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Abstract—In speech and audio applications, short-term signal
spectrum is often represented using mel-frequency cepstral co-
efficients (MFCCs) computed from a windowed discrete Fourier
transform (DFT). Windowing reduces spectral leakage but vari-
ance of the spectrum estimate remains high. An elegant extension
to windowed DFT is the so-called multitaper method which
uses multiple time-domain windows (tapers) with frequency-
domain averaging. Multitapers have received little attention
in speech processing even though they produce low-variance
features. In this paper, we propose the multitaper method for
MFCC extraction with a practical focus. We provide, firstly,
detailed statistical analysis of MFCC bias and variance using
autoregressive process simulations on the TIMIT corpus. For
speaker verification experiments on the NIST 2002 and 2008
SRE corpora, we consider three Gaussian mixture model based
classifiers with universal background model (GMM-UBM), sup-
port vector machine (GMM-SVM) and joint factor analysis
(GMM-JFA). Multitapers improve MinDCF over the baseline
windowed DFT by relative 20.4 % (GMM-SVM) and 13.7 %
(GMM-JFA) on the interview-interview condition in NIST 200 8.
The GMM-JFA system further reduces MinDCF by 18.7 %
on the telephone data. With these improvements and generally
noncritical parameter selection, multitaper MFCCs are a viable
candidate for replacing the conventional MFCCs.

Index Terms—Mel-frequency cepstral coefficient (MFCC),
multitaper, speaker verification, small-variance estimation

I. I NTRODUCTION

FEATURE EXTRACTION is the key function of a speech
processing front-end. Spectral features computed from

the windowed discrete Fourier transform (DFT) [1] or linear
prediction (LP) models [2] are used in most of the front-
ends. The DFT and LP models perform reasonably well under
clean conditions but recognition accuracy degrades severely
under changes in environment and channel since the short-
term spectrum is subjected to many harmful variations. In
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this paper, we focus on one of the most successful tech-
niques, themel-frequency cepstral coefficients(MFCCs), that
were introduced three decades ago [3] and are extensively
used in speaker and language recognition, automatic speech
recognition, emotion classification, audio indexing and, with
certain modifications, even in speech synthesis and conversion
applications. There is no doubt that the way we derive MFCC
features has great impact on the performance of many speech
processing applications.

There have been many attempts to enhance the robustness
of MFCC features. Several techniques have demonstrated
effective ways to normalize the MFCC features by using
the statistics of the MFCC temporal trajectory. For exam-
ple, cepstral mean and variance normalization (CMVN) [4],
RASTA filtering [5], temporal structure normalization [6],
feature warping [7], and MVA processing [8] are commonly
used for enhancing MFCC robustness against additive noises
and channel distortions. The specific configuration and order
of chaining them depends, however, on the target application.
Such techniques obtain the statistics either from the run-time
signals themselves or from some training data. Therefore, they
require either delayed processing or off-line modeling. Inthis
paper, we would like to study a new way to derive MFCC
features, with which we reduce the MFCC estimation variance
without relying on any statistics beyond a speech frame.

From a statistical point of view, the common MFCC imple-
mentation based on windowed DFT is suboptimal due to high
varianceof the spectrum estimate [10]. To elaborate on this,
imagine that, for every short-term speech frame there exists
an underlyingrandom processwhich generates that particular
frame; an example would be an autoregressive (AR) process
driven with random inputs but with fixed coefficients. For
speech signals, we imagine that there exists a speaker- and
phoneme-dependent vocal tract configuration from which the
actual speech sounds are generated from. A spectrum estimator
with high variance then implies that, for thesameunderlying
random process (e.g., two non-overlapping parts of the very
same vowel sound), the estimated spectra and MFCCs may
vary considerably.

In speaker verification [11], uncertainty in features is mod-
eled by the variances in the Gaussian mixture models (GMMs)
[12] and, recently, by subspace models of speaker and session
variabilities in a supervector space [13]–[19]. However, if the
MFCCs themselves are estimated with smaller variance, one
should expect the subsequent speaker and session variability
models to exhibit less random variation as well. Using low-
variance spectrum estimators has already been demonstrated to
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Fig. 1. Multitaper method uses multiple windows (tapers) leading to different subspectra, whose weighted average forms the spectrum estimate and leads to
robust MFCCs. For visualization, spectra are shown in dB scale but computations are based on linear values. The tapers are from the SWCE method [9].

enhance performances of voice activity detection (VAD) [20],
[21], speech enhancement [22] and speech recognition [23],
to give a few examples.

The particular small-variance method adopted in this paper
is based onmultitapers, as illustrated in Fig. 1. The multitaper
method [24]–[27], as a simple and elegant extension of the
conventional windowed DFT, uses multiple window functions
(aka tapers) with weighted frequency-domain averaging to
form the spectrum estimate [24], [25], [27]. The tapers are de-
signed to give approximately uncorrelated spectrum estimates
so that averaging them reduces the variance. More specifically,
the side-lobe leakage effect in the conventional windowed DFT
is partially suppressed by multitapering [28], [29]. The well-
knownWelch’s method[30] is a special case of the multitaper
technique with identically shaped but time-shifted tapers.
Thus, in Welch’s method, the subspectra are uncorrelated
because they are computed from different segments. The mul-
titapers applied in this paper, in contrast, are fully overlapping
in time but their shapes are designed so that they have only
small overlap in frequency domain [10], [24]. Conceptually,
multitapering also shares some similarity with smoothing the
DFT estimate using frequency-domain convolution (e.g. [10]),
but generally these are not mathematically equivalent.

The multitaper method of spectrum estimation was intro-
duced around the same time as the MFCCs [24] but has
found little use in speech processing so far [22], [31], [32].
This might be due to previously unstudied statistical properties
of multitaper MFCCs and availability of different multitaper
variants to choose from [9], [24]–[26]. Additionally, due to
mostly theoretically focused treatments of the topic [10],[24],
[25], practitioners may have had difficulties in implementing
and choosing the control parameters in a typical recognition
application.

Since the statistical properties of the multitaper MFCCs
– briefly summarized in Section III – are recently analyzed
[27] and further, we got encouraging preliminary speaker
verification results in [33], we were curious to explore the
technique further. In Section IV we carry out detailed evalu-
ation of multitaper bias and variance using simulated random
processes on the TIMIT corpus. Importantly, in Sections V and

VI we extend and complement the preliminary GMM-UBM
results of [33] using two high-performance classifiers, GMM
supervector with support vector machine (GMM-SVM) [13],
[34] and GMM with joint factor analysis technique (GMM-
JFA) including integrated speaker and intersession variability
modeling [15], [35], [36]. To sum up, the main purpose of
this paper is to review, collect and extend our recent work on
the use of multitapers in speech processing with application to
speaker verification. We provide sample implementation and
recommendations for setting the control parameters.

II. COMPUTING THE MULTITAPER MFCCS

Let x = [x(0) . . . x(N − 1)]T denote one frame of speech
of N samples. The most popular spectrum estimate in speech
processing, windowed discrete Fourier transform (DFT), is
given by

Ŝ(f) =

∣

∣

∣

∣

∣

N−1
∑

t=0

w(t)x(t)e−i2πtf/N

∣

∣

∣

∣

∣

2

, (1)

where i =
√
−1 is the imaginary unit andf =

0, 1, . . . , N − 1 denotes the discrete frequency index. Here
w = [w(0) . . . w(N − 1)]T is a time-domain window func-
tion which usually is symmetric and decreases towards the
frame boundaries. In this study, we choose the most popular
window in speech processing, theHamming window, with
w(t) = 0.54− 0.46 cos(2πt/N).

From a statistical perspective, the use of a Hamming-type
of window reduces thebias of the spectrum estimate, i.e.
how much the estimated valuêS(f) differs from the true
valueS(f), on average. But the estimated spectrum still has
high variance. To reduce the variance,multitaper spectrum
estimator [10], [24], [26] can be used:

Ŝ(f) =
K
∑

j=1

λ(j)

∣

∣

∣

∣

∣

N−1
∑

t=0

wj(t)x(t)e
−i2πtf/N

∣

∣

∣

∣

∣

2

. (2)

Here,K multitaperswj = [wj(0) . . . wj(N − 1)]T, where
j = 1, . . . , K, are used with corresponding weightsλ(j).
The multitaper estimate is therefore obtained as a weighted
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Fig. 2. Typical multitaper spectra for the methods used in this paper. The
lower thin lines (gray) show the Hamming-windowed DFT spectrum as a
reference. The spectra have been shifted by 20 dB for visualization.

average ofK subspectra (Fig. 1). The windowed DFT (1) is
obtained as a special case whenK = 1 andλ = 1.

A. Choice of the Tapers

A number of different tapers have been proposed for
spectrum estimation, such asThomson[24], sine [25] and
multipeaktapers [26]. For cepstrum analysis, the sine tapers
are applied with optimal weighting in [9]. Each type of taper
is designed for some given type of (assumed) random process;
as an example, Thomson tapers are designed for flat spectra
(white noise) and multipeak tapers for peaked spectra (such
as voiced speech). In practice, many multitapers work well
even though designed for another process. For instance, the
Thomson tapers [24], designed for white noise, tend to perform
well for any smooth spectrum.

In general, the tapers are designed so that the estimation
errors in the subspectra will be approximately uncorrelated,
which is the key to variance reduction. It is out of the scope
of this paper to describe the details of finding optimal tapers.
For theoretical treatment, we point the reader to [10], [24]
while [9], [25], [26], [37] provide more concise discussions.
At the Appendix of this paper, we point to practical MATLAB
implementations. In short, the solution is obtained from an
eigenvalue problem where the eigenvectors and -values corre-
spond to the tapers and their weights, respectively. The tapers
considered in this paper are all computed off-line without
any data-adaptive training process and applied to all speech
utterances.

Fig. 2 shows, for a single voiced speech frame, examples of
the three multitaper methods considered in this study, Thom-
son [24], multipeak [26] and sine-weighted cepstrum estimator
(SWCE) [9]. Each panel shows the multitaper spectrum (upper
thick line) along with Hamming-windowed DFT estimate
(lower thin line). All the three multitaper methods produce
smoother spectrum compared to the Hamming method, be-
cause of variance reduction. Thomson produces a staircase-like

spectrum, multipeak a spectrum with sharper peaks and SWCE
a compromise between these two methods. In this example,
for a small number of tapers, sayK ≤ 4, all the three methods
preserve both the harmonics (due to the voice source) and the
spectral envelope (due to the vocal tract). For a high number
of tapers, sayK ≥ 8, the harmonics gets smeared out. The
optimum number of tapers is expected to depend on the target
application. In speaker recognition, both the voice sourceand
vocal tract filter are found to be useful, thus we expect to get
the best results using a relatively small number of tapers.

B. Computational Complexity and Periodogram Smoothing

The windowed periodogram in (1) can be computed using
fast Fourier transform (FFT) of complexityO(N logN). Since
the multitaper estimator (2) requiresK FFTs, the complexity
of the direct implementation isO(KN logN), which might
become a critical design consideration under low-resource
platforms. Luckily, when the tapers are sinusoids as in [25]
and the SWCE method [9], complexity can be reduced. Indeed,
the thejth sine taper can be written using Euler’s formula as,

wj(t) = sin(2πfjt) =
1

2i

{

ei2πfj t − e−i2πfj t

}

. (3)

Thus, DFT of the windowed data segmentx(t)wj(t) is,

F
{

x(t)wj(t)
}

=
1

2i

{

X(f − fj)−X(f + fj)

}

, (4)

whereF{·} denotes the DFT operator andX(f) = F{x(n)}.
Substituting this to the multitaper spectrum estimator (2)and
simplifying leads to,

Ŝ(f) =
1

4

K
∑

j=1

λ(j)

{

|X(f − fj)|2 + |X(f + fj)|2

− 2X(f − fj)X
∗(f + fj)

}

. (5)

This consists of computingX(f) by one FFT, followed by
the three frequency-domain smoothing terms of complex-
ity O(KN), thus totalingO(N logN + KN) steps. Since
typically K ≪ N , this is usually faster than the direct
implementation (2).

A popular method for producing smooth spectrum estimates,
periodogram smoothing, is to convolve the unwindowed (raw)
periodogram with a suitable frequency-domain smoothing
kernel, which has also complexityO(N logN +KN). Note
that the first sum term in (5) is, in fact, the convolution of
|X(f)|2 with kernel {λ1, λ2, . . . , λK}. However, because of
the two additional terms, the methods are not equivalent. In
our speaker verification experiments, we will also provide
experiments with periodogram smoothing.

III. B IAS AND VARIANCE OF MULTITAPER ESTIMATORS

To understand the bias and variance trade-off better, we
consider the variance and spectral resolution of the single- and
multi-taper methods. For the windowed DFT (1), the variance
is usually approximated as [10],

V [Ŝ(f)] ≈ S2(f). (6)
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The spectral resolution, that is, the frequency spacing under
which two frequency components cannot be separated, is
approximatelyBw = 1/N for the rectangle window but
Bw = 2/N for the Hamming window. Note also that (6) does
not depend on the frame lengthN and thus, including more
samples in a frame willnot reduce the variance.

For the multitaper spectrum estimator (2), the spectral
resolution is approximatelyBw = (K + 2)/N which is
the spectral resolution parameter used in the design of the
Thomson [24] and multipeak [26] tapers. The variance can be
approximated as,

V [Ŝ(f)] ≈ 1

K
S2(f). (7)

This result is analogous to the well-known result that variance
of the mean of sample of sizeK is inversely proportional toK
[4, p. 82]. The formula (7) is approximately valid also for the
Welch’s method [30] with 50 % overlap between the windows
[10].
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Fig. 3. Multitapers help in reducing variance of the higher-order MFCCs,
but without modifying the mean value much.

Note that up to this point we have only considered variance
and bias in spectral and not MFCC domain. Intuitively it is
easy to understand, that if the spectrum is estimated with
low bias and low variance, the resulting MFCC vector will
also have low bias and variance. Using vector notation, the
MFCC vectorc is related to the (true) spectrum vectors =
[S(0) . . . S(N−1)]T by c = 1

MΦ
H log(Ms), whereM is the

number of filters in the filter-bankM ∈ R
M×N , the logarithm

operates element-wise andΦ is theM -by-M Fourier matrix
with the (a, b)th element:Φ ,

{

e−i2π(a−1)(b−1)/M
}

ab
. Bias

of cepstral coefficients has been studied in [38], whereas
approximate bias in MFCCsB[ĉ] can be written as [27]:

B [ĉ] ≈ 1

M
Φ

H

(

log

(

ME [ŝ]

Ms

)

− diag
(

MV [ŝ]MT
)

2 (ME [ŝ])2

)

(8)

Here, the division operates element-wise,̂s =
[Ŝ(0) . . . Ŝ(N − 1)]T denotes the estimated spectrum
using multitapers (2),E[ŝ] denotes the expected value ofŝ,
V[ŝ] denotes the covariance matrix of the spectrum estimate
and (·)H stands for conjugate transpose. Both the expected
valueE [ŝ] and the covariance matrixV [ŝ] (see [10], [27] for
details) depend on the covariance matrixR of the random
process and hence, on the true spectrums.

The covariance matrix of the estimated MFCC vector using

multitapers can be approximated as [27],

V [ĉ] ≈ 1

M2
Φ

H MV [ŝ]MT

ME [ŝ]E [ŝ]
T
MT

Φ. (9)

The bias and variance of the MFCC estimator depend on
the true spectrum of the process. As this is usually unknown,
it is impossible to use these formulas directly. However, a
general rule is that by increasing the number of tapers, we can
reduce the variance of the spectrum estimate, hence making
the spectrum estimate more robust across random variations.
As an example, Fig. 3 shows the sample mean and standard
deviations of conventional and multitaper MFCCs for one
speech utterance in the NIST 2002 corpus. The mean vectors in
this example differ mostly by an additive constant, whereasthe
variances of the higher order MFCCs (beyond the5th MFCC)
are significantly reduced due to multitapering.

IV. N UMERICAL EVALUATION OF BIAS AND VARIANCE OF

MULTITAPER MFCC ESTIMATORS

A. Monte Carlo Computation of Bias and Variance Using
Known Autoregressive Models

We would like to know how much the estimated MFCCs
differ from the true MFCCs. As is common in the evaluation of
nonparametric spectrum estimators, we consider a parametric
model with known parameters as a ground truth. Due to their
success in spectral modeling of speech signals [2], we consider
autoregressive AR(p) random process,

x(t) = −
p
∑

m=1

amx(t−m) + ε(t), (10)

where{am}pm=1 are the known AR coefficients andε(t) ∼
N (0, 1) are i.i.d. samples of the driving white noise sequence.
The corresponding AR(p) spectrum (sampled at discrete data
pointsf = 0, 1, . . . , N − 1) is given by,

SAR(p)(f) =
1

|1 +∑p
m=1 am exp(−i2πfm/N)|2 . (11)

Thus, given the known parameters{am}pm=1, we can simulate
a specific realizationx of the random process using (10).
Applying windowed DFT, multitaper or any other spectrum
estimator onx produces an estimatêS(f) of the spectrum
(11). Depending on the random inputε(t) in (10), the estimate
will be different each time. We are concerned in how the
estimated MFCC vector̂c (computed fromŜ(f)) differs from
the ground-truth MFCC vectorcAR(p) (computed from (11))
on average. To this end, we consider the three well-known
descriptors of any estimator – bias, variance and mean square
error (MSE):

B[ĉ] = E[ĉ]− c
AR(p) (12)

V[ĉ] = E[ĉ2]− (E[ĉ])2 (13)

MSE[ĉ] = E[(ĉ− c
AR(p))2] (14)

where we introduced shorthand notationz2 = diag
(

zz
T
)

for vector z. MSE further links the bias and variance as
MSE[ĉ] = B[ĉ]2 + V[ĉ]. To compute the bias and variance
for a single random process (one set ofaks), we approximate
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the expectations of random vectorz in (12)–(14) using sample
mean asE[z] ≈ 1

NMC

∑NMC

r=1 zr. Here,NMC is the number of
random Monte Carlo draws andzr corresponds to the vector
of the rth random draw. We fixNMC = 30000 for which we
found the values of (12)–(14) converged so that the Monte
Carlo error can be considered neglible.

B. Summarizing Bias, Variance and MSE

Note that above bias, variance and MSE are defined for
a single random process (one set ofaks). Depending on the
choice of the coefficients or the order of the AR model (p), one
gets different conclusions. As an overall measure, therefore,
we are interested on the average bias, variance and MSE over
a large number of different random processes (different setof
aks and different AR model orderp). This resembles a typical
speaker recognition setting where inferences about speaker
identity are drawn over a large number of speech frames.

The average MSE vector is given by,

µMSE =
1

NP

NP
∑

n=1

MSE[ĉn], (15)

whereMSE[ĉn] indicates MSE (14) of thenth random process
out from a collection ofNP random processes. We are also
interested in whether the difference in the means are statisti-
cally significant. To this end, we also compute the confidence
interval of the mean for each of the individual coefficients.
By denoting the individual dimensions ofMSE[ĉn] andµMSE

by MSEn(q) and µMSE(q), respectively, we compute the
confidence intervals asµMSE(q) ± 1.96

√

σ2
MSE

(q)/NP where

the MSE variance is given by,

σ2
MSE(q) =

1

NP − 1

NP
∑

n=1

(MSEn(q)− µMSE(q))
2 (16)

for each MFCC feature indexed byq = 1, 2, . . . , 18. The
confidence interval signifies that, with 95 % certainty, the true
mean value falls within the confidence bounds. Regarding bias
and variance, their means with associated confidence intervals
can be similarly computed.

C. Obtaining the Reference AR Models and MFCCs

To simulate speech-like AR random processes, we obtain
the AR coefficientsak from real speech utterances rather than
hand-crafting them. To this end, we pick the common SA1
utterance (“She had your dark suit in greasy wash water all
year”) from a total number of 77 speakers (59♂, 18 ♀)
from the training section of the Western dialect (DR7) on the
TIMIT corpus. We use the corpus annotations to locate phone
boundaries (excluding short phonemes less than 11.25 msec
in duration), and compute the AR coefficients of each phone.
This set, consisting ofNP = 2849 phones, is representative
of all American English phonemes and phoneme groups. For
consistency with the following speaker recognition experi-
ments, we resample the utterances down to 8 kHz. To avoid
favoring AR models of a particular fixed order, we adapt the
AR model order (p) differently for each phoneme. To this end,
we use the well-known Schwarz’s Bayesian criterion (SBC)
[39] implemented in the toolbox of [40]. We set the search
limits for the optimum model order as[pmin = 1, pmax = 40].
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The MFCCs are extracted using procedure similar to the
speaker verification experiments (see subsection V-C). To
exclude the effects of application-dependent feature normal-
izations, we measure the distortions in the lowest 18 base
MFCCs, excluding the DC coefficientc0. In the recognition
experiments (Section VI), however, we utilize a complete
front-end with additional RASTA filter, delta features and
cepstral mean/variance normalization (CMVN) as a normal
practice in speaker verification.

D. Results

We first compare the average biases, variances and MSEs
of the windowed DFT (Hamming) and SWCE multitaper
(K = 4) MFCC estimators in Fig. 4; the results for Thomson
and multipeak tapers were similar to SWCE and were excluded
for visual clarity. Regarding bias of the first cepstral coef-
ficient c1, both methods have a large negative bias which is,
interestingly, larger in magnitude for Hamming. Regardingthe
other coefficients, both methods yield positive bias. Hamming
introduces generally less bias but SWCE clearly reduces
variance of all MFCCs by a wide margin. Regarding MSE
of the lowest MFCCs (c1 throughc3), SWCE yields smaller
MSEs but the differences are not significant due to overlapping
confidence intervals. However, the intermediate and higher-
order MFCCs produce significantly smaller MSEs.

Next we compare bias, variance and MSE integrated over
all the 18 MFCC coefficients in Fig. 5 as a function of taper
count for all the four estimators. Computations are similaras
in Fig. 4 but we replace the vector quantities in (12)–(14)
by their correspondingL1-norms‖ · ‖1, i.e. the sum of the
(absolute value of) individual elements. In the case of bias, we
displayL1-norm of thesquaredbias. This is natural because
MSE[ĉ] = B[ĉ]2 +V[ĉ], which helps in better interpreting the
relative contributions of bias and variance terms to MSE.

According to Fig. 5, there is a large positive bias for all
the four spectrum estimators. This bias is generally largerfor
the multitaper estimators in comparison to windowed DFT, as
expected. But the variance of all three multitaper estimators
is significanly smaller than that of Hamming-windowed DFT.
For the biases, Hamming< multipeak< SWCE< Thomson,
but the order is reversed for the variances. The compromise
measure, MSE, shows nicely convex behaviour; for small
number of tapersK, the large variance dominates over squared
bias, leading to high MSE. For largeK, similarly, the squared
bias dominates and increases MSE. The smallest MSE values
are obtained atK = 4 for Thomson and SWCE and at
K = 6 for multipeak. Behavior of the MSE values suggests
that a suitable number of tapers for Thomson might be smaller
compared to multipeak and SWCE.

To sum up, the results in Figs. 4 and 5 clearly indicate
that multitapers reduce the variance of the MFCC estimates
which is useful from generalization point of view. From these
application-independent statistical MFCC estimator analyses,
suitableK might be on the range2 ≤ K ≤ 8 for typical
speech applications utilizing MFCCs, although it will certainly
depend on the task at hand; we will now proceed to our target
application, speaker verification.

TABLE I
DETAILS OF THE EVALUATION CORPORA AND THE THREE CLASSIFIERS

(UBM=UNIV. BACKGROUND MODEL, JFA=JOINT FACTOR ANALYSIS;
NAP=NUISANCE ATTRIBUTE PROJECTION; SWB=SWITCHBOARD).

NIST 2002 NIST 2008
Speakers 139 ♂, 191 ♀ 1092♂, 1649♀

Gen. trials 2982 15,345a

Imp. trials 39,259 56,792b

Type of data telephone telephone, interview, mic.
Training dur. 2 min 3–5 min
Test dur. 15–45 sec 3–5 min

GMM-UBM
[12]

GMM-SVM
[13]

GMM-JFA
[15], [35], [36]

Spec.
subtraction

Yes No No

Gaussians
per gender

1024 512 512

Intersession
compens.

– NAP [34] JFA [15], [35],
[36]

Background
data

SRE 01 SRE 04, 05,
06, MIXER5

SRE 04

Eigenchannel
data

– SRE 04, 06,
MIXER5

SRE 04, 05,
06, MIXER5

Eigenvoice
data

– – SRE 05, 06,
SWB

Diag. model – – SRE 04
Score
normalization

T-norm [41]
SRE 01

ZT-norm [42]
SRE 05, 06

TZ-norm [42]
SRE 05, 06

a 11540 det1, 1105 det4, 1472 det5, 1228 det7
b 22641 det1, 10636 det4, 6982 det5, 16533 det7

V. SPEAKER VERIFICATION SETUP

A. Corpora and Classifiers

For the speaker verification experiments, we utilize two
different corpora and three classifiers (Table I). We use the
NIST 2002 speaker recognition evaluation (SRE) corpus for
extensive exploration of control parameters and effect of
additive noise. For this, we employ a lightweightGaussian
mixture model with universal background model(GMM-
UBM ) method [12] withtest normalization(T-norm) [41]. The
same system was used in our recent studies [33], [43]–[45].
Here we use it for choosing the type of multitaper variant for
the more expensive NIST 2008 experiments. All the data in
NIST 2002 contains telephone conversations collected overthe
cellular network.

We then verify our findings on an independent, more recent
and much larger NIST 2008 SRE corpus which includes
telephone, interview and auxiliary microphone data. For the
experiments on NIST 2008 data, we employ two classifiers
which were developed in participation of the past two NIST
SRE campaigns [46]. The first system (GMM-SVM ) uses
Gaussian meansupervectorswith support vector machine
(SVM) [13] andnuisance attribute projection(NAP) technique
[14], [34] for channel compensation. Zero normalization fol-
lowed by T-norm (ZT-norm) [42] is used for score normaliza-
tion. The second system (GMM-JFA ) is a widely recognized
high performance system, which usesjoint factor analysis
(JFA) technique [15], [16], [35] for integrated intersession and
speaker variability modeling in the GMM supervector space.
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For score normalization, we use T-norm followed by Z-norm
(TZ-norm).

For the recognition experiments under additive noise degra-
dation, we contaminate the test utterances with factory noise
while the background, cohort and target models are kept
untouched. In [47] we foundspectral subtraction[48] to be
useful under additive noise degradation and it is thus included
in the NIST 2002 experiments. We also did preliminary
evaluation on the NIST 2008 data but the improvement was
not systematic, and, given the added computational overhead,
we decided not to include it to the NIST 2008 experiments.

B. Performance Evaluation

In comparison of the different MFCC estimators, we evalu-
ate speaker verification accuracy using equal error rate (EER)
and minimum detection cost function (MinDCF). EER is the
error rate at the thresholdθEER for which the miss and false
alarm rates are equal:EER = Pmiss(θEER) = Pfa(θEER).
MinDCF is used in the NIST speaker recognition evaluations
and is defined asminθ{CmissPmiss(θ)Ptar+CfaPfa(θ)(1−Ptar)},
where Cmiss = 10 is the cost of a miss (false rejection),
Cfa = 1 is the cost of a false alarm (false acceptance) and
Ptar = 0.01 is the prior probability of a target (true) speaker.
In addition, we show selected detection error tradeoff (DET)
plots [49] for the entire trade-off of false alarm and miss rates.

C. Feature Extraction

For the baselineHammingmethod, we compute the MFCCs
using the typical procedure [4]: Hamming window (frame
duration 30 ms and hop 15 ms), DFT spectrum estimate using
windowed periodogram (Eq. 1), 27-channel mel-frequency
filterbank, logarithmic compression and discrete cosine trans-
form (DCT). We retain the lowest 18 MFCCs, excluding the
energy coefficientc0. For Thomson[24], multipeak[26] and
sine-weighted cepstrum estimator(SWCE) [9] methods, the
steps are the same, except that the spectrum is estimated using
Eq. (2). In preliminary experiments, we found the frequently
used pre-emphasis filterH(z) = 1 − 0.97z−1 to degrade
accuracy and it is therefore turned off in all the experiments.

After the 18 base MFCCs are extracted, we apply RASTA
filter [5] and append the∆ and∆2 coefficients, implying 54-
dimensional features. We then discard the nonspeech frames
using an energy-based voice activity detector (VAD) and carry
out utterance-level cepstral mean and variance normalization
(CMVN). RASTA and CMVN are used for mitigating linear
channel distortions.

We were also curious to see the effect of excluding the
MFCC filterbank and to compute the 18 coefficients directly
from the unwarped spectrum. We hypothesized that the double
smoothing of multitaper spectrum followed by mel-filter en-
ergy integration might be suboptimal for speaker verification
where we wish to retain the spectral details in addition to the
envelope. We address this hypothesis on the NIST 2002 corpus
in subsection VI-A.
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Fig. 6. Effects of the number of tapers and MFCC filterbank to different
methods.

VI. SPEAKER VERIFICATION RESULTS

A. GMM-UBM system on the NIST 2002 SRE corpus

We first study how the choice of the spectrum estimation
method affects speaker verification accuracy. For each of the
multitaper methods – Thomson, multipeak and SWCE – we
vary the number of tapers and contrast the result to the
baseline Hamming method. EER and MinDCF, for both with
and without MFCC filterbank, are shown in Fig. 6 where the
horizontal (black) line represents the baseline. We observe the
following:

• Multitaper methods outperform Hamming in both EER
and MinDCF for a wide range of taper count (approx.
2 ≤ K ≤ 10). Optimum value ofK depends on the
method and the objective (EER or MinDCF).

• By including the MFCC filterbank the optimum points
shift to left (less tapers) in most cases. This is expected
because the MFCC filterbank introduces additional av-
eraging over multitapering. Using MFCC filterbank im-
proves EER and MinDCF and makes the curves generally
less ragged, indicating stable parameter setting.

• The performance of the three multitaper methods at their
optima are close to each other. Thomson shows sharper
local mimima than multipeak and SWCE methods and
gives higher error rates for large number of tapers.

The trends in Fig. 6 are, interestingly, in a reasonable agree-
ment with Fig. 5. Both MSE, EER and MinDCF demonstrate
approximately convex shapes and all the three methods give
similar performance with optimizedK. Secondly, for large
K, MSE(Thomson)> MSE(SWCE)' MSE(Multipeak); the
same approximate ordering holds also for EER and MinDCF.

We next study the accuracy under additive factory noise
corruption. Based on Fig. 6, for each method, we set the
number of tapers to give both small EER and MinDCF. For
the nonwarped case (no MFCC filterbank) we set the values to
K = 8 (Thomson),K = 10 (multipeak) andK = 7 (SWCE).
For the warped frequency case (MFCC filterbank included),
in turn, we set the values toK = 3 (Thomson),K = 5
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TABLE II
RESULTS UNDER FACTORY NOISE CORRUPTION ON THENIST 2002CORPUS CORRESPONDING TO THE RIGHT HAND SIDE PLOTS(MFCC FILTERBANK

INCLUDED) OF FIG. 7. IN EACH ROW, THE ERROR COUNTS SIGNIFICANTLY DIFFERING FROM THE BASELINEHAMMING , USING MCNEMAR’ S TEST AT95
% CONFIDENCE LEVEL, ARE INDICATED FOR BOTH GENUINE(•) AND IMPOSTOR(†) TRIALS.

SNR Equal error rate (EER, %) MinDCF (×100)
(dB) Hamming Thomson Multip. SWCE Hamming Thomson Multip. SWCE
Orig. 9.32 8.15 • † 8.45 • † 8.36 • † 3.86 3.53 • † 3.47 • † 3.45 •

20 9.73 8.79 • † 8.62 • † 8.69 • † 3.91 3.73 • † 3.62 • 3.56 • †
10 10.41 9.85 † 9.66 † 9.62 † 4.30 4.20 • † 4.11 † 4.03 •

0 11.53 11.50 11.44 11.32 5.04 5.02 • † 4.93 • † 4.76 †
-10 17.17 16.52 † 15.86 • † 15.96 • † 7.38 7.04 • † 6.72 • † 6.49 •
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Fig. 7. Effect of factory noise under different signal-to-noise ratios.
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Fig. 8. Periodogram smoothing on the NIST 2002 corpus. As a reference,
results for Hamming, Thomson, multipeak and SWCE method arealso given.
Smoothing is performed by convolving the unwindowed periodogram with a
Gaussian kernel with parameterα controlling the kernel width.

(multipeak) andK = 6 (SWCE). The results, as a function of
SNR, are given in Fig. 7. The following can be observed:

• Accuracy of all methods drops as SNR decreases, as
expected. Multitapers outperform Hamming in nearly
all cases (the exception occurs at 0 dB but the EER
difference is not statistically significant, see Table II)

• In the noisy cases (SNR≤ 20 dB), Thomson performs
best on average when mel-warping is not applied; for the
mel-warped case, SWCE performs the best.

• MFCC filterbank improves both EER and MinDCF.

Table II further displays the exact error values for the mel-
warped case. We also carry out McNemar’s significance testing
with 95 % confidence level at both operating points [4], [50].
In 27 out of 30 cases, the difference between the multitaper
and the baseline is significant in at least one of the error types.
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B. Comparison with Periodogram Smoothing

Due to its popularity in other application domains, we are
interested in the performance of periodogram smoothing, i.e.
convolution of |X(f)|2 with a frequency-domain smoothing
kernel. As discussed in [10], choice of the kernel (in particular,
its bandwidth) is not easy but typically requires trial-and-
error for a given application. To this end, we convolve the
unwindowed periodogram estimate with a Gaussian window1

1Choice of window is less important than its bandwidth [10]. We use
Matlab’s gausswin(N, α) command, withN = 512.
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w(n) = exp{− 1
2 (α

n
N/2 )

2}, whereN andα are the size and
width of the window, respectively. The width of the window
is inversely related to the value ofα; a larger value ofα
produces a narrower window. The result is displayed in Fig. 8
for the same configuration as Fig. 6 for the mel-warped case.
As a reference, we show the optimized results for Hamming,
Thomson, multipeak and SWCE methods from Fig. 6.

By optimizing α, periodogram smoothing outperforms the
baseline Hamming method, but it does not outperform any of
the multitaper methods. Forα ≈ 400 (for which the effective
number of non-zero samples in the kernel is about 4), EER
is close to those of the SWCE and multipeak methods. But
for the primary metric of speaker recognition evaluations,
MinDCF, multitapers perform better.

C. Experiments on the NIST 2008 SRE Corpus

Due to expensive nature of NIST 2008 experiments, we fix
as many parameters as we think reasonable. We choose to use
SWCE method with MFCC filterbank based on observations
from Fig. 7. We first verify our observations regarding suitable
number of tapers, using the GMM-SVM system. The EER
and MinDCF values in Figs. 9 and 10 indicate that, even
though setting depends on the data condition, the optima are
always achieved with3 ≤ K ≤ 8. This range agrees well
with the NIST 2002 GMM-UBM result in Fig. 6,which has
a completely different classifier, implementation detailsand
choice of data sets. SWCE outperforms Hamming for a wide
range ofK and therefore, the exact setting does not appear
very critical.

In one of the sub-conditions (det4), the baseline Hamming
outperforms multitaper. One reason might be non-optimal
selection of datasets for channel compensation in this sub-
condition; the error rates for both Hamming and SWCE are
higher than those in the other three conditions.

TABLE III
RESULTS ON THE DIFFERENT SUB-CONDITIONS OF THENIST SRE 2008

CORE TASK (SHORT2-SHORT3) USINGK = 6 TAPERS. DET1 = INTERVIEW
TRAINING AND TESTING; DET4 = INTERVIEW TRAINING , TELEPHONE

TESTING; DET5 = TELEPHONE TRAINING, NON-INTERVIEW MICROPHONE

TESTING; DET7 = TELEPHONE TRAINING AND TEST INVOLVINGENGLISH

LANGUAGE ONLY.

EER (%) 100 ×MinDCF
Hamm. SWCE Impr. (%) Hamm. SWCE Impr. (%)

GMM-SVM recognizer
det1 4.58 3.70 19.1 2.38 1.89 20.4

det4 9.85 10.68 −8.4 3.35 3.39 −1.2

det5 6.73 5.71 15.2 2.42 2.17 10.3

det7 5.09 3.97 21.9 1.98 1.80 9.1

GMM-JFA recognizer
det1 5.36 4.73 11.8 2.95 2.55 13.7

det4 7.51 6.24 16.9 3.14 2.82 10.2

det5 6.79 5.91 13.0 2.45 2.23 9.1

det7 3.58 3.48 2.9 1.58 1.28 18.7

In the following, we fixK = 6 for all the four subconditions
and for both genders. Gender-pooled results (without any score
calibration) for each subcondition are given in Table III for
both recognizers. Additionally, Fig. 11 displays the DET plot
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Fig. 11. DET plots for the interview-interview data (det1) on NIST 2008.
The SWCE method usesK = 6 tapers.

for the interview-interview condition (det1). From Table III,
we observe the following.

• Except for det4 in GMM-SVM system, SWCE systemat-
ically outperforms Hamming in both EER and MinDCF.

• For GMM-SVM, det7 task was observed the highest EER
improvement of 21.9 %, while det1 task the highest
MinDCF improvement of 20.4 %. The largest overall
improvements are in det1 where both metrics decrease
by about 20 %.

• For GMM-JFA, det4 task was observed the highest EER
improvement of 16.9 %, while det7 task the highest
MinDCF improvement of 18.7 %.

The DET plots in Fig. 11 further confirm that both recogniz-
ers benefit from multitapering over a wide range of operating
points. Our JFA result is roughly on the same range as other
similar systems, such as the full JFA system in [19, Table IX].
The i-vectorsystem in [19] outperforms our JFA result on det7
(for instance, EERs of 2.9 % and 1.1 % were reported for male
and female trials). Since i-vector and GMM-JFA share almost
the same components – factor analysis on GMM supervectors
with eigenvoice adaptation – we expect the results, to a certain
extent, to generalize to i-vector classifier as well. In fact,
preliminary indication of this was recently given in [51] on
the SRE 2010 corpus using an independent implementation.

VII. C ONCLUSIONS

We have advocated the use of multitaper MFCC features
in speech processing. By replacing the windowed DFT with
multitaper spectrum estimate, we found systematic improve-
ments in three independently constructed recognition systems
(GMM-UBM, GMM-SVM and GMM-JFA). The improve-
ments were consistent on two very different corpora (NIST
2002 and NIST 2008) including telephony, microphone and in-
terview segments with severe cross-channel variabilities. These
observations, together with analysis of bias and variance on
TIMIT, gives us confidence to recommend using multitapers
in speaker verification and possibly other speech processing
tasks.

The choice of the multitaper type (Thomson, multipeak,
SWCE) was found less important than the choice of the
number of tapers,K. But even the exact choice ofK does
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not appear to be critical. The best results were obtained, inall
cases, for3 ≤ K ≤ 8. We recommend to start withK = 6.
Mel-warping turned out useful also with multitapers. To help
the interested reader in exploring the technique further, we
provide a sample implementation in the Appendix.

It would be also interesting to see whether variance reduc-
tion would lead to higher gains in short duration recognition
tasks (10-second) and in speech and language recognition
problems. Finally, we expect further improvements using al-
ternative feature normalization strategies that suit better for
low-variance MFCCs.

APPENDIX

Below is an example of multitaper spectrum estimation in Mat-
lab whereSWCE function produces the tapers and their weights
in the SWCE method [9]. The functionmultitaperspectra,
which can be also used with other types of tapers, is used for
spectrum estimation. For a more complete package, including
Thomson [24] and multipeak [26] implementations, refer to
the WWW pages of the first author, http://cs.joensuu.fi/pages/
tkinnu/webpage/. To generate Thomson’s tapers, you may also
use the functiondpss in Matlab’s signal processing toolbox.

f u n c t i o n [ h , s ] = SWCE(N, K)

% Sine - weighted ceps t rum e s t i m a t o r (SWCE) t a p e r s
% N = frame s i z e ( samples ) , K = # t a p e r s
% The t a p e r s a r e columns of h , t h e i r we igh ts in s .

M = f i x (N/K) ;
f o r i =1 :K

h ( : , i ) = s q r t ( 2 / (N+1) )* s i n ( ( p i * i * [ 1 :N ] ' ) / (N+1) ) ;
end
s =( ( cos(2* p i * [ 0 : f i x (N/M) - 1 ] ' *M/N/ 2 ) ) +1) . . .

. / sum( cos(2* p i * [ 0 : f i x (N/M) - 1 ] ' *M/N/ 2 ) +1) ;

f u n c t i o n spec = m u l t i t a p e r s p e c t r a ( f rames , t a p e r s ,
weights , NFFT )

% Compute m u l t i t a p e r power s p e c t r a .
% f rames : ( num frames x N) m at r i x o f f rames .
% t a p e r s : (N x K) m at r i x o f K t a p e r s .
% we igh ts : (K x 1) v e c t o r o f t a p e r we igh ts .
% NFFT : Number of FFT b i n s .
% spec : M u l t i t a p e r power s p e c t r a as columns .
%
% Note : t h e f rames shou ld NOT be windowed us ing
% Hamming / Hann e t c type of windows . Give t h e raw
% ” boxcar ” - windowed f rames as i n p u t i n s t e a d .

spec = z e r o s(NFFT, s i z e( f rames ' , 2 ) ) ;
f o r ( t a p e r n b r = 1 :s i z e( t a p e r s , 2 ) )

spec = spec + we igh ts ( t a p e rn b r )* abs( f f t ( ( f rames ' )
. * . . .
repmat ( t a p e r s ( : , t a p e rn b r ) , 1 ,s i z e( f rames ' , 2 ) )

, NFFT ) ) . ˆ 2 ;
end
spec = spec ( 1 : NFFT /2+1 , : ) ;
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M. Karafiát, D.A.v. Leeuwen, P. Matějka, P. Schwartz, and A. Strasheim.
Fusion of heterogeneous speaker recognition systems in theSTBU sub-
mission for the NIST speaker recognition evaluation 2006.IEEE Trans.
Audio, Speech and Language Processing, 15(7):2072–2084, September
2007.

[15] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel. A study
of inter-speaker variability in speaker verification.IEEE Trans. Audio,
Speech and Language Processing, 16(5):980–988, July 2008.

[16] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel. Joint factor
analysis versus eigenchannels in speaker recognition.IEEE Trans.
Audio, Speech and Language Processing, 15(4):1435–1447, May 2007.

[17] A. Stolcke, S.S. Kajarekar, L. Ferrer, and E. Shriberg.Speaker recogni-
tion with session variability normalization based on MLLR adaptation
transforms. IEEE Trans. Audio, Speech and Language Processing,
15(7):1987–1998, September 2007.

[18] C.H. You, K.A. Lee, and H. Li. GMM-SVM kernel with a
Bhattacharyya-based distance for speaker recognition.IEEE Trans.
Audio, Speech and Language Processing, 18(6):1300–1312, August
2010.

[19] N. Dehak, P.J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet. Front-
end factor analysis for speaker verification.IEEE Trans. Audio, Speech
and Language Processing, 19(4):788–798, May 2011.

[20] A. Davis, S. Nordholm, and R. Togneri. Statistical voice activity detec-
tion using low-variance spectrum estimation and an adaptive threshold.
IEEE Trans. Audio, Speech and Language Processing, 14(2), March
2006.

[21] P. K. Ghosh, A. Tsiartas, and S. Narayanan. Robust voiceactivity de-
tection using long-term signal variability.Audio, Speech, and Language
Processing, IEEE Transactions on, 2010.

[22] Y. Hu and P.C. Loizou. Speech enhancement based on wavelet
thresholding the multitaper spectrum. 12(1):59–67, Jan. 2004.

[23] L. P. Ricotti. Multitapering and a wavelet variant of MFCC in speech
recognition. IEE Proc. Vision, Image and Signal Proc., 152(1):29–35,
Feb 2005.

[24] D. J. Thomson. Spectrum estimation and harmonic analysis. Proc. IEEE,
70(9):1055–1096, Sept 1982.

[25] K. S. Riedel and A. Sidorenko. Minimum bias multiple taper spectral
estimation. IEEE Trans. on Signal Proc., 43(1):188–195, Jan 1995.

[26] M. Hansson and G. Salomonsson. A multiple window methodfor
estimation of peaked spectra.IEEE Trans. on Sign. Proc., 45(3):778–
781, Mar. 1997.

[27] J. Sandberg, M. Hansson-Sandsten, T. Kinnunen, R. Saeidi, P. Flandrin,
and P. Borgnat. Multitaper estimation of frequency-warpedcepstra with
application to speaker verification.IEEE Signal Processing Letters,
17(4):343–346, April 2010.

[28] A.T. Walden, E. McCoy, and D.B. Percival. The variance of multitaper
spectrum estimates for real gaussian processes.IEEE Trans. on Sign.
Proc., 42(2):479 –482, February 1994.

[29] T.P. Bronez. On the performance advantage of multitaper spectral
analysis. IEEE Trans. on Sign. Proc., 40(12):2941 –2946, December
1992.



MANUSCRIPT, IEEE TRANSACTIONS ON SPEECH, AUDIO AND LANGUAGE PROCESSING 11

[30] P.D. Welch. The use of Fast Fourier Transform for the estimation of
power spectra: a method based on time averaging over short, modified
periodograms.IEEE Transactions on Audio and Electroacoustics, AU-
15(2):70–73, June 1967.

[31] C.H. Shadle and G. Ramsay. Multitaper analysis of fundamental
frequency variations during voiced fricatives. InProc. 6th Int. Seminar
on Speech Production, pages CD–6, December 2003.

[32] N. Erdol and T. Gunes. Multitaper covariance estimation and spectral
denoising. In Signals, Systems and Computers, 2005. Conference
Record of the Thirty-Ninth Asilomar Conference on, pages 1144 – 1147,
November 2005.

[33] T. Kinnunen, R. Saeidi, J. Sandberg, and M. Hansson-Sandsten. What
else is new than the Hamming window? robust MFCCs for speaker
recognition via multitapering. InProc. Interspeech 2010, pages 2734–
2737, Makuhari, Japan, September 2010.

[34] A. Solomonoff, W.M. Campbell, and I. Boardman. Advances in channel
compensation for SVM speaker recognition. InProc. Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP 2005), pages 629–
632, Philadelphia, USA, March 2005.

[35] P. Kenny. Joint factor analysis of speaker and session variability: theory
and algorithms. technical report CRIM-06/08-14, 2006.

[36] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel. Speaker and
session variability in GMM-based speaker verification.IEEE Trans.
Audio, Speech and Language Processing, 15(4):1448–1460, May 2007.

[37] David J. Thomson. Jackknifing multitaper spectrum estimates. IEEE
Signal Processing Magazine, 24(4):20–30, 2007.

[38] T. Gerkmann and R. Martin. On the statistics of spectralamplitudes
after variance reduction by temporal cepstrum smoothing and cepstral
nulling. IEEE Trans. on Signal Proc., 57(11):4165–4174, Nov 2009.

[39] Gideon Schwarz. Estimating the dimension of a model.The Annals of
Statistics, 6:461–464, March 1978.

[40] T. Schneider and A. Neumaier. Algorithm 808: ARfit - a Matlab
package for the estimation of parameters and eigenmodes of multivariate
autoregressive models.ACM Trans. Math. Softw., 27:58–65, 2001.

[41] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas. Score normaliza-
tion for text-independent speaker verification systems.Digital Signal
Processing, 10(1-3):42–54, January 2000.

[42] R. Vogt, B. Baker, and S. Sridharan. Modelling session variability in
text-independent speaker verification. InProc. Interspeech 2005, pages
3117–3120, Lisboa, Portugal, September 2005.

[43] R. Saeidi, H.R.S. Mohammadi, T. Ganchev, and R.D.Rodman. Parti-
cle swarm optimization for sorted adapted Gaussian mixturemodels.
IEEE Trans. Audio, Speech and Language Processing, 17(2):344–353,
February 2009.

[44] R. Saeidi, J. Pohjalainen, T. Kinnunen, and P. Alku. Temporally
weighted linear prediction features for tackling additivenoise in speaker
verification. IEEE Signal Processing Letters, 17(6):599–602, 2010.

[45] J. Pohjalainen, R. Saeidi, T. Kinnunen, and P. Alku. Extended weighted
linear prediction (xlp) analysis of speech and its application to speaker
verification in adverse conditions. InProc. Interspeech 2010, pages
1477–1480, Makuhari, Japan, September 2010.

[46] H. Li, B. Ma, K.-A. Lee, H. Sun, D. Zhu, K.C. Sim, C. You, R.Tong,
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