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Optimized FDTD Schemes for 3-D Acoustic
Wave Propagation

Stefan Bilbao

Abstract—Finite difference time-domain simulation methods in acous-
tics applications have seen increased interest recently. The simplest scheme
exhibits various weaknesses, such as numerical dispersion and anisotropy.
More general parameterized families of schemes are explored here, with a
view towards reducing such numerical artefacts through optimization. Nu-
merical results are presented.

Index Terms—Finite difference schemes, finite difference time-domain
(FDTD) method, room modeling.

I. INTRODUCTION

In spatial audio rendering applications (such as, e.g., artificial
reverberation, or concert hall design), full wave-based modeling
techniques are seeing increasing interest. Such brute force methods,
in contrast to those based on simplifications such as ray tracing [1],
or image source techniques [2], allow a complete rendering of the
acoustic field anywhere within an enclosure. Various techniques have
emerged—probably the best-known are finite difference time-domain
(FDTD) methods [3], [4], which are intimately related to (and ulti-
mately equivalent to) digital waveguide meshes [5], [6], which have
seen much development, resulting in a full 3-D rendering system for
low frequency acoustics [7]. Such low-frequency methods are often
hybridized with ray-based methods [8]. An obvious (and unavoidable)
downside of such full 3-D modeling is that it is computationally
intensive, requiring, even for moderately-size rooms and at audio
sample rates, a very large computational overhead.

The majority of the work on time-stepping methods has concentrated
on schemes which operate over regular Cartesian grids. Probably best
known is the simple scheme, where updating is carried out, at a given
grid point, through accesses to previously computed values at the six
neighboring points [9]. As is well known, such a scheme exhibits se-
vere numerical dispersion effects, seen in practice both as variation in
wave speed with frequency, as well as with direction (anisotropy). It
is thus worth exploring schemes which, while requiring greater com-
putational overhead, allow more control over these undesirable arte-
facts—the greater computational costs of such schemes may be offset
against the possibility of obtaining good quality results, even at low
sample rates.

The 3-D wave equation is introduced in Section II, and a basic finite
difference scheme is described in Section III. A parameterized family
of schemes, geared towards reducing the effects of numerical disper-
sion and anisotropy, and requiring optimization strategies, is presented
in Section IV. Numerical results appear in Section V.
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II. THE 3-D WAVE EQUATION

The usual starting point in linear models of acoustic wave propaga-
tion is the wave equation in 3-D:
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���
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���
	 (1)

Here, � is the wave speed, in m/s, � is a time variable, and ��� �� �� � �

are spatial coordinates, in m. The dependent variable� � ���� �� �� ��
is often taken to be a pressure, but another choice is of a velocity po-
tential [10].

System (1), defined over an unbounded space, is linear and lossless.
As such, it is natural to examine wave-like solutions of the form

���� �� �� �� � 
��� ��� ��� ����� (2)

where � � ���� ��� ��� is a real-valued vector wavenumber, and � is a
real angular frequency. When inserted into (1), the following dispersion
relation results:

� � ����	 (3)

III. A BASIC FINITE DIFFERENCE SCHEME

In a finite difference framework, over a regular (Cartesian) grid, the
solution ���� �� �� �� to (1) is approximated by a grid function ��

	
�
�,
representing an approximation to� at � � 
� , � � �� and � � �� ,
and � � �� , or integer 
, �, �, and �. Here, � is the spacing between
adjacent grid points, and � is the time step. �
 � ��� is the sample
rate. In other mainstream simulation applications, there is often a pre-
mium placed on using larger time steps, in order to reduce computa-
tional complexity [11]. Here, however, no such freedom is possible—a
scheme must operate at a certain rate in order to be able to adequately
render the solution up to a given frequency.

The simplest possible scheme for the 3-D wave equation is standard,
and may be written as follows:
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�
� (4)

where the operators ��� and ��
�
� are an approximation to a second
time derivative and a six-point approximation to the Laplacian respec-
tively, defined as
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where the notation ��
�
� will be clarified in Section IV-A.

A. Frequency Domain Analysis

In order to analyze this scheme, it is again useful to examine the be-
havior of a single traveling wave solution (through so-called von Neu-
mann analysis [11]), sampled over a regular Cartesian grid, of the form

��
	
�
� � 
������	� ���� ���� ��	 (7)

The numerical dispersion relation for the scheme is then
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� (8)
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Fig. 1. Output spectra for the finite difference scheme (4) for the 3-D wave
equation, for different values of �, the Courant number. Here � � ��� m�s and
the scheme operates at sample rate � � � kHz, over a cubic region, of side
length 1 m. The scheme is excited with an impulse at time � � �, at location
� � ����,� � ����,	 � ����, and output is read from location� � ����,� �

����, 	 � ��	�. For each value of �, the dark shaded region corresponds to the
frequency range above � , where the scheme does not produce an oscillatory
solution, and the light shaded range to the region above � , where the modal
density is incorrect.

where � � ���� is the Courant number for the scheme, and where
������� is defined as

����������� � � ��� ��	������ ��	������ ��	������ � (9)

Equation (8) is satisfied for real values of 	 when

� � ������� �

�
�

(10)

which is a necessary stability condition for this scheme.

B. Cutoff Frequencies

For a given time step, if � is held constant, then � � ����, and
it might seem that a choice of � smaller than the bound given in (10)
might be advantageous, in terms of efficiency, as the grid spacing be-
comes larger. In fact, this is not the case—such a choice leads to a
numerical cutoff frequency.

To see this, note that the maximum frequency 	��� (or frequency

��� � 	������, in Hertz), for a given value of �, will occur when
the right-hand side of (8) is maximized—this value is given by
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� (11)

There is thus a reduction in the available bandwidth of the scheme, as
is easily observable in the plots in Fig. 1. This reduction is substantial,
even for� very near to�������. As a result, if one is interested in reducing
computational complexity, a far better approach is to simply reduce the
sample rate.

A more subtle transition frequency occurs, due to the grid resolu-
tion. From sampling considerations, in a direction aligned with one
of the coordinate axes, the grid is capable of supporting wavelengths
greater than �� , corresponding to a wavenumbers of magnitude less
than ��� , or frequencies 
���	� � 	���	���� less than


���	� �
�

��
�

�
�
�

� (12)

Above this frequency, for a simulation over a fixed volume, the solu-
tion is unreliable, as the modal density will be incorrect. See Fig. 1.

Fig. 2. Range of variation of relative phase velocity, for scheme (4), as a func-
tion of normalized wavenumber, over all directions, and expressed as a per-
centage error.

Fig. 3. Numerical dispersion, evident in the propagation of a pulse. The scheme
is excited with a short pulse, of the form of a raised cosine function, at a source
location, and outputs are read at successively distant locations.

This condition implies that for an FDTD scheme to give a good ap-
proximation over the entire frequency range, one must have � � 
, but
such a choice is prohibited by the stability condition for scheme (4),
from (10).

C. Numerical Dispersion

Scheme (4) exhibits rather severe numerical dispersion, and
anisotropy; waves do not travel at the same speed at all frequencies,
and in all directions. In order to examine this feature, it is useful to
define the relative phase velocity, as

��
����� �
	

���� �
�

����� 	�

��

� �������

�
(13)

which depends on the normalized wavenumber �� .
In Fig. 2, the range of variation of ��
� with normalized wavenumber

magnitude is shown—the scheme exhibits a progressive slowing of
wave speed with increased wavenumber magnitude, up to a maximum
of up of more than 30% at the maximum wavenumber. Such behavior
is easily visible in plots of the propagation of an impulsive disturbance
at increasing distances from the source location, even over short dis-
tances, as illustrated in Fig. 3.

Anisotropy also increases strongly with wavenumber, as is readily
visible in Fig. 2. For plane waves, speeds range from exact (along di-
agonal directions on the computational grid) to maximally dispersive
(along the coordinate axes). See Fig. 4, showing the variation in the
form of a received pulse at three equidistant points, in distinct direc-
tions, from the source location.
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Fig. 4. Numerical anisotropy. For the same conditions as in Fig. 3, outputs are
read at equidistant locations, at angles �, � relative to the positive � axis, as
indicated above.

D. Comments

Scheme (4) has the virtue of simplicity; as shown above, however,
it exhibits rather poor behaviour, both in terms of dispersion, and
anisotropy. Various improvements are possible—all of which incur
a cost, in terms of memory usage or operation count. Anistropy has
been attacked using so-called interpolated schemes [9], [12], making
use of a neighborhood of 27 points surrounding a given grid point,
leading to nearly isotropic behavior; frequency warping techniques
(necessarily offline) may be used in order to correct for dispersion
error [13]. Another approach has been to make use of implicit schemes
[14], [15]—while leading to greatly improved dispersion error, such
schemes necessarily require linear system solutions at each time step.
Many such solution techniques are available, but will either require
a great increase in the operation count (as for, e.g., iterative methods
which may require many iterations to converge), or are inherently
serial (such as, e.g., the Thomas algorithm used for sparse banded
systems [16]).

In the remainder of this correspondence, wider stencil families of
explicit schemes will be explored—such schemes incur no additional
cost in terms of memory, though the operation count per grid point be-
comes higher; but if such schemes are designed such that they possess
good accuracy over the entire frequency range, it is possible to use them
even at very low sampling rates (such as 4 kHz), without inducing the
severe dispersive effects.

IV. PARAMETERIZED FAMILY OF SCHEMES

The scheme (4) operates, locally, by making use of previously
computed values at the nearest neighbor points only. In this section,
a framework for designing schemes which operate over an arbitrary
range of neighboring points is developed.

A. Approximations to the Laplacian

Basic operations, in a finite difference scheme operating over a reg-
ular grid in 3-D are the unit shifts ��, �� and �� :
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Symmetric averaging operators, useful for isotropic problems such as
the wave equation, may be defined, in terms of these basic shifts, as
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�	���� (14)

where � is any of 
, �, or �, and where �	
 is an integer power of the
shift operator in direction � , for � � �.

Consider the following operators, indexed by integer triplets
�
� �� ��, with 
 � � � � � �:

�����
 �
�


� � �� � ��
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�� �
�� �
� �

�� �
� �

�
 �
� (15)

Fig. 5. Representation of the operators � , with black points indicating the
selected grid points, as for given triplet ��� �� ��, up to a maximum order of
� � �.

where the sum is over the six permutations �
�� ��� ��� of �
� �� ��
(which are not necessarily distinct). Such an operator, when applied at
a given grid point, selects the family of points distant by 
, �, and �

units in the three coordinate directions—see Fig. 5. In particular, the
leading index 
 gives the maximum span of the operator in any of the
three coordinate directions.

The operators

�����
 � �
�

��
�����
 � ��	���� (16)

are approximations to the Laplacian as may be easily verified through
insertion of (14) in (15).

It follows that any linear combination of operators, where the coefi-
cients sum to unity, is also an approximation to the Laplacian
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�����
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�����
�

�����
���

�����
 � �� (17)

When applied at a grid point in a difference scheme, each individual
operator �����
 selects a distinct set of six, eight, or twelve points, de-
pending on the values of 
, �, and �, as well as the center location
which is common to all operators; furthermore, any grid point may be
reached through the range of precisely one such operator. This par-
ticular decomposition of a general Laplacian operator over a grid is
useful, in the sense that there is a direct computational cost (in terms
of floating-point operations) associated with each �����
.

Simple families of interest include those operators which act over a
given maximum number of shifts in any coordinate direction, and may
be labeled as �� , �� , �� , etc., where

�� � ��
� �� ���
 � � � � � � � ��� (18)

In the spatial frequency domain, such operators can again be exam-
ined in terms of their action on a wave-like solution of the form given
in (7), leading to
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where ���
 � 
�����
�� and where the approximations to the Lapla-
cian, in the frequency domain, may be written as
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B. Isotropy Constraints

In order to examine the isotropy of this family of schemes, it is nec-
essary to associate power series expansions of powers of the Laplacian
operator, in the frequency domain, with expansions of the parameter-
ized operators ��. To this end, note that through the use of the multi-
nomial expansion, one may write

��� ������ ��� � ��� � ���
�

������

� �� ��

��

�������� �
���� �

��
� ���� (21)

where the sum is over non-negative integers ��, �� , �� such that �� �
�� � �� � �.

The operator �����	, may be written, in the frequency domain, as

������	 �

�
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������������
����	 (22)

where ��
���
����	 is given by
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��� ��� ��� (23)

where the non-negative integers ��, �� , �� satisfy �� � �� � �� � �,
and where the second sum is over the six permutations � ��, � �� , � �� of ��,
�� , �� .

Consider now a parameterized operator ��, as defined in (17). In the
frequency domain, such an operators may be written as
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For isotropy, to 	
 th order, the requirement is thus that
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���
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 (24)

for some constants ����. This leads to the constraints
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for non-negative integers �������� � �, and for� � �� � � � �
 . By
symmetry considerations, there are 
�
 � ��
	 of such constraints,
which are linear in the coefficients 	����	. The cardinality of the set�
of independent approximations to the Laplacian must thus be at least
� � 
�
 � ��
	, when the additional necessary constraint (17) is
specified. Notice that the exact values of the constants ���� are imma-
terial, as far as the constraints above are concerned.

In Sections V and VI, if a scheme is of maximal width �, and of order
of isotropy �, the (possibly constrained) difference approximation to
the Laplacian will be referred to as �

�
.

C. Family of Schemes

For a given parameterized approximation �� to the Laplacian, where
the parameters satisfy constraint (17), a family of schemes may be
written as

�

�
�
����
 � �����

�
����
� (26)

The stability of this family of schemes, which are explicit and two-step,
may be examined again through the use of a traveling wave ansatz of
the form of (7), giving rise to a characteristic equation of the form
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���� (27)

Stability conditions or the scheme are thus
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(28)

where ��
�����
� is the maximum value of the function ��� over all pos-

sible wavenumbers, in the range � � �����, �����, ����� � �.
The second stability constraint is strongly nonlinear in the coefficients
	����	. As in the case of the simple scheme, there will be substantial
loss of bandwidth if � is chosen away from the bound in (28).

The relative numerical phase velocity is

���������� �� �
�
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� (29)

If the Courant number is chosen so as to satisify the stability condition
(28) with equality, then the form above may be specialized to

����������� �
�

����
�
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�����
�

����
�����

���

��
�����
�

� (30)

D. Optimization

The schemes above depend on a number of free parameters (the coef-
ficients 	����	), which are constrained due to the consistency condition
(17), the stability conditions (28), as well as (possibly) the isotropy
conditions (25). As such, optimization is necessary; optimization for
FDTD schemes in the context of electromagnetics has been addressed
recently in [17] and [18]. In this case, it is rather difficult to even pose
the optimization problem in such a way that all schemes are on an equal
footing, computationally.

The simplest approach is certainly to set the value of the Courant
number � � �	, a priori. Thus, the search will be over schemes of the
same grid spacing (for a given sample rate), and memory requirements
are identical over the search space. In order to ensure that there is no
region of the spectrum over which modal density is incorrect, as per the
discussion in Section III-B, one can go further and specify �	 � � (and
preferably, for reasons of efficiency, �	 �). All of the constraints are
thus linear, and the optimization problem is greatly simplified.

On the other hand, such an approach neglects the natural tendency
of all such schemes to have the least numerical dispersion (and max-
imal output bandwidth) when the Courant number is chosen close to
the stability condition; there is also no guarantee that such a scheme
will be stable, as the second of conditions (28) may not be respected.
As such, the approach taken here will be to set the Courant number, a
priori, to its maximum value, for a given set of coefficients. There is
thus the possibility of some variation in �, and thus memory require-
ments, though as will be shown below, in practice, the optimal scheme
nearly always takes on a value of � near to unity (in fact, near 0.9).

A simple choice of the objective function is the mean square devi-
ation of the relative phase velocity of the scheme, integrated over the
positive octant of wavenumber space:

�� �
������

������� � �
�
��� (31)

and the optimal set of parameters 	����	, for a given family � of
schemes may be recovered as

	��

�����	 � �
���� ���� (32)
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Fig. 6. Range of variation of relative phase velocity, as a function of normalized
wavenumber, over all directions, and expressed as a percentage error. From top
to bottom, for the optimal successively wider stencil schemes defined over sets
of points � , � , � , and � .

Fig. 7. Numerical anisotropy. For the conditions in Fig. 3, outputs are read at
equidistant locations, at angles �, � relative to the positive � axis, as indicated
above. Shown are results for the optimal schemes� ,� , and� .

for ��� �� �� � �, subject to consistency and isotropy constraints.
It is not the purpose of this correspondence to detail optimization

techniques, of which there is of course a vast number—see, e.g., [19]
for basic strategies. All optimization results illustrated in Section V are
obtained using simple gradient descent methods, accompanied by line
searches.

Fig. 8. Range of variation of relative phase velocity, as a function of normalized
wavenumber, over all directions, and expressed as a percentage error. From top
to bottom, for the optimal successively more isotropic schemes defined over sets
of points � , � , and � .

V. NUMERICAL RESULTS

In this section, numerical results, including both plots of variation is
numerical phase velocity, as well as time domain results of the use of
the schemes are presented. In the latter case, all schemes are run at a
sample rate of 44.1 kHz; an impulsive input waveform, of the form of
a raised cosine function of duration eight samples is applied at a given
grid location, and output is drawn from other locations (interpolated
spatially using high-order 3-D sinc functions).

Consider first the optimal schemes��,��,��, and��, of succes-
sively larger stencil width. Plots of variation of relative numerical phase
velocity are shown in Fig. 6, as a function of normalized wavenumber
magnitude. Though error is always largest near the spatial Nyquist fre-
quency (i.e., when ���� � �), it is noticeably reduced for the higher
stencil schemes; for scheme��, it is under 1% over nearly the entirety
of the range of wavenumbers. The values of the Courant number, for
the four optimal schemes, are

�� � ���� �� � ���� �� � ���� �� � ���� (33)

and thus the range of wavenumbers over which modal density is in-
correct is small (see Section III-B). Plots of the propagation of short
pulses at three propagation angles are shown in Fig. 7, which is to be
compared with the results of the simple scheme in Fig 4; as expected,
coherence of the pulse is much higher.

Consider now schemes of a fixed stencil width, constrained to dif-
ferent orders of isotropy, such as the schemes ����

� , ����
� , and ����

� .
The variation in phase velocity with direction, as shown in Fig. 8, is vir-
tually negligible over the majority of the range of wavenumbers, though
there is now evident a general offset of phase velocity, uniform over all
directions. The optimal values of the Courant number, in this case, are

�
�

� ���� �
�

� ���� �
�

� ����� (34)

With the exception of the highest wavenumbers, propagation of even a
sharp pulse is nearly entirely independent of direction, as seen in Fig. 9.

VI. CONCLUSION AND FUTURE DIRECTIONS

It has been shown here that there are opportunities for improve-
ment of FDTD methods in acoustic simulation, at the level of algo-
rithm design, with respect to various criteria. The main interest of the
schemes presented here is that programming simplicity and memory
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Fig. 9. For the conditions in Fig. 3, outputs are read at equidistant locations, at
angles �, � relative to the positive � axis, as indicated above. Shown are results
for the optimal schemes� , � , and� .

requirements are unchanged relative to that of the simple scheme pre-
sented in Section III, though the operation count is certainly higher;
such schemes perform very well even at low audio sample rates. Only
the behavior of schemes over the problem interior has been addressed
here. Necessary further steps are to specialize such schemes to numer-
ical boundary conditions typical of room acoustics problems (see, e.g.,
[20]). Maintaining numerical stability for wider stencil schemes may
be a strenuous task, but theoretical tools are available for such schemes
[21].

The optimization problem described in Section IV-D has been
defined in the simplest possible manner, and could be fine tuned in
a great variety of ways. Regarding the objective function given in
(31)—as seen in the plots of variation in relative phase velocity for
optimal schemes, as appear in Section V, as most of the error is near
the highest wavenumbers supported on the grid, it might be beneficial
to accept such error as unavoidable, perhaps through the introduction
of a weighting in the objective function, or perhaps performing the
optimization only over a selected region of wavenumber space (leaving
a “guard band”) near the highest wavenumbers. Isotropy constraints,
in this correspondence, are posed in the classical numerical sense of
Taylor series expansions about DC (much as in the case of conven-
tional analysis of accuracy of finite difference schemes [11]). One
could, instead of dealing with isotropy directly through constraints,
build it in directly to the objective function, in a wideband sense, such
that variation of the relative phase velocity is minimized for a given
value of the wavenumber magnitude. There are many other features
of interest in audio and numerical design which could also be built
into the above optimization strategy as additional constraints. Among
them are: the possibility of minimizing the variation of relative phase
velocity at the highest wavenumbers (thus targeting spurious oscilla-

tion near the Nyquist frequency); accuracy as a whole, in the classical
numerical sense, which may be raised from second order through new
constraints on the Courant number, using modified equation methods
[22].
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