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Abstract—In speech and audio applications, short-term signal this paper, we focus on one of the most successful tech-
spectrum is often represented using mel-frequency cepstrao- niques, themel-frequency cepstral coefficier(tdFCCs), that
efficients (MFCCs) computed from a windowed discrete Fourie were introduced three decades ago [3] and are extensively

transform (DFT). Windowing reduces spectral leakage but va- di K dl i i i h
ance of the spectrum estimate remains high. An elegant extsipn ~ US€U 1N SPEAKer and language recognition, automatic speec

to windowed DFT is the so-called multitaper method which recognition, emotion classification, audio indexing andthw
uses multiple time-domain windows (tapers) with frequency certain modifications, even in speech synthesis and canwvers
domain averaging. Multitapers have received little attenton  gpplications. There is no doubt that the way we derive MFCC

in speech processing even though they produce low-varianceeatres has great impact on the performance of many speech
features. In this paper, we propose the multitaper method fo . L
processing applications.

MFCC extraction with a practical focus. We provide, firstly,
detailed statistical analysis of MFCC bias and variance usig There have been many attempts to enhance the robustness

autoregressive process simulations on the TIMIT corpus. Fo of MFCC features. Several techniques have demonstrated
speaker verification experiments on the NIST 2002 and 2008 effective ways to normalize the MFCC features by using
SRE corpora, we consider three Gaussian mixture model based the statistics of the MFCC temporal trajectory. For exam-

classifiers with universal background model (GMM-UBM), su . SR
port vector machine (GMM-gVM) and join(t factor an)alysiz ple, cepstral mean and variance normalization (CMVN) [4],

(GMM-JFA). Multitapers improve MIinDCF over the baseline ~RASTA filtering [5], temporal structure normalization [6],
windowed DFT by relative 20.4 % (GMM-SVM) and 13.7 % feature warping [7], and MVA processing [8] are commonly
(GMM-JFA) on the interview-interview condition in NIST 2008.  ysed for enhancing MFCC robustness against additive noises
The GMM-JFA system further reduces MinDCF by 18.7 %  ang channel distortions. The specific configuration and rorde
on the telephone data. With these improvements and genergll . L
noncritical parameter selection, multitaper MFCCs are a viable of chaining .them depe_nds, howgvgr, on the target apP'"“a“O
candidate for rep|acing the conventional MFCCs. SUCh teChanues Obta]n the statistics EIther from the Ime-t
signals themselves or from some training data. Therefbey, t
require either delayed processing or off-line modelingthiis
paper, we would like to study a new way to derive MFCC
features, with which we reduce the MFCC estimation variance
|. INTRODUCTION without relying on any statistics beyond a speech frame.
From a statistical point of view, the common MFCC imple-
EATURE EXTRACTION is the key function of a speechmentation based on windowed DFT is suboptimal due to high
processing front-end. Spectral features computed frarianceof the spectrum estimate [10]. To elaborate on this,
the windowed discrete Fourier transform (DFT) [1] or lineajmagine that, for every short-term speech frame there ®xist
prediction (LP) models [2] are used in most of the frontan underlyingandom processvhich generates that particular
ends. The DFT and LP models perform reasonably well undgame; an example would be an autoregressive (AR) process
clean conditions but recognition accuracy degrades sgvergriven with random inputs but with fixed coefficients. For
under changes in environment and channel since the sh@fieech signals, we imagine that there exists a speaker- and
term spectrum is subjected to many harmful variations. Bhoneme-dependent vocal tract configuration from which the
actual speech sounds are generated from. A spectrum estimat
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Fig. 1. Multitaper method uses multiple windows (tapersidiag to different subspectra, whose weighted averagesfone spectrum estimate and leads to
robust MFCCs. For visualization, spectra are shown in dBesibat computations are based on linear values. The taperfan the SWCE method [9].

enhance performances of voice activity detection (VAD)]J20VI we extend and complement the preliminary GMM-UBM

[21], speech enhancement [22] and speech recognition [2&sults of [33] using two high-performance classifiers, GMM

to give a few examples. supervector with support vector machine (GMM-SVM) [13],
The particular small-variance method adopted in this pag@4] and GMM with joint factor analysis technique (GMM-

is based omultitapers as illustrated in Fig. 1. The multitaperJFA) including integrated speaker and intersession Véitiab

method [24]-[27], as a simple and elegant extension of theodeling [15], [35], [36]. To sum up, the main purpose of

conventional windowed DFT, uses multiple window functionthis paper is to review, collect and extend our recent work on

(aka taperg with weighted frequency-domain averaging tdéhe use of multitapers in speech processing with appliodto

form the spectrum estimate [24], [25], [27]. The tapers are dspeaker verification. We provide sample implementation and

signed to give approximately uncorrelated spectrum estismarecommendations for setting the control parameters.

so that averaging them reduces the variance. More spelifical

the side-lobe leakage effect in the conventional windowEd D Il. COMPUTING THE MULTITAPER MECCs

is partially suppressed by multitapering [28], [29]. Thellwe

_ )T
knownWelch’s method30] is a special case of the multitaper Letx = [2(0) ... x(N —1)]" denote one frame of §peech
of N samples. The most popular spectrum estimate in speech

technique with identically shaped but time-shifted tapers . . . : X
Thus, in Welch’s method, the subspectra are uncorrelat%i?cessmg’ windowed discrete Fourier transform (DFT), is

because they are computed from different segments. The n%h’-e” by

titapers applied in this paper, in contrast, are fully oapping . N-1 . 2

in time but their shapes are designed so that they have only S(f) = Z w(t)x(t)e /N 1)
small overlap in frequency domain [10], [24]. Conceptually t=0

multitapering also shares some similarity with smoothing t \yhere ; = /=1 is the imaginary unit andf =
DFT estimate using frequency-domain convolution (e.gDi10(, 1 ... N — 1 denotes the discrete frequency index. Here
but generally these are not mathematically equivalent. w = [w(0) ... w(N —1)]T is a time-domain window func-

The multitaper method of spectrum estimation was intrgon which usually is symmetric and decreases towards the
duced around the same time as the MFCCs [24] but hggme boundaries. In this study, we choose the most popular
found little use in speech processing so far [22], [31], [32}yindow in speech processing, th¢éammingwindow, with
This might be due to previously unstudied statistical proge () = 0.54 — 0.46 cos(2xt/N).
of multitaper MFCCs and availability of different multitap From a statistical perspective, the use of a Hamming-type
variants to choose from [9], [24]-{26]. Additionally, due t of window reduces thebias of the spectrum estimate, i.e.
mostly theoretically focused treatments of the topic [ID}], how much the estimated valus(f) differs from the true
[25], practitioners may have had difficulties in implementi value 5(f), on average. But the estimated spectrum still has
and choosing the control parameters in a typical recognitipjgh variance. To reduce the variansayltitaper spectrum

application. estimator [10], [24], [26] can be used:
Since the statistical properties of the multitaper MFCCs 5
— briefly summarized in Section Il — are recently analyzed S(f) — s N i _iomtf/N 5
[27] and further, we got encouraging preliminary speaker (f) _Zl (7) ;wﬂ'(t)x(t)e O
j= -

verification results in [33], we were curious to explore the
technique further. In Section IV we carry out detailed evaliHere, K multitapersw; = [w;(0) ... w;(N — 1)]T, where
ation of multitaper bias and variance using simulated ramdgj = 1, ..., K, are used with corresponding weight$;).
processes on the TIMIT corpus. Importantly, in Sections & arThe multitaper estimate is therefore obtained as a weighted



small bias,

small variance

High bias,

MANUSCRIPT, IEEE TRANSACTIONS ON SPEECH, AUDIO AND LANGUAE PROCESSING 3

Thomson (K = 4) Multipeak (K = 4) SWCE (K = 4) spectrum, multipeak a spectrum with sharper peaks and SWCE
a compromise between these two methods. In this example,
for a small number of tapers, sdy < 4, all the three methods

” preserve both the harmonics (due to the voice source) and the
5 T oo o 000 spectral envelope (due to the vocal tract). For a high number
Thomson (K = 8) Multipeak (K = 8) SWCE (K = 8) of tapers, say > 8, the harmonics gets smeared out. The
optimum number of tapers is expected to depend on the target
application. In speaker recognition, both the voice soarme
vocal tract filter are found to be useful, thus we expect to get
the best results using a relatively small number of tapers.
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B. Computational Complexity and Periodogram Smoothing

‘ The windowed periodogram in (1) can be computed using
M A fast Fourier transform (FFT) of complexit9(N log V). Since
% Frequency (Hz) " ° Frequency (Hz) . Frequency (Hz) the multitaper estimator (2) requirdé FFTs, the complexity

of the direct implementation i©(K N log N), which might
IFi@l- 2. . Tylpical Eﬂultit)apﬁr Spehctra for the meth(;)ds lésed in ffaper. The become a critical design consideration under low-resource
ower thin lines (gray) show the Hamming-windowed DFT spatt as a ; ; ; ;
reference. The spectra have been shifted by 20 dB for visain. platforms. Luckily, when the tapers, are sinusoids as in [25]

and the SWCE method [9], complexity can be reduced. Indeed,

the thejth sine taper can be written using Euler’'s formula as,

4

average ofK subspectra (Fig. 1). The windowed DFT (1) is w;(t) = sin(27 f;t) = i{eiZﬂ'fjt _ e—izwfjt}_ ©)
obtained as a special case wh&n=1 and A = 1. ' ' 2i

Thus, DFT of the windowed data segmertt)w, (¢) is,
A. Choice of the Tapers

1
A number of different tapers have been proposed for f{x(t)w'j(t)} B %{X(f_fj)_X(ijfj)}’ @

spectrum estimation, such ahomson[24], sine [25] and whereF{-} denotes the DFT operator adél(f) = F{x(n)}.

multipeaktapers [26]. For cepstrum analysis, the sine tapeggsiituting this to the multitaper spectrum estimatora@)
are applied with optimal weighting in [9]. Each type of tapegimplifying leads to

is designed for some given type of (assumed) random process;

as an example, Thomson tapers are designed for flat spectra. 13 9 9
(white noise) and multipeak tapers for peaked spectra (such S = 4 Z/\(J){ (XU = I+ X+ 15)]

as voiced speech). In practice, many multitapers work well =1

even though designed for another process. For instance, the — 2X(f - f)X(f + fj)}. (5)
Thomson tapers [24], designed for white noise, tend to perfo

well for any smooth spectrum. This consists of computing (f) by one FFT, followed by

In general, the tapers are designed so that the estimatige three frequency-domain smoothing terms of complex-
errors in the subspectra will be approximately uncorrelatejy O(KN), thus totalingO(Nlog N + KN) steps. Since
which is the key to variance reduction. It is out of the scopgpically K <« N, this is usually faster than the direct
of this paper to describe the details of finding optimal tapefimplementation (2).

For theoretical treatment, we point the reader to [10], [24] A popular method for producing smooth spectrum estimates,
while [9], [25], [26], [37] provide more concise discusston periodogram smoothings to convolve the unwindowed (raw)
At the Appendix of this paper, we point to practical MATLABperiodogram with a suitable frequency-domain smoothing
implementations. In short, the solution is obtained from ggrnel, which has also complexit)(N log N + KN). Note
eigenvalue problem where the eigenvectors and -values-Cokfat the first sum term in (5) is, in fact, the convolution of
spond to the tapers and their weights, respectively. Thersap| x ()2 with kernel {\1, As, ..., Ax }. However, because of
considered in this paper are all computed off-line withoyke two additional terms, the methods are not equivalent. In
any data-adaptive training process and applied to all $peggr speaker verification experiments, we will also provide

utterances. _ _ experiments with periodogram smoothing.
Fig. 2 shows, for a single voiced speech frame, examples of

the three multitaper methods considered in this StUdy, 'Fh0m||| BI1AS AND VARIANCE OF MULTITAPER ESTIMATORS
son [24], multipeak [26] and sine-weighted cepstrum edtima

(SWCE) [9]. Each panel shows the multitaper spectrum (upp(%TO understand the bias and variance trade-off better, we
thick line) along with Hamming-windowed DFT estimate nsider the variance and spectral resolution of the siragld

A . Iti-t thods. For the windowed DFT (1), th [
(lower thin line). All the three multitaper methods producmu Flaper Memnoas. ~or e windowe (1), the variance

smoother spectrum compared to the Hamming method, be_usually approximated as [10],

cause of variance reduction. Thomson produces a stailitase- VIS(f)] = S%(f). (6)
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The spectral resolution, that is, the frequency spacingeundnultitapers can be approximated as [27],
which two frequency components cannot be separated, is 1 MV [§] M”
approximatelyB,, = 1/N for the rectangle window but Ve ~ —2<I>H — (9)

B, = 2/N for the Hamming window. Note also that (6) does M= ME[]E[s] MT

not depend on the frame lengffi and thus, including more  The bias and variance of the MFCC estimator depend on
samples in a frame wilhot reduce the variance. the true spectrum of the process. As this is usually unknown,

For the multitaper spectrum estimator (2), the spectrh|iS impossible to use these formulas directly. However, a
resolution is approximately,, = (K + 2)/N which is general rule is that by increasing the number of tapers, we ca
the spectral resolution parameter used in the design of figgluce the variance of the spectrum estimate, hence making

Thomson [24] and multipeak [26] tapers. The variance can the spectrum estimate more robust across random variations
approximated as As an example, Fig. 3 shows the sample mean and standard

1 deviations of conventional and multitaper MFCCs for one
V[S(f)] = =S2(f). (7) speech utterance in the NIST 2002 corpus. The mean vectors in
K this example differ mostly by an additive constant, whetbas

This result is analogous to the well-known result that vee variances of the higher order MFCCs (beyond 3HeMFCC)
of the mean of sample of siZ€ is inversely proportional td¢  are significantly reduced due to multitapering.

[4, p. 82]. The formula (7) is approximately valid also foeth
Welch’s method [30] with 50 % overlap between the WindOWR/ NUMERICAL EVALUATION OF BIAS AND VARIANCE OF

[10]. MULTITAPER MFCC ESTIMATORS
A. Monte Carlo Computation of Bias and Variance Using
1 s5 Known Autoregressive Models
k= —— Hamming . .
< z4 :xzi Efg We would like to know how much the estimated MFCCs
=] = . . . .
g T3 - SWCE (K=10) differ from the true MFCCs. As is common in the evaluation of
§‘ g, — SWCE (k=14) nonparametric spectrum estimators, we consider a parametr
8 g model with known parameters as a ground truth. Due to their
‘ gl o success in spectral modeling of speech signals [2], we densi
s 10 15 @ s 10 15 autoregressive AR random process,
MFCC coefficient MFCC coefficient »
Fig. 3. Multitapers help in reducing variance of the higbeler MFCCs, z(t) = — Z am@(t —m) +&(t), (10)
but without modifying the mean value much. m=1

where {a,, }?,_, are the known AR coefficients andt) ~
N(0,1) are i.i.d. samples of the driving white noise sequence.

Note that up to this point we have only considered variangge corresponding ARj spectrum (sampled at discrete data
and bias in spectral and not MFCC domain. Intuitively it iBoints f = 0,1,..., N — 1) is given by,

easy to understand, that if the spectrum is estimated with

. . . . 1
low bias and low variance, the resulting MFCC vector will g, (f) = (11)
. . . . (p) D - :
also have low bias and variance. Using vector notation, the 11+ 2 ey am exp(—i2m fm/N)|?
MFCC vectorc is related to the (true) spectrum vector= Thys, given the known parametefis,, }”,_,, we can simulate

[S(0) ... S(N=1)]" byc = 4;®" log(Ms), whereM isthe a specific realizationx of the random process using (10).
number of filters in the filter-bank € R <V the logarithm Applying windowed DFT, multitaper or any other spectrum
operates element-wise ardl is thelM-by-M Fourier matrix estimator onx produces an estimaté(f) of the spectrum
with the (a,b)™ element:® £ {e~2(e=D(G-L/M}  Bias (11). Depending on the random inpft) in (10), the estimate
of cepstral coefficients has been studied in [38], where@gi| be different each time. We are concerned in how the
approximate bias in MFCCBJ[¢] can be written as [27]: estimated MFCC vectot (computed fromS(f)) differs from

) - < ME [§ diag (MV [§] M) the ground-truth MFCC vectousAR(P)_ (computed from (11))
Bl¢] ~ —®" (1o < > - — (8) on average. To this end, we consider the three well-known
M Ms 2 (ME[s]) descriptors of any estimator — bias, variance and mean squar
Here, the division operates element-wises = error (MSE):
[S(0) ... S(N — 1)]T denotes the estimated spectrum Blg] = E[g]— c RO (12)
using multitapers (2)E[s] denotes the expected value &f e .9 A2
V[s] denotes the covariance matrix of the spectrum estimate Vie] = E[e7] - (E[e]) (13)
and (-)" stands for conjugate transpose. Both the expected MSE[e] = E[(&— cATr))?] (14)

value E[s] and the covariance matri [s] (see [10], [27] for \\ere we introduced shorthand notatieh = diag (zz")
details) depend on the covariance matix of the random for vector z. MSE further links the bias and variance as

process and hence, on the true spectsum MSE[¢] = B[¢]? + V[¢]. To compute the bias and variance
The covariance matrix of the estimated MFCC vector usirfgr a single random process (one setu@8§), we approximate
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Fig. 4. Average MFCC bias, variance and MSASE= bias’ + variance) of Hamming and SWCHx( = 4) estimators over 2849 different AR random
processes of varying order. Bias, variance and MSE of eaotiora process are computed using 30000 Monte Carlo drawseirhebars indicate 95 %
confidence interval of the mean. For visual clarity, the ltssfor Thomson and multipeak are excluded. While multitapglightly increase bias for most
coefficients, the variance of each coefficient is signifigaréduced. The MSE improvements are most prevalent forficaafts cs throughcie.
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Fig. 5. Similar to Fig. 4 but for squared bias, variance andEM&egrated over all the 18 MFCCs as a function of taper coliné results are shown for
K =2,4,...,14 tapers; for visual clarity, multitapers are slightly offse horizontal direction.

the expectations of random vectoim (12)-(14) using sample the MSE variance is given by,

mean a<(z]| ~ ﬁ Zfi”;c z.. Here, Ny is the number of L M

random Monte Carlo draws arg). corresponds to the vector o2 _ Z MSE _ 2 16
. . q) = n\q SE(4

of the rth random draw. We fixVyc = 30000 for which we use(?) Np -1 n:l( (9) = st (a)) (16)

found the values of (12)—(14) converged so that the Mo

nie . -
Carlo error can be considered neglible. {or each MFCC feature indexed by = 1,2,...,18. The

confidence interval signifies that, with 95 % certainty, thest
N _ _ mean value falls within the confidence bounds. Regarding bia
B. Summarizing Bias, Variance and MSE and variance, their means with associated confidence aigerv

Note that above bias, variance and MSE are defined fe&n be similarly computed.
a singlerandom process (one set @fs). Depending on the
choice_of the coeﬁicients or the order of the AR mog#g| bne ¢ Optaining the Reference AR Models and MFCCs
gets different conclusions. As an overall measure, thezefo . . .
. : . To simulate speech-like AR random processes, we obtain
we are interested on the average bias, variance and MSE oKer .
. . thé AR coefficients:;, from real speech utterances rather than
a large number of different random processes (differenttet

ars and different AR model order). This resembles a typical hand-craft‘lng them. To this end,_ we pick the common SA1
o . : tterance ‘She had your dark suit in greasy wash water all
speaker recognition setting where inferences about speaﬂe

identity are drawn over a large number of speech frames. year’) from_ a total n_umber of 77 speak_ers (89, 18 )
The average MSE vector is given by, from the training section of the Western dialect (DR7) on the

TIMIT corpus. We use the corpus annotations to locate phone
1 Xe . boundaries (excluding short phonemes less than 11.25 msec
MMSE = No Z MSE[e,], (15) in duration), and compute the AR coefficients of each phone.
n=1 This set, consisting ofVp = 2849 phones, is representative
whereMSE[¢,, ] indicates MSE (14) of theth random process of all American English phonemes and phoneme groups. For
out from a collection ofNp random processes. We are alsgonsistency with the following speaker recognition experi
interested in whether the difference in the means are tstatisnents, we resample the utterances down to 8 kHz. To avoid
cally significant. To this end, we also compute the confiden&avoring AR models of a particular fixed order, we adapt the
interval of the mean for each of the individual coefficientAR model order f) differently for each phoneme. To this end,
By denoting the individual dimensions MSE[¢,,] andumse  we use the well-known Schwarz’s Bayesian criterion (SBC)
by MSE,(¢) and umse(q), respectively, we compute the[39] implemented in the toolbox of [40]. We set the search
confidence intervals aguse(q) + 1.961/0¢se(q)/Np where limits for the optimum model order d.in = 1, pmax = 40].
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exclude the effects of application-dependent feature abrm

. .. TABLE |
The MFCCs are extracted using procedure similar t0 theygraiLs o THE EVALUATION CORPORA AND THE THREE CLASSIFIERS

speaker verification experiments (see subsection V-C). TO(UBM=UNIV. BACKGROUND MODEL, JFA=JOINT FACTOR ANALYSIS;
NAP=NUISANCE ATTRIBUTE PROJECTION SWB=SNITCHBOARD).

izations, we measure the dlstortlpns in the lowest 18 base [ NIST 2002 | NIST 2008
MFCCs, excluding the DC coefficienty. In the recognition
. . - Speakers 139, 191¢ 10925, 1649¢

experiments (Section VI), however, we utilize a comple €Gen Trials 5980 15 345
front-end with additional RASTA filter, delta features anjlmp_ trials 39 259 56’792‘
cepstral mean/variance normalization (CMVN) as a normafype of data| _ telephone telephone, interview, mic.
practice in speaker verification. Training dur. 2 min 3-5 min

Test dur. 15-45 sec 3-5 min

GMM-UBM GMM-SVM GMM-JFA
D. Results [12] [13] [15], [35], [36]
We first compare the average biases, variances and M$Bgec. Yes No No
of the windowed DFT (Hamming) and SWCE multitapef Subtraction
(K = 4) MFCC estimators in Fig. 4; the results for ThomsopGaussians 1024 512 512
. . _per gender

and multipeak tapers were similar to SWCE and were excludegs= cassion — NAP [34] JIFA [15], [35]
for visual clarity. Regarding bias of the first cepstral coef compens. [36]’ ’
ficient c;, both methods have a large negative bias which iSgackground SRE 01 SRE 04, 05, SRE 04
interestingly, larger in magnitude for Hamming. Regarding | data 06, MIXER5
other coefficients, both methods yield positive bias. Hangmi| Eigenchanne - SRE 04, 06, | SRE 04, 05,
introduces generally less bias but SWCE clearly redugeddta MIXERS 06, MIXERS
variance of all MFCCs by a wide margin. Regarding MS EEE'EZ”VO'CG - - SREV?/% 06,
of the lowest MFCCSc(1 throughc?,.), SWCE yields smaller_ Diag. model — — SRE 04
MSEs but the differences are not significant due to overlappirscore T-norm [41] | ZT-norm [42] | TZ-norm [42]
confidence intervals. However, the intermediate and highenormalization SRE 01 SRE 05, 06 SRE 05, 06

order MFCCs produce significantly smaller MSEs.

count for all the four estimators. Computations are simalgir

in Fig. 4 but we replace the vector quantities in (12)—(14)

by their correspondind.;-norms|| - ||1, i.e. the sum of the
(absolute value of) individual elements. In the case of,biss

811540 detl, 1105 det4, 1472 det5, 1228 det7
Next we compare bias, variance and MSE integrated ovef 22641 detl, 10636 det4, 6982 det5, 16533 det7

all the 18 MFCC coefficients in Fig. 5 as a function of taper

A. Corpora and Classifiers

V. SPEAKER VERIFICATION SETUP

display L;-norm of thesquaredbias. This is natural because For the speaker verification experiments, we utilize two
MSE[é] = B[&]? + V[¢], which helps in better interpreting thedifferent corpora and three classifiers (Table 1). We use the
relative contributions of bias and variance terms to MSE. NIST 2002 speaker recognition evaluation (SRE) corpus for

According to Fig. 5, there is a large positive bias for akxtensive exploration of control parameters and effect of
the four spectrum estimators. This bias is generally lafger additive noise. For this, we employ a lightweigBaussian
the multitaper estimators in comparison to windowed DFT, asixture model with universal background modgMM-
expected. But the variance of all three multitaper estimsatdJBM) method [12] withtest normalizatior{T-norm) [41]. The
is significanly smaller than that of Hamming-windowed DFTsame system was used in our recent studies [33], [43]-[45].
For the biases, Hamming multipeak< SWCE < Thomson, Here we use it for choosing the type of multitaper variant for
but the order is reversed for the variances. The compromibe more expensive NIST 2008 experiments. All the data in
measure, MSE, shows nicely convex behaviour; for smalllIST 2002 contains telephone conversations collectedtbeer
number of taper#, the large variance dominates over squarezellular network.
bias, leading to high MSE. For larg€, similarly, the squared  We then verify our findings on an independent, more recent
bias dominates and increases MSE. The smallest MSE valaesl much larger NIST 2008 SRE corpus which includes
are obtained atX’ = 4 for Thomson and SWCE and attelephone, interview and auxiliary microphone data. Fer th
K = 6 for multipeak. Behavior of the MSE values suggestsxperiments on NIST 2008 data, we employ two classifiers
that a suitable number of tapers for Thomson might be smallehich were developed in participation of the past two NIST
compared to multipeak and SWCE. SRE campaigns [46]. The first systeGNIM-SVM ) uses

To sum up, the results in Figs. 4 and 5 clearly indicat8aussian mearsupervectorswith support vector machine
that multitapers reduce the variance of the MFCC estimat(®VM) [13] andnuisance attribute projectioNAP) technique
which is useful from generalization point of view. From thes[14], [34] for channel compensation. Zero normalizatiok fo
application-independent statistical MFCC estimator wsed, lowed by T-norm (ZT-norm) [42] is used for score normaliza-
suitable X' might be on the rangé < K < 8 for typical tion. The second systenMM-JFA ) is a widely recognized
speech applications utilizing MFCCs, although it will @nly high performance system, which uspgsnt factor analysis
depend on the task at hand; we will now proceed to our tardéFA) technique [15], [16], [35] for integrated intersessand
application, speaker verification. speaker variability modeling in the GMM supervector space.
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=

For score normalization, we use T-norm followed by Z-norr O Withut MFCC O With mFcc
(TZ-norm). 9.5, filterbank /A&x g5 filterbank

For the recognition experiments under additive noise deg% o § AN /H ,

. . . . \ = Rammin
dation, we contaminate the test utterances with factorgenoii u %Thomsof
while the background, cohort and target models are ke 85 85 %'\S/Iulgpeak

. A
untouched. In [47] we foundpectral subtractior{48] to be o g \ivs E o
useful under additive noise degradation and it is thus ohexdu Number of tapers Number of tapers
in the NIST 2002 experiments. We also did preliminar
evaluation on the NIST 2008 data but the improvement w. 4| Without MFCC I 4r With MFCC /
. . . S filterbank o filterbank )Z/m
not systematic, and, given the added computational ovdrhe § . S st
. . . . x 3. X 3.
we decided not to include it to the NIST 2008 experiments "y
Q - Q \
236 f FEV
= =
B. Performance Evaluation 34— 15 20 °4 5 10 15 20
Number of tapers Number of tapers

In comparison of the different MFCC estimators, we evalu-
ate Speaker Veriﬁcation accuracy using equa' error ratRIEE:Ig 6. Effects of the number of tapers and MFCC filterbank ifteicknt
and minimum detection cost function (MinDCF). EER is th&'®!°ds:
error rate at the thresholékgr for which the miss and false
alarm rates are equaEER = Ppiss(0eer) = Pra(Oger)-
MinDCF is used in the NIST speaker recognition evaluations
and is defined asing { CmissPmiss(¢) Part+CraPa(0) (1— Par)},  A. GMM-UBM system on the NIST 2002 SRE corpus
v(gie;e ??:Sth:e égslso;hae f;?ssé glfa?mn(];:\;sséle:(?ep:giiic)m;;ﬁqwe first study how the chpice_ of the spectrum estimation
P, = 0.01 is the prior probability of a target (true) speaker Eftri]t?;l d ;ﬁrencetfh(s)ziafe_lr_hvoer:llgz;lltlomnui?cg;akcz.ngog\?vagg e_)fvtvl
In addition, we show selected detection error tradeoff (DE P ' b

lots 1491 for th tire trade-off of fal | d mige ary the number of tapers and contrast the result to the
plots [49] for the entire trade-off of false alarm and mistesa baseline Hamming method. EER and MinDCF, for both with

and without MFCC filterbank, are shown in Fig. 6 where the

) horizontal (black) line represents the baseline. We olestre
C. Feature Extraction following:

VI. SPEAKERVERIFICATION RESULTS

For the baselinélammingmethod, we compute the MFCCs « Multitaper methods outperform Hamming in both EER
using the typical procedure [4]: Hamming window (frame and MinDCF for a wide range of taper count (approx.
duration 30 ms and hop 15 ms), DFT spectrum estimate using 2 < K < 10). Optimum value of K" depends on the
windowed periodogram (Eq. 1), 27-channel mel-frequency method and the objective (EER or MinDCF).
filterbank, logarithmic compression and discrete cosimasgs  « By including the MFCC filterbank the optimum points
form (DCT). We retain the lowest 18 MFCCs, excluding the  shift to left (less tapers) in most cases. This is expected
energy coefficienty. For Thomson[24], multipeak[26] and because the MFCC filterbank introduces additional av-
sine-weighted cepstrum estimat(8WCE) [9] methods, the eraging over multitapering. Using MFCC filterbank im-
steps are the same, except that the spectrum is estimater usi proves EER and MinDCF and makes the curves generally
Eq. (2). In preliminary experiments, we found the frequentl  less ragged, indicating stable parameter setting.
used pre-emphasis filteH (z) = 1 — 0.97z~' to degrade e« The performance of the three multitaper methods at their
accuracy and it is therefore turned off in all the experirment ~ optima are close to each other. Thomson shows sharper

After the 18 base MFCCs are extracted, we apply RASTA  local mimima than multipeak and SWCE methods and
filter [5] and append the\ and A2 coefficients, implying 54- gives higher error rates for large number of tapers.
dimensional features. We then discard the nonspeech frame$he trends in Fig. 6 are, interestingly, in a reasonableeagre
using an energy-based voice activity detector (VAD) andycarment with Fig. 5. Both MSE, EER and MinDCF demonstrate
out utterance-level cepstral mean and variance normilizatapproximately convex shapes and all the three methods give
(CMVN). RASTA and CMVN are used for mitigating linearsimilar performance with optimized<. Secondly, for large
channel distortions. K, MSE(Thomson)> MSE(SWCE)Z MSE(Multipeak); the

We were also curious to see the effect of excluding ttsame approximate ordering holds also for EER and MinDCF.
MFCC filterbank and to compute the 18 coefficients directly We next study the accuracy under additive factory noise
from the unwarped spectrum. We hypothesized that the doubtaruption. Based on Fig. 6, for each method, we set the
smoothing of multitaper spectrum followed by mel-filter ennumber of tapers to give both small EER and MinDCF. For
ergy integration might be suboptimal for speaker verifmati the nonwarped case (no MFCC filterbank) we set the values to
where we wish to retain the spectral details in addition ® thK' = 8 (Thomson),K = 10 (multipeak) andk = 7 (SWCE).
envelope. We address this hypothesis on the NIST 2002 corpias the warped frequency case (MFCC filterbank included),
in subsection VI-A. in turn, we set the values t& = 3 (Thomson),K = 5
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TABLE I
RESULTS UNDER FACTORY NOISE CORRUPTION ON THNIST 2002CORPUS CORRESPONDING TO THE RIGHT HAND SIDE PLO{MFCC FILTERBANK
INCLUDED) OF FIG. 7. IN EACH ROW, THE ERROR COUNTS SIGNIFICANTLY DIFFERING FROM THE BASELINEIAMMING , USING MCNEMAR’S TEST AT95
% CONFIDENCE LEVEL, ARE INDICATED FOR BOTH GENUINE(®) AND IMPOSTOR(T) TRIALS.

SNR Equal error rate (EER, %) MinDCF (x100)
(dB) [Hamming Thomson Multip. SWCE Hamming Thomson Multip. SWCE
Orig.] 9.32 8.15 e f| 845 e j| 836 e } 3.86 353 e f| 347 e }| 3.45 o
20 9.73 879 e | 862 e j| 869 e } 3.91 3.73 e f| 3.62 o 3.56 e 7§
10 10.41 9.85 | 9.66 Tl 9.62 T 4.30 420 e 7| 4.11 | 4.03 e
0 11.53 11.50 11.44 11.32 5.04 502 e f| 493 e §| 4.76 T
-10 17.17 16.52 Tl 15.86 o 7| 15.96 o | 7.38 7.04 e f| 6.72 e 7| 6.49 o
1 Without MFCC 1 With MFCC
14 filterbank 14 filterbank 4 e 106 A
g\o, E’\i = interview :
x 12 x12 %4.2 (detl) [ Hamming N
w w I} 2 —A—SWCE A 10.2 interview-
10| 10 w telephone
> 4 (det4)
§ § jnal > 98
- 0 10 20 Original -10 0 10 20 Original g
SNR (dB) SNR (dB) 2 4 6 8 10 2 4 6 8 10
87@ Without MECC 6‘7E With MFCC filterbank 6.8 A
=] 5 filterbank =] 6 —Hamming . te!ephone— 51 telephone-
x x -e-Thomson & 6.4/ microphone telephone 4
LL LL —=Multipeak x (det5) 45 English
LD:’ 5 é 5 -+ SWCE H o (det7)
S4 54 S ] 4
—— S B 5.6
_ qi _ i 2 4 6 8 10 2 4 6 8 10
10 0 SNRl’O(dB) 20 Original 10 0 SNF:QLO(dB) 20 Original Number of tapers Number of tapers
Fig. 7. Effect of factory noise under different signal-toise ratios. Fig. 9. Equal error rates (EER) on the NIST 2008 core task.
13 : 45
= Hamming
12 - - -Thomson (K=3) - n , .
- - Multipeak (K=5) w S23 interview— 3.7} interview—
~11 — SWCE (K=6) (8] 8 “3|interview telephone
5 —— Smoothed periodogram e 4 Q (detl) - 3.6/ (detd)
x 10 s f = A ——Hamming| A
L 3 M g2t —4—SWCE / 3.5
c
- O] et teeedtetietetetid s 3.4
1.9 \
2 4 6 8 10 2 4 6 8 10
200 400 600 800 1000 200 400 600 800 1000
Window parameter (o) Window parameter (a)
2.8 A
. iod hi h S = telephone-
Fig. 8. Periodogram smoothing on the NIST 2002 corpus. Asfererce, 3 , 6| microphone 1.95/ telephone—
results for Hamming, Thomson, multipeak and SWCE methodkse given. % 7| (dets) telephone
Smoothing is performed by convolving the unwindowed pesgrdm with a & English
Gaussian kernel with parametarcontrolling the kernel width. g 24 1851 (det7)
= ) )
2 a6 8 10 Y™ 4 & 8 10
Number of tapers Number of tapers

(multipeak) andK = 6 (SWCE). The results, as a function of
SNR, are given in Fig. 7. The following can be observed: _
Fig. 10. MinDCF values on the NIST 2008 core task.

o Accuracy of all methods drops as SNR decreases, as
expected. Multitapers outperform Hamming in nearly

difference is not statistically significant, see Table II) ) L L .
« In the noisy cases (SNR 20 dB), Thomson performs Due to its popularity in other application domains, we are

best on average when mel-warping is not applied; for ifiaterested in the performance of periodogram smoothieg, i.
mel-warped case, SWCE performs the best. convolution of | X (f)|? with a frequency-domain smoothing

« MFCC filterbank improves both EER and MinDCF. ~ Kernel. As discussed in [10], choice of the kernel (in paitic,
i its bandwidth) is not easy but typically requires trial-and
Table Il further displays the exact error values for the me!e'rror for a given application. To this end, we convolve the

warped case. We also carry out McNemar's significance @sti, \inqowed periodogram estimate with a Gaussian wirdow
with 95 % confidence level at both operating points [4], [50].

In 27 out of 30 cases, .the difference between the multitapetcpoice of window is less important than its bandwidth [10]e Wse
and the baseline is significant in at least one of the erra@dypMatlab’s gausswiny/, a) command, withN = 512.
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w(n) = exp{—%(aNL/Q)z}, where N and « are the size and
width of the window, respectively. The width of the window
is inversely related to the value ef; a larger value ofa &
produces a narrower window. The result is displayed in Fig.£
for the same configuration as Fig. 6 for the mel-warped ca&
As a reference, we show the optimized results for Hammin§
Thomson, multipeak and SWCE methods from Fig. 6.
By optimizing «, periodogram smoothing outperforms the3
baseline Hamming method, but it does not outperform any =
the multitaper methods. Faer =~ 400 (for which the effective
number of non-zero samples in the kernel is about 4), EE
is close to those of the SWCE and multipeak methods. But
for the primary metric of speaker recognition evaluationsig.
MinDCF, multitapers perform better. The

o
=
[=

for

fYXe

C. Experiments on the NIST 2008 SRE Corpus

Due to expensive nature of NIST 2008 experiments, we

NIST 2008, GMM-SVM

NIST 2008, GMM-JFA

40

40

10 10

Miss probability (in %)

2 2 NN
-=-Hamming g
— SWCE (K=6)
0.2 0.2
0.2 2 10 40 0.2 10 40

2
False Alarm probability (in %) False Alarm probability (in %)

11. DET plots for the interview-interview data (detl) bIIST 2008.
SWCE method uses” = 6 tapers.

the interview-interview condition (detl). From Tablg, |
observe the following.

as many parameters as we think reasonable. We choose to use Except for det4 in GMM-SVM system, SWCE systemat-

SWCE method with MFCC filterbank based on observations
from Fig. 7. We first verify our observations regarding Shiiéa
number of tapers, using the GMM-SVM system. The EER
and MIinDCF values in Figs. 9 and 10 indicate that, even
though setting depends on the data condition, the optima are
always achieved witl8 < K < 8. This range agrees well
with the NIST 2002 GMM-UBM result in Fig. 6which has
a completely different classifier, implementation detaitsd
choice of data setsSWCE outperforms Hamming for a wide

ically outperforms Hamming in both EER and MinDCF.
For GMM-SVM, det7 task was observed the highest EER
improvement of 21.9 %, while detl task the highest
MinDCF improvement of 20.4 %. The largest overall
improvements are in detl where both metrics decrease
by about 20 %.

For GMM-JFA, det4 task was observed the highest EER
improvement of 16.9 %, while det7 task the highest
MinDCF improvement of 18.7 %.

range of K and therefore, the exact setting does not appearThe DET plots in Fig. 11 further confirm that both recogniz-
very critical. ers benefit from multitapering over a wide range of operating
In one of the sub-conditions (det4), the baseline Hammimints. Our JFA result is roughly on the same range as other
outperforms multitaper. One reason might be non-optimsimilar systems, such as the full JFA system in [19, Table 1X]
selection of datasets for channel compensation in this sulirei-vectorsystem in [19] outperforms our JFA result on det7
condition; the error rates for both Hamming and SWCE aféor instance, EERs of 2.9 % and 1.1 % were reported for male

higher than those in the other three conditions.

TABLE Il
RESULTS ON THE DIFFERENT SUBCONDITIONS OF THENIST SRE 2008
CORE TASK(SHORT2-SHORT3) USING K = 6 TAPERS. DET1 = INTERVIEW
TRAINING AND TESTING; DET4 = INTERVIEW TRAINING, TELEPHONE
TESTING; DET5 = TELEPHONE TRAINING, NON-INTERVIEW MICROPHONE
TESTING; DET7 = TELEPHONE TRAINING AND TEST INVOLVINGENGLISH

and female trials). Since i-vector and GMM-JFA share almost
the same components — factor analysis on GMM supervectors
with eigenvoice adaptation — we expect the results, to aicert
extent, to generalize to i-vector classifier as well. In fact
preliminary indication of this was recently given in [51] on
the SRE 2010 corpus using an independent implementation.

LANGUAGE ONLY.
VII. CONCLUSIONS

EER (%) 100 xMinDCF
Hamm]SWCH Impr. (%)|Hamm]SWCE[Impr. (%) We have advocated the use of multitaper MFCC features
GMM-SVM recognizer in speech processing. By replacing the windowed DFT with
detl] 458 | 3.70 | 19.1 238 | 1.89 | 204 multitaper spectrum estimate, we found systematic improve
det4 9.85 1068 -84 | 335|339 —12 ments in three independently constructed recognitioresyst
dety .73 571 152 ) 2423 217 10.3 (GMM-UBM, GMM-SVM and GMM-JFA). The improve-
det7] 5.09 | 3.97 | 219 | 1.98 | 1.80 | 9.1 ; SMI T P
- ments were consistent on two very different corpora (NIST
GMM-JFA recognizer . . . .
detl 536 [ 473 | 118 505 | 255 137 2002 and NIST 2005) including telephony, mlcro_phpne and in-
detdl 751 | 6.24 | 16.9 3.14 | 2.82 | 102 terview segments with severe cross-channel variabilifieese
dets| 6.79 | 591 | 13.0 2.45 | 2.23 9.1 observations, together with analysis of bias and variante o
det7 3.58 | 3.48 | 2.9 158 | 1.28 | 187 TIMIT, gives us confidence to recommend using multitapers

in speaker verification and possibly other speech procgssin
In the following, we fix K’ = 6 for all the four subconditions tasks.
and for both genders. Gender-pooled results (without aogesc  The choice of the multitaper type (Thomson, multipeak,
calibration) for each subcondition are given in Table IIf foSWCE) was found less important than the choice of the
both recognizers. Additionally, Fig. 11 displays the DE®tpl number of tapers/. But even the exact choice df does
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not appear to be critical. The best results were obtaineall in
cases, foB3 < K < 8. We recommend to start witlk'’ = 6.
Mel-warping turned out useful also with multitapers. Tophel

(31

the interested reader in exploring the technique further, wi4l

provide a sample implementation in the Appendix.

It would be also interesting to see whether variance redudd]
tion would lead to higher gains in short duration recognitio [g)

tasks (10-second) and in speech and language recognition

problems. Finally, we expect further improvements using ali7

ternative feature normalization strategies that suiteoefbr
low-variance MFCCs.

APPENDIX

(8]

El

Below is an example of multitaper spectrum estimation in-Mat
lab whereSWCE function produces the tapers and their weight&0]

in the SWCE method [9]. The functionul ti t aper spectr a,
which can be also used with other types of tapers, is used

spectrum estimation. For a more complete package, incr;;udiﬁ2

for

Thomson [24] and multipeak [26] implementations, refer to

the WWW pages of the first author, http://cs.joensuu.fi/gAg 13

tkinnu/webpage/. To generate Thomson’s tapers, you may als

use the functiondpss in Matlab’s signal processing toolbox.

function [h,s] = SWCE(N, K)

% Sine-weighted cepstrum estimator (SWCE)
% N = frame size (samples), K = #tapers
% The tapers are columns of h, their weights

tapers

in s.

M = fix (N/K);

for i=1:K
h(:,i)=sqrt(2/(N+1))xsin((pi*xi*[1:N]"')/(N+1));

end

s=((cos(2x pi*[0: fix (N/M)-1]"'«M/N/2))+1) ...
.Isum(cos(2+ pi*[0: fix (N/M)-1]"*M/IN/2) +1);

function spec multitaperspectra(frames,
weights , NFFT)

tapers ,

% Compute multitaper power spectra.

% frames: (numframes x N) matrix of frames.

% tapers: (N x K) matrix of K tapers.

% weights: (K x 1) vector of taper weights.

% NFFT: Number of FFT bins.

% spec: Multitaper power spectra as columns.
%

% Note: the frames should NOT be windowed using

%
%

Give the
instead .

Hamming/Hann etc type of windows.
"boxcar”-windowed frames as input

spec =zeros(NFFT, size(frames "', 2));
for (taper_nbr 1l:size(tapers ,2))
spec = spec + weights(tapenbr)xabs(fft ((frames ')

raw

repmat(tapers (:,tapemnbr) ,1,size(frames',2))
, NFFT))."2;
end
spec = spec (1:NFFT/2+1, :);
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