof
three periods of silence followed by three periods of spemtivity

and was 67 seconds in duration. The algorithm was run 50 timégl

and the results were averaged. The following metrics arsepited
to illustrate performance:

. . N
1) Mean Location Error (of frames when the source is actlve).[ ]
0.055m. This error is of a similar size of a person’s mouth and

within the margin of error of the ground truth system.
2) Percentage of (active) frames that 70% of particle weligist
within 0.2m of the source position: 98.9%. lllustrating ttha

tracking is stable — although it must be acknowledged that

the test sample, while realistic, was not very challenging.

3) Mean error of the estimated number of targets: 0.394 tsrge
more are estimated. Our implementation of the system overes-

timates the number of targets so as to avoid missing a target

which is important in a number of envisaged applications.
Mean time taken for particle weight within 0.2m of the smur
position to rise to 70% (when becoming active): 0.28 seconds
As envisaged in Sec IV, quickly detecting new sources.
Mean time taken for particle weight within 0.2m of the smur
position to fall to 30% (when becoming inactive): 0.87 setxn
Inactive sources are removed more slowly.

4)

5)

VI. CONCLUSIONS

A fully probabilistic entirely integrated algorithm for the detection
and tracking of an unknown and time varying number of speskas
been proposed and demonstrated with real audio recordiibge
there exists scope for further optimisation of the alganitithe results
illustrates the ability of the system to track more than onarse
simultaneously in real-time in a computationally efficiemanner. In
particular the algorithm does not rely on external modutegropose
target or to keep track of targets. Additionally, this systsupports
null particles, explicitly containing no target states whaone are
supported by the audio data, which is a unique yet prob#baity
correct approach.

Improvement of the stability of the existence grid mechamnis
still possible. Currently the existence grid is implementising a grid
of non-overlapping cells which can lead to instability wheetarget
moves from one cell to the next. An alternative system unigjgwo
interleaved mesh grids could possibly remove this instgbivhile
requiring only a small increase in computing power.

A limitation of the algorithm (and AST in general) is the m@axim
number of active sources (about 3). This is due to the shareastic
channel which results in a reduced frequency of obseratigith
an increasing number of speakers and the breakdown of tbidrica
algorithm. This restriction could be improved with notcheiing or
binary masking of dominant speakers to expose the weakekspe
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