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A Graphical Representation and Dissimilarity

Measure for Basic Everyday Sound Events
Kamil Adiloğlu, Robert Anniés, Elio Wahlen, Hendrik Purwins, Klaus Obermayer

Abstract

Studies of Gaver [1] revealed that humans categorize everyday sounds considering the processes that have

generated them: He defined these categories in a taxonomy according to the aggregate states of the involved materials

(solid, liquid, gas) and the physical nature of the sound generating interaction such as deformation, friction, etc. for

solids. We exemplified this taxonomy in an everyday sound database that contains recordings of basic isolated sound

events of these categories.

We used a sparse method to represent and to visualize these sound events. This representation relies on a sparse

decomposition of sounds into atomic filter functions in the time-frequency domain. The filter functions maximally

correlated with a given sound are selected automatically to perform the decomposition. The obtained sparse point

pattern depicts the skeleton of the given sound.

The visualization of these point patterns revealed that acoustically similar sounds have similar point patterns. To

detect these similarities, we defined a novel dissimilarity function by considering these point patterns as 3D point

graphs and applied a graph matching algorithm, which assigns the points of one sound to the points of the other sound.

This novel dissimilarity measure is used in combination with a kernel machine for the classification experiments,

yielding an average accuracy of 95% in one vs. one discrimination tasks.

Index Terms
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K. Adiloğglu and R. Anniés were with Technische Universität Berlin when the work presented in this paper was performed.

K. Adiloğlu is with INRIA, Centre Inria Rennes Bretagne Atlantique, 35042 Rennes Cedex, France (e-mail: kamil.adiloglu@inria.fr).

R. Anniés is with ARTORG Center, University of Bern, Murtenstr. 50, 3008 Bern, Switzerland (e-mail: robert.annies@artorg.unibe.ch)

K. Obermayer is with NI, Neural Information Processing Group, Technische Universität Berlin, Franklinstr. 28/29, 10587 Berlin, Germany

(e-mail: oby@cs.tu-berlin.de).

E. Wahlen is a graduate student in Hamburg University of Applied Sciences. He lives in Smidstr. 5, 20535 Hamburg, Germany (e-mail:

elio@elio.de).

H. Purwins is with the Music Technology Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra,

Roc Boronat 138, 08018 Barcelona, Spain (e-mail: hpurwins@gmail.com).

January 9, 2012 DRAFT

Hendrik Purwins


Hendrik Purwins
Adiloglu, K., Annies, R., Wahlen, E., Purwins, H., Obermayer, K. (2012): A Graphical Representation and Dissimilarity Measure for Basic Everyday Sound Events,  
IEEE Transactions on  Audio, Speech, and Language Processing, In Press





Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

I. INTRODUCTION

Answering questions regarding recognition and perception of everyday sounds was difficult by focusing solely

on musical listening or speech recognition. In her pioneering work, Vanderveer [2] defines everyday sounds as any

possible audible acoustic event which is caused by motions in the ordinary human environment. Vanderveer studied

the perception of environmental sounds in an identification experiment. She played recorded sounds to subjects and

let them describe what they had heard. She observed that the subjects mostly referred to the event that caused the

sound. Similarly, Houix et. al. [3] found out that the action, the objects involved and the place of the action play

an important role in the recognition of these everyday sounds. Houix et al. [4] and Lemaitre et al. [5] performed a

free categorization experiment in which subjects were asked to categorize kitchen sounds. The subjects also gave

account whether they had categorized sounds according to their acoustic signal properties or to the event that caused

them. Houix et al. and Lemaitre et al. both found out that naive listeners tend to group everyday sounds according

to the events that caused them. Hence, all these studies revealed that everyday sounds are recognized and named

depending on the event causing the sound. Gaver [1] called this phenomenon everyday listening.

Considering this phenomenon, Gaver proposed a hierarchical taxonomy of everyday sound events. He emphasized

that a sound event occurs due to the interaction of two materials. Therefore, he proposed a general level in this

hierarchy depending on the general categorization of these materials: vibrating solids, liquids and gases. Based on

the interaction of these materials, Gaver defined the sub-categories within the solid sounds as deformation, impact,

scraping and rolling. Note that these categories define very basic everyday sound events, which can happen in

our daily environment, but not describe a complete environment itself. Hence, we call these kinds of sounds basic

everyday sound events.

Recently, the computational analysis of such everyday (or more sophisticated environmental) sound events

attracted increasing research interest. These studies are mainly concentrated on classification of these sounds against

other sound categories like music, speech, etc. The feature vector based representation schemes dominated this field

so far. Breebaart and McKinney [6] compared four different feature based approaches including spectral features

(zero-crossing rate, spectral centroid etc.), Mel Frequency Cepstrum Coefficients (MFCC’s), psychoacoustical fea-

tures (sharpness, roughness) and auditory filterbank based (Gammatone filters) representations on classification

of everyday sounds (noise), music, speech and crowd against one another. Auditory filterbank based approach

outperformed the other three in average classification accuracy. Aucouturier et al. [7] used the bag-of-frames

approach to model the perceptual similarity of urban soundscapes. They approximated the distribution of the

MFCC’s over all frames of a given sound. They compared these distributions by calculating the Kullback-Leibler

divergence to detect the similarities. This method performed well on urban soundscapes but failed on polyphonic

music. In general, vector based methods have difficulties in detecting events falling between two consecutive blocks.

Furthermore, averaging over the blocks to generate a feature vector causes losses of certain characteristics of the

given signal.

In order to overcome the disadvantages of the block based methods, Chu et al. [8] proposed a sparse approach
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using Gabor atoms, applied for classification of environmental sounds via k-nearest neighbors and Gaussian mixture

models. They apply matching pursuit (MP) [9] to decompose the signal into n most prominent Gabor atoms. Mean

and variance of frequency, scale, and translation position of these atoms are calculated, yielding a feature vector as

a representation for classification. By representing the signal by means and variances of the parameters of its atomic

decomposition, the detailed spectro-temporal structure of the signal gets lost. In contrast to Gammatone functions,

Gabor atoms are symmetric in time. For sounds with fast attacks and slow decays (such as many impact sounds with

reverberation), a decomposition with Gabor atoms introduces an artifact prior to the attack of the signal, whereas

the Gammatone function, itself with a faster attack than decay, constitutes a more suitable dictionary for this kind

of sounds.

Since MP is a time consuming approach, Gribonval and Bacry [10] developed a fast version of the method by

simply selecting the best sub-dictionary in an adaptive way during the coding. They used harmonic dictionaries,

which the Gabor dictionaries are a special case of. Adapted to sounds with harmonic overtone spectra, as present in

many musical instruments, for everyday sounds, harmonic atoms are less suitable. They tested the fast MP on note

detection, which performed promisingly well depending on the values of the hyper parameters used in the algorithm.

A similar idea to accelerate MP has been proposed by Coifman and Wickerhauser [11], who introduced Shannon

entropy to select optimal basis functions out of a library of orthogonal wavelet-packets and localized trigonometric

functions.

Apart from these classification approaches using sparse methods, sparse decomposition has been employed by

Smith and Lewicki [12] on audio signals as an efficient coding scheme using biologically plausible Gammatone

functions that resemble characteristics of cochlea filters. An MP scheme has been applied for finding the compo-

nents, which minimize the residual error while maximizing the coding efficiency. They indicated the use of their

decomposition method to depict the temporal pattern and the frequency content of the coded sounds. In order

to show the efficiency of their method, they calculated the fidelity of the code in terms of the signal to noise

ratio (SNR). Their studies revealed that their decomposition model is more efficient than the Fourier or wavelet

representations. Furthermore, in their studies, the Gammatone functions turned out to be highly efficient for natural

sounds, which include among others the everyday sounds.

We generated a basic everyday sound events database containing basic sound events conform to the taxonomy

defined by Gaver. In this paper, we focused on representation, visualization, similarity and categorization of

basic everyday sound events collected in this database. In order to analyze these sounds in detail, we pursue

the studies of Smith and Lewicki and propose a representation scheme for sparsely coding and visualizing basic

everyday sound events. We contribute to this research field by introducing a dissimilarity function based on a graph

theoretical approach to calculate the similarity between those sounds, which in turn used for classifying them. This

representation and dissimilarity function has been tested in a binary one-vs.-one as well as a one-vs.-all classification

experiments using a supervised machine learning algorithm.
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II. BASIC EVERYDAY SOUND EVENTS DATABASE

Different from the environmental sounds, which audibly describe certain environments like streets, coffee shops,

highways etc., basic everyday sound events describe materials and their elementary interactions. Therefore, compared

to the environmental sounds, basic everyday sound events are recordings of a single event and not a complete

environment, which possibly contain many basic everyday sound events.

We exemplified Gaver’s everyday sounds taxonomy by collecting everyday sounds to generate an evaluation

database. Figure 1 shows the classes and numbers of sounds per class.

We selected the sounds from the Sound Ideas [13] database. In order to reflect the diversity of the basic sound

events, we selected sounds originated by significantly different sound events of the same class depending on what

the Sounds Ideas database provides. It is a large library of sounds to be used mainly for film dubbing, sound design

and production. Since we focus on real sound events, the subset we chose consists only of sounds that are natural

recordings. We based the decisions entirely on the original work of Gaver [1]. The super and sub classes cover a

broad band of basic everyday sound events in human environments, that have distinct sources and meanings.

No preprocessing has been applied to the selected sounds except for cutting 4 sec. segments of continuous sounds.

The semantic descriptors of the Sound Ideas database are used for labeling the sounds. We used a hierarchical

categorization with two levels. The first level consists of the three main categories identified by Gaver: solid, liquid,

gas. The aggregate state of the object or matter that is causing and supporting the emission of a sound is the

discrimination criterion.

Fig. 1. The complete taxonomy of everyday sounds and the number of sounds used in the evaluation of each class.

A. Solid

Sounds emitted by the interaction of at least two solid objects are collected in this class. According to Gaver,

the criterion for classifying a sound into this class is that the sound must be caused by mechanical contacts of one
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or more solid objects. The solid-class consists of four sub-categories. These are impact, motor, deformation and

friction.

Impact-sounds are short sounds resulting from a single instantaneous contact between two objects or parts of one

object. Among others, we selected recordings of switches, single typewriter clicks, hitting sounds. The motor-class

consists of sounds of machines and engines like of car engines in the idle state. Gaver indicates the regularity in

the rolling sounds, which is the analogy to our motor-class. Mainly sounds of crashing objects like car crashes

and glass crashes sounds constitute the deformation class. The sounds within the friction class involve an enforced

contact of two solid objects moving against each other. Hence, the friction sounds category consists of recordings

of squeaking and sliding doors, windows and dragging of objects, e.g. different sizes of stones.

Since the motor sounds are continuous, we cut 4 sec. segments of these sounds. The friction sounds are selected

to be of any length shorter than 4 sec.

B. Liquid

Physically, liquids do not emit much sound themselves. Still there are a lot of everyday sounds that are typical

for liquids and caused by water indirectly. In fact, the main sound sources are bubbles of air inside liquids that

start oscillating. Alternatively, sounds emerge when liquids are reflected from or filled into solid objects making

these objects oscillate. However, sounds of liquids are perceptually distinct.

The liquid sounds are split into three sub-classes: drip, flow and pour. The drip-class consists of recordings of

dripping water. The examples we selected cover a wide range of drips from a countable number of drips (e.g.

from a tap) to uncountable drips (e.g. drizzle). The recordings also differ mainly in the reverberation of the room

and the material type (liquid itself or solid), where the drips are reflected or absorbed, i.e. at the point of sound

emission. Hence the distinguishing factor of the drip-class to the other liquid-classes according to the semantics

of the material interaction is that small distinguishable portions of water fall onto a surface. The flow-class mainly

encapsulates movements of large portions of water that create swirls of air causing sound. Hence, it consists of

examples of running water taps, waves on the shore, different sizes of rivers from brooks up to large rivers and

similar movements of water. Depending on the amount of water, high background noise is audible within these

recordings, e.g. very large waves or a very large river. The third liquid-class is called pour. In there, we collected

sound recordings of the interaction of transporting a portion of water from a vessel A to a vessel B through air, for

instance filling a glass from a bottle. Sound is emitted by air bubbles that appear during the action. This definition

seems close to that of the flow-class, but we have selected only sounds, where there is a clear directed relocation

of the water or drink from A to B. Because there are also sparkling drinks involved, the sounds are a mixture of

the pouring action and the sounds that comes from the carbonated drink itself.

We cut 4 sec. segments of these sounds, because liquid sounds are continuous.

January 9, 2012 DRAFT



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

C. Gas

Aerodynamic sounds sources are more direct. These sources create the sound by changing the atmospheric

pressure. This can happen suddenly or as a steady process. The former are explosive sounds that populate the

explosion-class. Gun shots and larger detonations from TNT are possible candidates for this sub-class proposed by

Gaver. Explosions result in a very energetic short bang, that is almost a Dirac impulse.

As wind we considered sounds resulting from a constant movement of air: recordings of wind sound at different

locations, steam, and blow sounds. Similar to the motor and liquid sounds, we cut 4 sec. segments of the wind

sounds.

The third class is labeled as whoosh. The sound events of this class are caused by objects passing by the listener

(microphone) with a high velocity. Arrow sounds, airplanes and very fast cars passing by the listener constitute

three main sound groups represented within this class. Furthermore, we included transient air blows (e.g. flame

thrower) into the whoosh class as well to increase the diversity of the class. Since the flight duration of an arrow

or an airplane or the time needed until a fast car approaching and passing by the listener differ completely, the

durations of the sounds within this class range from half a second up to half a minute.

III. REPRESENTATION OF EVERYDAY SOUND EVENTS

In the present paper, we utilise a sparse representation scheme used for visualization of everyday sound events as

well as in a classification scenario to categorize them. In the following sections, we will explain how to decompose a

sound into a sparse set of filter functions. Following the terminology of Smith and Lewicki, each of these functions

will be called a spike, and the whole set of spikes will be called a spike code.

In order to construct the spike code, we prefer the biologically motivated Gammatone filterbank as the set of basis

functions. A Gammatone filterbank [14] of M filters with center frequencies fm and bandwidths bfm is defined by

the Gammatone function with a temporal offset t∗ as follows:

γfm,t∗(t) = (t− t∗)3 cos(2πfm)e−2πbfm (t−t∗) (1)

with 1 ≤ m ≤ M. For t∗ = 0, this function indicates the impulse response of the Gammatone filter. The relationship

between the bandwidths and the center frequencies of the filters within the filterbank are determined according to

the ERB scale, proposed by Glasberg and Moore [15]. They indicate that the bandwidth of the filter corresponds

to a fixed distance on the basilar membrane. The biological plausibility of the Gammatone filterbank as a model

of the basilar membrane is also supported by the high similarity of the impulse response of a Gammatone filter

to the impulse response of the basilar membrane measured in cats [16]. Besides, the magnitude characteristics of

a gammatone filter is similar to the magnitude characteristics of the rounded exponential filter, which is used for

representing the human auditory filter [17]. Hence, the use of a Gammatone filterbank for coding sounds accounts

for the basilar membrane side of the auditory perception.

We use the implementation of the Gammatone filterbank in the auditory toolbox by Malcolm Slaney [18], [19].
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A. Sparse Signal Representation

In a sparse, shiftable representation method based on atom-like filter functions, a sound signal x(t) can be ap-

proximated as a linear combination of K Gammatone functions γfk,tk(t),, selected from a unit-normed Gammatone

filterbank of M filters, with coefficients (amplitudes) ak and residual εK+1(t):

x(t) =
K∑

k=1

akγfk,tk(t) + εK+1(t). (2)

Each selected Gammatone function, called a spike sk, is composed of the temporal offset tk, the center frequency

fk of the Gammatone filter, and its amplitude ak. We employ matching pursuit [9], [12] to iteratively determine

the spikes sk and to minimize the residual. The kth spike, 1 ≤ k ≤ K, with the time offset tk and the center

frequency fk is selected to be the Gammatone filter γfm,t∗(t), 1 ≤ m ≤ M , which maximally correlates with the

signal εk(t) :

(fk, tk) = argmaxfm,t∗ < εk(t), γfm,t∗(t) > . (3)

In his auditory toolbox, Slaney [18], [19] used fixed window lengths for each filter in the filterbank. However, the

energy levels decrease much slower for the low frequency filters than for the high frequency filters. Therefore, we

adapted the window lengths considering the center frequencies. We calculated the positions for each filter within

the filterbank, where the total energy in the time envelope falls to its thousandth. We used these position values in

time as the window lengths to calculate the scalar product.

For each filter, we traversed the sound signal using a hop size and the scalar product between the signal and the

filter is calculated in each iteration. The filter with the center frequency fm at a certain position within the signal

t∗ yielding the highest scalar product is selected to be the kth spike sk = γmf,t∗ . The amplitude ak of the spike

sk is defined to be the scalar product between the corresponding filter and the residual signal, as shown in (3).

After finding the optimal values tk, fk and ak for the kth spike sk, we update the residual by

εk+1(t) = εk(t)− akγfk,tk(t) (4)

Finally, for k = K we yield (2). By varying K, the sparsity of the representation can be traded off versus its SNR.

Increasing K increases the SNR of the representation.

Figure 2 shows the wave form and the spike code of a whoosh sound. We observe easily, how the spike code

captures the skeleton of the sound. Note that salient areas in the spectrogram are coded with more spikes than other

areas, whereas no spikes have been used to encode the rest of the signal. Most importantly, one can easily recognize

these salient areas within the sound and match them directly to the spike code. For instance, in this figure, we have

a recording of a fast car passing by. Therefore the spikes are concentrated in the middle of the sound, where the

car reaches the person (or microphone) and passes by. The algorithm did not spend any spikes when the car is far

from the person. Hence, the spike code is an easy to understand method for visualizing sounds properly.

Figure 3 shows spike codes of one sample sound from each class of our basic everyday sounds database. As we

mentioned for Figure 2, by considering not single spikes but the groups of spikes within the whole code, one can
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(a)

Fig. 2. For a sound from the main class gas, subclass whoosh, the sound wave (top) and the spike code (bottom) generated by a Gammatone

filterbank of M = 256 filters and K = 256 spikes. spikes.

Fig. 3. Spike codes of one sample sound from each class of the basic everyday sound events database, generated by using a Gammatone

filterbank of M = 256 filters and K = 256 spikes.
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easily assign these groups to the salient events within the coded sound. Furthermore, considering the spike code as

a whole reveals that spike codes indicate common patterns for sounds with common attributes. Hence, spike codes

of sounds having similar auditory features, e.g. recordings of similar events like sliding doors and windows etc.

and hence being from the same class of a sound database, show similar patterns, whereas spike codes of sounds of

different classes are significantly different. Apart from this fact, the spike codes can be regarded as a representation

to perform classification of these sounds by making use of these similarities between them. In the following section,

we explain in detail, how we captured these similarities. However, beforehand, we would like to mention three state

of the art representation schemes, which we have used as comparison.

B. Other Representation Schemes

MFCC’s [20] are a well established representation scheme which dominates applications in speech recognition

and music processing. The frequency bands in this representation are spaced equally on the Mel scale, which is a

perceptually relevant scale indicating the auditory response on the basilar membrane. We use the first 13 MFCC

coefficients. A feature vector is computed by taking the mean, variances, finite differences between consecutive

MFCC coefficients and the variances of these differences over all frames, adding up to one 52-dimensional vector

for a sound example.

As a comparison, we use a feature set we will call Low-level signal features (SLL). It consists of the energy,

zero crossing rate, spectral centroid, roll-off frequency and their variances, finite differences and the variances of

the differences giving a 16-dimensional feature vector, similar to the above feature construction.

For a further comparison, a set of timbre descriptors is used: perceptual spectral centroid, relative specific

loudness, sharpness, roughness, signal autocorrelation, zero crossing rate, time frame, log attack time, temporal

increase, decrease and centroid, effective duration, energy modulation frequency, energy modulation amplitude. As

an implementation we use the IRCAM descriptor [21].

IV. CLASSIFICATION OF SOUNDS

The similarities between spike codes can be captured without destroying the original structure of the pattern.

In this paper, we propose a novel, structure preserving dissimilarity function to calculate the dissimilarity between

two spike coded sounds in two steps. In the first step, the dissimilarity between two spikes of different spike codes

is calculated. In the following step, the total dissimilarity between the given spike codes is calculated by taking

the minimum of the sums of spike dissimilarities of all pairwise assignments. Intuitively, this method measures the

minimal effort to transform one spike code into the other in terms of the single spike dissimilarity (see Figure 4).

A. Dissimilarity between Two Spikes

The dissimilarity ds(s, s′) between two spikes s = (t, f, a) and s′ = (t′, f ′, a′) is composed of three individual

dissimilarities, namely the dissimilarity dt(t, t′) between times offsets, df (f, f ′) between center frequencies, and
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da(a, a′) between amplitudes:

ds(s, s
′) = τdt(t, t

′) + φdf (f, f
′) + (1− τ − φ)da(a, a

′), (5)

with τ,φ ≥ 0, τ +φ ≤ 1. Parameters τ and φ allow to emphasize either the temporal, spectral, or amplitude aspect,

while guaranteeing that the weights sum up to 1.

In order to calculate the temporal dissimilarity, for each sound the spike with minimal time offset tmin is

determined. This is used to omit the ”silence” before the first spike when comparing two sounds. tmax be the

maximal sound length across all sounds measured between the first and the last spike of each sound. For time

offsets t, t′ of two spikes the time dissimilarity holds:

dt(t, t
′) =

((t− tmin)− (t′ − t′min))
2

t2max

. (6)

For calculating the frequency dissimilarity, we consider logarithmic frequencies, according to the Weber-Fechner

law. However beforehand, we normalize the frequencies with the highest center frequency fmax of the filters within

the filterbank. For frequencies f, f ′ of two spikes we define the dissimilarity to be:

df (f, f
′) = (

log f − log f ′

log fmax
)2. (7)

For the amplitude dissimilarities, we take the absolute values of the amplitude, which normally could be negative as

well. In the calculations, we divide the amplitude a by the maximum amplitude amax of the sound, thereby equalizing

the volume. The maximum amplitudes are determined by first taking the absolute values of the amplitudes and

choosing the amplitude with the largest value. Hence, the dissimilarity is defined as

da(a, a
′) = (

log |a|
log amax

− log |a′|
log a′max

)2. (8)

These separate dissimilarities between amplitude, frequency and time offsets are summed up in (5) to calculate

the total spike dissimilarity. After calculating the dissimilarity between two spikes, the dissimilarity between two

spike-coded sounds can be achieved.

B. Dissimilarity between Spike-Coded Sounds

For two sounds, we consider their spike codes s = {s1, . . . , sK} and s′ = {s′1, . . . , s′K}. Given the dissimilarity

function ds(si, s′j) for two spikes si ∈ s, s′j ∈ s′, we can define a dissimilarity d(s, s′) between two sounds by

establishing a bijection between s and s′. For a permutation µ ∈ SK we assign to each spike in s exactly one spike

in s′, so that si → s′µ(i). Then we define the dissimilarity between two spike-coded sounds as the scaled sum of

the dissimilarities between the K corresponding spikes:

d(s, s′) =
1

K

K∑

i=1

ds(si, s
′
µ(i)), (9)

with µ minimizing the dissimilarity:

µ = argminµ∈SK
d(s, s′). (10)
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C. Graph Matching

Instead of solving the problem of minimizing the assignment µ in (10) directly, we consider the spike codes of

two given sounds as two point graphs combined in a bipartite graph. In this constellation, the vertices are the spikes

si ∈ s, s′j ∈ s′ of two spike-coded sounds s, s′, where each sound corresponds to a disjoint subgraph of the bipartite

graph, and the weights (similarities) between them are derived from the dissimilarity ds : wij = 1 − ds(si, s′j)

with µ(i) = j. This consideration converts the problem into a combinatorial one of finding an optimal matching of

the weights in a bipartite graph, optimal in terms of the minimum dissimilarity defined in (10). For this purpose,

we used the Hungarian algorithm [22]. We consider a matching to be a subset of the edges of the given graph

containing each vertex only once. In a perfect matching, every vertex within the graph is adjacent to an edge. The

Kuhn-Munkres Theorem [22] guarantees the convergence of the algorithm to a perfect matching.

(a) Pour 1 (’o’) - Pour 2 (’v’)

(b) Pour (’o’) - Explosion (’v’)

Fig. 4. Spike pattern comparison: a) two sounds from the pour-class, b) a pour and an explosion sound.

Figure 4 shows two examples of matching results performed by the Hungarian algorithm. The upper plot indicates

the matching results between two sounds of the same sound class. The lower plot, on the other hand, depicts matching

results of the sounds coming from two different classes. These two plots exemplify that the dissimilarities between

spike patterns of different sound classes are in general larger than the dissimilarities among sounds of the same

class.
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Let SK be a set of sounds, encoded by K spikes. The dissimilarity d(s, s′) : SK ×SK → R+ is symmetric and it

holds d(s, s′) = 0 for s = s′. For L sounds si, sj ∈ SK (1 ≤ i, j ≤ L), d(si, sj) gives L ·L pairwise dissimilarities,

expressed as the dissimilarity matrix:

D = (d(si, sj))1≤i,j≤L. (11)

D. Distance Substitution Kernel

In most of the real classification problems, data is not linearly separable. A common approach to overcome this

difficulty is the use of a distance substitution kernel [23].

A given dissimilarity function d(s, s′) is embedded in a (high-dimensional) space H using a kernel function K

so that in H we can separate the classes linearly by hyperplanes.

Given spike dissimilarity function d in (9), we use a Gaussian kernel to define the so-called L×L Gram matrix:

K = (exp
−d(si, s′j)

2σ2
)1≤i,j≤L. (12)

σ2 is the variance (sometimes called length scale) parameter which has to be determined. In the state-of-the-art

applications, the Gram matrices should be positive semi-definite that normally arises from norms in the feature

space. However, the Gram matrix K of the proposed dissimilarity function is not positive semi-definite.

Note that our dissimilarity function is not exactly an Euclidean distance. Furthermore, considering the spikes as

axes in a K dimensional system, the performed matching can be interpreted as a switch of axes in this system. This

means that the algorithm matches a particular spike sk of a given sound s to different spikes in different sounds.

Therefore, the dissimilarity function defined for spike coded sounds does not define an Euclidean space.

Let us explain the situation on an example. Given sounds s, s′, s”, the dissimilarity between the sounds s and s′

for the i-th spike of sound s is defined as ds(si, s′µ(i)). Similarly, the distance between the sounds s and s” for the

same spike is defined as ds(si, s′′ν(i)). However, the matching µ(i) is not equal to ν(i).

Therefore, the Gram matrix defined in (12) does not constitute a valid kernel. In order to be able use this Gram

matrix in a kernel machine, either one has to transform K such that it becomes positive semi-definite (see Graepel

et al. [24]) or one has to resort to kernel machines that do not require positive semi-definite kernels. We prefer the

latter approach.

There are several approaches to overcome the necessity of a positive semi-definite Gram matrix. Balcan et

al. [25] proposed a theory of learning with similarity functions not necessarily positive semi-definite. They showed

that for pairwise similarity functions satisfying certain conditions (conform to a certain definition), there is an

explicit transformation of the data, after which a standard large-margin classifier can be applied. In another study,

Hochreiter et al. [26] [27] proposed a variant of the standard SVM called the Potential SVM (P-SVM), which

selects models using the principle of structural risk minimization. In contrast to the standard SVM approaches, the

P-SVM is based on another objective function and another set of constraints, which lead to an expansion of the

classification or regression function in terms of support features. The optimization problem is quadratic, always well

defined, suited for dyadic data, and neither requires square nor positive semi-definite Gram matrices. Therefore, the
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P-SVM approach can be used without any pre- or post-processing of the measured as well as constructed Gram

matrices using an indefinite kernel function. Hence, in this study, the spike kernel is used in combination with the

P-SVM to perform classification.

V. EXPERIMENTS

Both the matching pursuit algorithm and the Hungarian algorithm are time consuming operations. Coding the

sounds with too many spikes takes a large amount of time, which in return does not necessarily yield either a

better visualization or a better classification accuracy. Therefore, it is essential to determine the optimal number of

spikes. However, it is essential to span the whole frequency space. Smith and Lewicki found out that with M = 64

filter functions, an efficient time-relative code is possible. Increasing the number increases the efficiency linearly,

but time needed to compute increases exponentially. In our experiments, we used M = 256 filters, which ensures

highly efficient codes according to their results.

In order to find the optimal number of spikes needed for the coding in terms of the classification accuracy, we

performed classification experiments with different number of spikes for randomly selected two classes – drip and

flow. We coded the sounds with K = 32, 64, 96, . . . , 256 spikes and calculated the balanced test accuracies and the

duration needed for these experiments. The obtained accuracies shown on the left hand side in Figure 5 indicate an

increase as the number of spikes increases. However there is a plateau between K = 160 and 224 spikes. The time

needed for these experiments – shown on the right hand side in the same figure – increases exponentially as the

number of spikes increases. Hence, for the sake of computational costs – the Hungarian algorithm has complexity

of O(K3) – we ran the experiments with K = 192 spikes, which yields an acceptable accuracy in acceptable

computation time.

Fig. 5. Left: The balanced test accuracies for the classification experiments of the sound classes drip and flow as a function of number of

spikes used for coding the sounds. Right: The time needed to perform these experiments.

To overcome the disadvantages of block based methods, we used a hop size of one sample during the coding to

find the best fit. We found that using hop size values larger than 10 samples, the difference in the quality between

the original and the resynthesized sound is clearly audible.

In order to account for the time course and the spectral content of the sounds, we set τ = 0.4 for the temporal

dissimilarity dt (6) and φ = 0.4 for the frequency dissimilarity df (7). The classification experiments performed

with these weight values among others yielded the best results in terms of accuracy.
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In order to evaluate the accuracies of the dissimilarity matrices, we have performed classification experiments with

the P-SVM to discriminate one class from another, for all pairs of classes separately, 45 pairs in total. Furthermore,

we have performed detection experiments, again with P-SVM, where we measured the detection accuracies of one

class vs. all other classes, for all classes separately, 10 experiments in total. The hyperparameter ε of the P-SVM

and the kernel size γ were varied in a grid search: 0.1 ≤ ε ≤ 1.0, 2−5 ≤ γ ≤ 210 to find an optimal setting.

We measured the accuracies of all these experiments by using the leave-one-out cross validation method.

VI. CLASSIFICATION RESULTS

This sound database corpus has been classified by using the spike coding method as well as by using the MFCC,

SLL, and TIMBRE descriptors for comparison.

Figure 6 shows the accuracies for binary discrimination tasks between all pairs of classes in an upper triangular

form as well as the one vs. the rest detection accuracies underneath. The one vs. the rest detection experiments

have been performed only for the best three representation methods. As it can be seen in the upper part of the

figure, the TIMBRE descriptors perform significantly worse than the other three for the one vs. one discrimination

tasks. Therefore we excluded them from the one vs. the rest detection experiments.
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Fig. 6. Binary discrimination accuracies of four different representation schemes (the MFCCs, the spike code, the SLLs and the timbre

descriptors)in the upper part and one vs. the rest detection accuracies of the first three representation methods in the lower part of the figure.

The results of the one vs. one discrimination tasks indicate that the overall performance of the MFCC represen-

tation outperforms the other three representations, including the spike representation. However, the overall accuracy

obtained by the spike representation is very close to the MFCC accuracy. Furthermore, for several particular cases, for

friction vs. impact for instance, the spike representation outperforms the MFCC representation. SLL and TIMBRE

January 9, 2012 DRAFT



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

15

TABLE I

THE BALANCED PREDICTION ACCURACIES OF THE BINARY ONE VS REST DISCRIMINATION EXPERIMENTS FOR THE MOTOR CLASS

OBTAINED BY THE GENERAL NORMALIZATION SCHEME AND ANOTHER NORMALIZATION SCHEME PROPOSED FOR THE MOTOR CLASS.

Defr Fric Impact Motor Drip Flow Pour Expl Who Wind

Special 0.9915 0.9892 1 0.9957 0.9833 1 1 0.9915 0.9957

General 0.9909 0.9857 0.9945 0.9743 0.8780 0.9851 0.9938 0.9900 0.9782

show mixed results. Only SLL has a fairly good performance in the one vs. one task. A high variance and/or poor

accuracy of SLL and TIMBRE in the other cases make them less applicable here.

In the one vs. the rest detection experiments, the spike code outperforms the other representation schemes

including the MFCCs in five particular cases. In the other five cases, MFCCs perform the best.

TABLE II

MEAN AND STANDARD DEVIATIONS OF THE RESULTS

MFCC SPIKE SLL TIMBRE

one vs. one µ 97.70 94.86 92.44 80.29

σ 2.4 5.5 5.7 9.4

one vs. rest µ 89.19 87.51 81.32 55.68

σ 7.8 5.2 10.71 7.4

Table II shows the average discrimination and detection performances of the model for the results in Figure 6.

In the average accuracy, the MFCCs perform slightly better than the spike representation. However, their standard

deviation is larger as well, meaning that their uncertainty about the average accuracies is higher compared to the

accuracies of the spike representation.

For the spike representation, one should also consider that we employed the same normalization method and

the same coefficient values in all dissimilarity calculations. We wanted to demonstrate the overall performance of

the method without embedding specific information about the sounds into the dissimilarity calculations. However,

our dissimilarity function enables to embed problem specific expert knowledge into the calculations by changing

the normalization and the values of the coefficients. For instance, while the impact sounds are all short pulses, the

motor sounds are all continuous and the length of the whoosh sounds are quite variable. Hence, incorporating a

suitable normalization in combination with coefficient values accounting for the correct relationship between the

three dimensions of the spikes, the classification accuracies can be improved. We demonstrate this possibility on

the motor class by normalizing the times, amplitudes and frequencies locally within each sound. Table I shows

the discrimination accuracies of the experiments performed with (Special) and without (General) this normalization

for the motor class. As Figure 3 also indicates, the motor sounds depict a very regular pattern along all three
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dimensions. For this particular example they have mainly two frequency components, one very low component and

one component around 1800 Hz. From sound to sound, these frequency components can change, but regularity of

the sound and in turn the spike pattern does not change. By normalizing the frequency dimensions locally for each

sound, these frequency differences can be removed. Hence the regularity of the spike patterns within the motor

class can be detected easily. The results shown in Table I indicate a clear improvement compared to the results

obtained with the general normalization method proposed in Section IV-A. Similarly, this kind of prior knowledge

can be embedded for other cases as well to improve the results.

VII. DISCUSSION

1) Noise: The amount of noise in basic everyday sound events can not be neglected in the analysis and

classification. How is noise encoded with the gammatone spike approach? Firstly, the encoding can be understood

as a denoising step that emphasizes the contours within the sound which are perceptually important and result

in a robust dissimilarity function. Secondly, from a certain threshold of spike numbers the noise in the signal

is encoded in a probabilistic way. The position of a Gammatone atom in the noise is determined by the noise

distribution. Encoding sounds with an inherent portion of noise, like streaming water, could emphasize contours in

the sound which are perceptually non-existent (phantom spikes). With psycho-acoustic experiments the number of

spikes threshold from which a human cannot distinguish between a set of single phantom spikes and noise could

be measured and used to avoid this effect.

2) Comparison to other Filterbanks: We decompose sounds as a linear combination of Gammatone functions as

atoms. In contrast to the Short-Term Fourier Transform (STFT) with constant bin widths, we use filter bandwidths

according to the perceptual ERB scale that increase exponentially with frequency. The Mel frequency scale used

by MFCC’s is spaced in a way similar to the ERB scale. Both the STFT and the MFCC’s are calculated with a

constant frame length in the temporal domain. For our approach, the length of the temporal filter decreases and the

bandwidths of the filters increase with increasing center frequency and vice versa. Instead of plain sine functions,

the atoms in our decomposition are biologically plausible Gammatone functions, similar to Solbach et al.’s [28]

wavelet filterbank built from Gammatone filters.

3) Relation to Other Matching Methods: Let us discuss our approach in relation to three other matching methods,

namely the Bag-of-Frames Distance, the Wasserstein-Mallows Earth Mover Distance, and Dynamic Time Warping.

Usually, the Bag-of-Frames Distance (BoF) [7] does not consider time as a dimension explicitly encoded in

the representation. Therefore, a sound is represented in the same way as the same sound played backwards, even

though these are perceptually very different. They would yield a high dissimilarity in our measure. From our sparse

representation of a sound, it would be more difficult to determine the probability density than it would be using all

full-dimensional feature vectors like it is done in the BoF Distance. The BoF Distance does not explicitly consider

the difference between two features. It just gives a density estimate, thereby measuring if certain values happen

equally often.

The method presented in this paper can be considered as an approximation of the Wasserstein-Mallows Earth
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Mover Distance (EMD) [29]). The Hungarian algorithm we used here is a special case of EMD, where the optimal

flow matrix is a 0-1 permutation matrix, i.e. the earth is only moved between two points. A binary value is assigned

to the mass if a triple of frequency, time and amplitude is considered to be among the selected n most prominent

spikes (mass 1) or not (mass 0). A variant would be to consider the amplitude as the mass in the EMD. Due to the

sparsity of our representation of the sound and the 1-to-1 mapping between spikes (contrary to a soft-assignment

proposed in the EMD) the computational expense of our method is significantly reduced in comparison to EMD.

Dynamic Time Warping (DTW) [30] is another alignment method aligning two time series. In order to align two

sounds, DTW maps the temporal evolution of one sound onto the time course of the other sound. In contrast to

our dissimilarity approach, which relies on the three-dimensional structure of the spike code, considered as a point

graph, DTW is a non-linear but monotone acting along the time axis by matching several time steps (samples)

of one sound to one single time in the other sound. In order to perform this alignment, the spike code should be

converted into a two-dimensional list. Hence, our dissimilarity function preserves the three-dimensional structure

that gets lost when applying DTW.

VIII. CONCLUSION

Following the everyday listening phenomenon, we realized Gaver’s taxonomy as a database of basic everyday

sound events on two levels of description, the sound generating materials on the top level and the interactions

between them on the bottom level. We exemplified these sound categories with recordings of isolated sound events

taken from the Sound Ideas database.

We coded the basic everyday sound events within this database by incorporating a sparse representation scheme

using the Gammatone filters. Previous studies have shown that these filter functions are suitable for coding everyday

sounds. The use of the Gammatone filters also links the representation to biological and psychoacoustic findings.

In order to find the positions of the filter functions, we utilized the matching pursuit algorithm. This yielded an

efficient code for these sounds, which accounts not only for spectral and energy properties, but also for temporal

characteristics. The efficiency of the sparse representations is better than the Fourier or wavelet representations [12],

but using other encoding algorithms could even increase these values.

Plotting the spike code yields a visualization, a salient skeleton or a cartoon of the sound. Such a transcription

provides valuable information about the sound visually indicating the audible similarities and differences between

mostly and / or partly similar sounds, e.g. sounds stemming from the same sound class.

The audible similarities and differences easily observable on spike codes inspired us to define a structure

preserving dissimilarity function incorporating the graph theory. Thereby, we extended sound classification from

Euclidean distances between feature vectors to the more general scenario of non-metrical dissimilarities. We

employed a distance substitution kernel and utilized the P-SVM to perform the classification. With the P-SVM, we

introduced an analysis method in sound and music computing that can handle any dissimilarity measure without

any requirement to a positive semi-definite kernel structure. The potential of the method has been demonstrated

by predicting the attributes of basic everyday sound events. In binary discrimination and detection scenarios, our
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method performed promisingly well.

The graphical approach, we applied to define the dissimilarity function for sparse representations is, to our

knowledge, a new paradigm in the music and sound processing domain for classification purposes. The promising

initial results presented in this paper indicate the potential of this way of thinking. Even though the average

classification results of the MFCCs are slightly better than the ones obtained by using our dissimilarity function,

the flexibility of our dissimilarity function enables to embed some problem specific knowledge easily, so that the

accuracy of the results increases. The improvement in the results of the motor class indicates this fact, which is not

possible for several other methods including the MFCCs. Therefore, the authors are strongly convinced that this

method is applicable to a wide variety of sounds.

In a further study, a prototypical spike code will be generated for a given sound class in an unsupervised way,

by adapting the k-means algorithm to the proposed dissimilarity measure.

Such a prototypical spike code can reveal interesting features common within the given sound class. These

features can be visualized by the method and yet since a spike code can be re-synthesized, the prototypes become

audible as well. An audio-visually available, prototypical sound pattern generated from a set of real examples raises

many new research questions, concerning not only the unsupervised categorization of sounds but also common

perceptual features as well as their design and optimization.
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