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Abstract—Sound source separation has become a topic ofon T-F masking have shown to provide significant results [6],
intensive research in the last years. The research effort has peing the ideal binary mask a commonly used benchmark for
been specially relevant for the underdetermined case, where separation performance [7]

a considerable number of sparse methods working in the . . .
time-frequency (T-F) domain have appeared. In this context, This paper proposes a MAP estimation framework for

although binary masking seems to be a preferred choice for T-F masking stereo separation. In this context, two novel
source demixing, the estimated masks differ substantially from features are introduced to estimate the binary masks: a class-
the ideal ones. This paper proposes a Maximum a Posteriori conditional distribution model for the observed anechoic mix-
(MAP) framework for binary mask estimation. To this end, jng parameters and the use of spatially smoothed posteriors
class-conditional source probabilities according to the observed . . . . . .
mixing parameters are modeled via ratios of dependent Cauchy In th_e T-F doma_ln. A MAP dec_|S|0n rule is applied t_o obtain
distributions while source priors are iteratively calculated from  the final separation masks, which are shown to provide results
the observed histograms. Moreover, spatially smoothed posteriors that are closer to the ones obtained by means of ideal binary
in the T-F domain are proposed to avoid noisy estimates, showing masking.
that the estimated masks are closer to the ideal ones in terms of  The structure of the paper is as follows. Section I describes
objective performance measures. the signal model and the anechoic mixing parameters used as
Index Terms—Blind Source Separation, Time-Frequency separation features. Section Il proposes a statistical model for
Masking, Sparse Models. the observed mixing parameters assuming a dominant source
condition. Section IV discusses binary mask estimation from a
I. INTRODUCTION Bayesian perspective, proposing the use of smoothed posteri-
HE task of estimating and recovering independent sourgEs for improved performance. Experiments and performance
T Signa|s from a set of mixtures in one or several obséyaluation are in Section V, Whlle the final COHC|USi0nS are
vation channels is known aBlind Source Separatiorin the Summarized in Section VI.
linear complete case, when as many observations as sources I
are available,Independent Component Analysapproaches
are usually applied [1]. These algorithms commonly assume

SIGNAL MODEL AND MIXING PARAMETERS
Consider two anechoic mixture signals,(t) given by

statistical independence and non-Gaussianity of the sources to N
estimate a demixing matrix that makes it possible to recover Tm(t) =Y tnSn(t = Tnn), m=1,2, 1)
the source signals up to a permutation and scaling factor. When n=1

there are more sources than observation channels, the probtdtereN is the number of sources,, () are the time-domain

is underdeterminedor degenerate), and other properties sugipurce signalsa,,,, are scalar coefficients and,,, are the

as source sparsity are exploited. Sparsity and overcomplé@irce-to-sensor time delays. In matrix notation, the model

dictionaries have been discussed in the literature with the aigkes the well-known formt = Axs, withx = [z1(¢) =2 (t)]7,

of giving a solution to the underdetermined problem, usirgy = [s1(t),...,sn(t)]" and Ay = @mnd(t — Timn). IN

MAP estimation [2] andl;-norm minimization [3]. When the Short-Time Fourier TransforngSTFT) domain, the above

dealing with speech and audio mixtures, it has been show®del can be rewritten as

that they are sparser in the time-frequency (T-F) domain than N ‘

in the time domain [4]. In fact, it has been shown that sources X (k,1) = Z Amn Sy (K, D)e T m=1,2,  (2)

are almost disjoint in this domain, i.e., there exists only one n=1

source in a given T-F point. This assumption leads taithe- Wherek is the frequency bin index, is the time-frame index,

frequency maskingeparation approach [5]. Algorithms based’. is the angular frequency corresponding to indexand

Xm (k1) and S, (k,1) are the STFT versions of,,(¢t) and
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where d is the inter-microphone distance,is the speed of wherex, specifies the peak location of the distribution and

sound and),, is the DOA angle of the:-th source. ~ the half-width at half-maximum. To statistically model the
joint distribution of R and D, first, the STFT of the sources
A. Magnitude Ratio and DOA Sp(k,l) are assumed to be independent complex random

. . . processes as follows:
Without loss of generality, the mixing process can be

described by the set of amplitude mixing coefficiemts, and |[Sn(k, D] ~ BalC(0,1)], (7)
the inter-sensor time delays resulting from the DOA of the LSy (k1) ~U(—m,T), (8)
sources. To estimate these quantities, most algorithms anal e C(0,1) denotes samples drawn from a normalized
channel differences in a sparse domain [5],[9],[8],[10],[11 auchy distribution centered at zero with = 1, while
Since audio source signals do not significantly overlap n '

; L (—m, 7) refers to a uniform distribution in the ranger, 7).
the STFT domain (a property often referred toWlsDisjoint The parametef3,, represents the relative contribution of the

Orthogonality, it can be assumed that the magnitude ratio_th source . As a result, the source model, expressef,b
of observation points is close (ideally equal) to the ratio of ' ' » €XP y

. - o IS written
amplitude mixing coefficients: S €

Sn ~ B,|C(0,1)][e? ™™ =1, N. 9
R(k,l) = arctan Xk DY arctan [ 220D 4) o ( ) - T (.).
T 1X1(k,0)|) A The goal now is to obtain the distribution of the mixing

R ) ) ) _ parameters for points where a given source in a mixture is
whereni(k, 1) is the index of the dominant source at T-F poinfjominant. The mixture magnitude ratio, according to Eq.(4)

(k,1). Using the arctangent function is useful for mapping thg,q assuming unit-norm mixing matrix columns, is given by
observed values to the ranffe 7/2]. On the other hand, the

phase difference between mixture channels can be analyzed at, ‘22[:1 sin(Ry,)S,e 9 ((d/)@Dn)
each T-F element to obtain R*7 = arctan ~
‘anl cos(Ry,)Sn

¢ (XalkD)\ _
D(k,1) = wrd <X1(k,l)) ~ cos(Br(,p)); () wherew ¢ w; is a random frequency value. Similarly, the

observed DOAs are given by
where /() denotes the phase of a complex number. Note that,

according to Eq.(3)D(k, 1) is an estimate of the cosine of the  jas _ ¢ S sin(Ry,)S,e I (/0270 Dn)
DOA of the dominant source at poifi, ). In the following, 2mod Zf:’:l cos(Ry,)Sy, ’
the sources are assumed to have a unique pair of mixing (11)
parametersR,,, D,,) that characterizes their mixing processThe use ofA andg in the notation ofRA? and DA denotes

An example R-D histogram is depicted in Figure 1(a).ts dependence on the estimated mixing parameters and the
showing the joint distribution of the mixing parameters for gelected parameter vectgr = [3, 32 ..., 3n]%. Note that
mixture of 3 speech sources in a noise-free anechoic envirggoth 42 and DAP are simulated values obtained from the
ment withd = 2 cm. The histogram is normalized to unit aress,, random data.
to resemble a probability density function (pdf). The mixing The magnitude ratio and DOA distributions for a dominant
parameters for each source af®;,D;) = (1.04,0.97), source can be extracted from the above by taking the set of
(R2, D2) = (0.40,—-0.14) and (Rs, D3) = (0.32,0.71). Note points where its magnitude is dominant over the rest:
that the peaks in the histogram correspond to the real mixing

, (10)

parametersk,, and D,,, shov_ving the presence _of the different RAB — [ RAB ¢ |S,| > Z Swl b, n=1,....N,

sources. The closer a poinR(k,!), D(k,1)) is to any of s

these peaks, the higher the chance of being dominated by (12)

the corresponding source. The rest of this paper assumes that

the mixing parameters correspondingAcare estimated from  DAS — { DAB ¢ |S, | > Z S| p, n=1,...,N.

these peaks. In fact, recent studies have shown that, while n'#n

mixing matrix estimation for non-reverberant underdetermined (13)

mixtures is a task that can be successfully accomplished, théSince obtaining closed-form expressions for dominant

unmixing procedure is still the main challenge [7]. source distributions is very difficult, the use of Monte-Carlo

processing for their computation offers a practical solution.

1. M ODELING OF MIXING PARAMETERS The only free parameters of the model are fhg which

S ianal I deled by distributi h .are easily determined numerically by iteratively fitting the
parse signais are usually modeled by dIStnbutions havigl v, tion of the simulated data to the one of the real mixture

shar_p pgaks at zero and flat tails. The Cauchy (or Lore.n%%togram\I/(R,D). To this end, the difference between peak
dIStI’Ibu'tlon,C(Xo,'y), descrlbe's properly magmtugie SparSIt>é]mplitudes in both histograms is minimized in the least squares
due to its peaky and heavy-tailed nature, accounting for rals¥nse. Thus, we define an observed peak amplitude vector

appearing high values [12]. Its probability density function i%(ﬁ) — [b1, ba,....bx]T and a target peak amplitude vector
given by 1 P= [plap27"'7pN]T' with
f) == | — (6) ;
s (X—X())Z-i-’}/2 ’ bn:\II(Rn7Dn)7 n:17'~'7N7 (14)
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(a) (b) (c)

Fig. 1. R-D histograms for the example mixture. (a) Real histogram. (b) Histogram obtained by numerical processing using a Cauchy source model. (c)
Histogram using a Laplacian source model.

pn =% (R,,D,), n=1,...,N, (15) R falling into a given interval of the histogram amdr and

. , ) ) , Ap are the lengths of a histogram bin in thfe¢ and D
where (R, D) is the normalized-D histogram (unit area) ;s yespectively. The smaller the? value, the better the

ApB AB i - . .
computed from theR™” and D*” synthetic data. The pa-f; The test was performed over the anechoic test signals
rameter vector3 is iteratively updated until convergence a%,sed in Section V resulting in a mean value\of = 4.8¢*

follows (see Appendix): for the proposed model ang®> = 1.81e® for the Laplacian
Bt =B-1(bB)-p), (16) model. TheR-D distribution obtained for the example mixture
using a Laplacian model is shown in Figure 1(c). Note that
whereb(B3) = % andp = ﬁ are the generated andthe proposed model (b) is significantly closer to the real
target normalized peak amplitudlés, respectively. Figure 1(@kstribution.
shows the histogram calculated by means of the proposed
model as a sum of the individual dominant source distribu-

tions. Note that it is very similar to the one of Figure 1(a), i.e. IV. SEPARATION MASK ESTIMATION

the extracted from the real mixture. The statistical model described in the previous section
allows to compute a class-conditional probability measure for
A. Suitability of the Model the mixing parameters?, D given a dominant source. The

Source sparsity in the T-F domain has been discussed”h?”hOOdS are therefore given by

many works. Statistical models for source distributions in
sparse domains are usually based on super-Gaussian distri-

butions, such as the Laplacian distribution [13]. In fact, it haghere ¥, (R, D) are the normalized histograms computed
been reported that the Laplacian distribution is able to modehm the model dat&R2, DA. The factors3, are considered

speech both in the time domain and in the STFT domain [14iors for each source obtained from the whole observation
Moreover, due to the peaky nature of the magnitude ratio digye-

tribution, Laplacian mixture models have also been employed
in underdetermined blind source separation problems [15].
However, while the Laplacian distribution might be suitab:EL

p(R,Dl|s,) = ¥,(R,D)., n=1,...,N, (18)

P(Sn):ﬂna ’I’Lzl,...,N, (19)

o . operly scaled so thazleﬂn = 1. Then, the posterior
to model STFT coefficients under some cwcumstapc;es [1 obability according to Bayes' theorem is given by
the proposed Cauchy-based model for STFT coefficients has
been shown to provide better accuracy in ét#D modeling p(R, D|sy)P(sn)
task. Both source models have been compared by means of 6(3(5"|R’ D)= p(R, D) ’
x?2 test to evaluate their capability to generate synthetic data
fitting real R-D distributions. The value of the test statistic iwith p(R, D) = ZiLV:lp(R, Di|s,)P(sy). A first estimation

given by of the separation masks could be obtained by applying the
following MAP decision rule:
nr.p — NyArAp¥(R, D))?
%%:( rD — NpArADY(R, D)) |
1 if n=arg maxp(R,D|sy )P (sn)

N, ARApY (R, D ’

p—=R2=D (R7 ) Mn(k,l): n V(lﬁl)
where N, is the total number of T-F points in the mixture, 0 elsewhere
ng,p iS the number of generated sample points withand (21)

n=1,...,N, (20)

2 _

X" = (17)
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Fig. 2. Binary masks for one of the three sources of the example mixture. Reliable elements are indicated by white T-F units and unreliable T-F units are
marked in black. (a) Ideal binary mask. (b) Improved mask obtained with smoothed posteriors. (c) Noisy mask obtained without smoothing.

A. Smoothed Time-Frequency Posteriors wherea]% ando? are the variances of the Gaussian filter that

It is well-known that ideal binary masks show clusters dfontrol the area of influency, in the frequency and time
points corresponding to those areas where the energy Oglgwns.lons, respectively. Note that in in the aboye definition,
given source is higher than the total interfering energy. D(ie variablest and/ have been replaced forand f in order
to the nature of speech and audio sources, these clust@r§rake the selected filter independent of the STFT analysis
usually appear distributed around speech partials and otR&fameters. Additionally, a T-F invariant smoothing kernel
high-energy components. Therefore, if a given T-F point of 3S been proposed for the sake of simplicity. However, it is
separation mask is active, it is likely that surrounding poini¥orth to note that ideal binary masks have more horizontal
are also active. Similarly, zero points corresponding to silencgi§ucture in low frequencies and more vertical structure in
or low-energy areas may be surrounded also by other inact{ygh frequencies. Although frequency dependent kernels might
points. This property is exploited in this section by usinBe”ef't Fhe mask estimation task, the st_udy of different kernel
smoothed T-F posteriors as follows. Let us introduce in ogftérnatives is out of the scope of this paper and will be
decision the evidence of observing the probability that T-gddressed in a future work. _ .
points pertaining to a surrounding neighborhdag; do also The final separation masks are obtained by applying the

belong to the same source: MAP decision rule over the smoothed posteriors:
p(R, D, Qe i|sn) P(sn) 1 if n=arg maxP(s,|R,D,Q,)
P(sn|R, D, ) = ’ : 22 _ b ' [1, L, 3Lk,
(5] k1) (R, D)) @2 a0 = n V(k,1).
_ _ o 0 elsewhere
Obviously, computing the new likelihoge( R, Q% ;|s,,) for all (25)

possible neighborhoods is not very practical, even if condi- The estimated sources are recovered by applying the es-
tional independence is assumed. However, it seems reasonghléted mask to the mixture channels and transforming the
to think that the belief given by the posterior will changgjgnals back to the time-domain with the inverse STFT oper-
accordingly to the support of surrounding points due to thejor. Figure 2(a)-(c) compares visually an ideal binary mask
existing correlation. Thus, a convolution operation is prOpOS‘%@rresponding to one of the sources of the example mixture
to model this influence: with the ones obtained with Eq.(25) and Eq.(21). In the
P(sp|R, D, Q) = P(sn|R, D) + W(k, 1), (23) next section, we gvaluate the ;epgration performance of the
' proposed method in terms of objective performance measures.
where W (k,[) is a two-dimensional smoothing impulse re-

sponse, implemented by a properly normalized smoothing
matrix (kernel). Smoothed posteriors have been widely em-
ployed in image processing for pixel classification [17],[18]. In this section, a performance evaluation is presented in
We propose the use of a Gaussian filter, which gives md&fms of the well-known objective performance meas@igs
importance to the central point but smoothly incorporatdil to Distortion Rati(SDR),source Image Spatial distortion
information from the surrounding points. Then, the suggest&#tio (ISR), Source to Interference Rat{&IR) andSource to
impulse response as a function of tim@n ms) and frequency Artifacts Ratio(SAR) [19].

V. EXPERIMENTS AND EVALUATION

f (in Hz) is expressed as The proposed method was evaluated and compared to
s other separation approaches using underdetermined mixtures
W(f, 1) = 1 *(iﬁ*J’Tg) (24) of N =3 and N = 4 sources. The source signals were male

and female speech fragmeny & 16 kHz) provided with the
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TABLE |
AVERAGE PERFORMANCE INANECHOIC SCENARIO
N = 3 sources N = 4 sources
Prop Propw/s DUET S-DUET Duong IBM Prop Propw/s DUET S-DUET Duong IBM

SDR  7.23 5.12 4.55 4.36 6.11 10.64 | SDR  4.79 3.62 2.96 2.77 3.25 9.22
SIR 17.34 17.32 11.47 14.44 10.32 21.58| SIR 12.87 12.79 8.26 11.72 4.82 19.55
SAR  7.46 5.29 5.10 4.65 9.43 11.07 | SAR 4.76 3.31 3.18 2.36 6.73 9.61
ISR 14.22 10.23 8.44 9.78 11.35 20.08 | ISR 10.45 7.44 6.35 6.21 6.81 17.63

TABLE I
AVERAGE PERFORMANCE INREVERBERANT SCENARIO (T@o = 250 ms)
N = 3 sources N = 4 sources
Prop Propw/s DUET S-DUET Duong IBM Prop Propw/s DUET S-DUET Duong IBM

SDR 3.61 3.56 3.26 3.46 4.40 10.76 | SDR 2.12 2.04 1.94 1.96 2.44 9.29
SIR  6.87 6.69 511 6.46 5.00 20.33 | SIR  4.00 3.88 3.52 4.32 1.61 19.45
SAR 5.50 5.15 5.10 4.72 7.78 11.01 | SAR 3.19 3.36 3.62 2.47 6.02 9.73
ISR  9.36 8.74 8.15 7.97 10.05 1984 | ISR 7.11 6.43 6.65 5.22 5.95 17.47

‘Dev2 dataset of theSignal Separation Evaluation Campaigrfurther work would be needed to make it more robust to room
(SISEC) [7]. To evaluate the influence of room reflections, twaflections.

simulated scenarios were considered: an anechoic environment

and a box-shaped room & 4 x 3 m) with reverberation time VI. ConcLusioN

Tso = 250 ms. The inter-microphone distance was= 0.2 This paper presented a T-F masking separation method
cm to avoid possible spatial aliasing effects. The sourcégveloped from a MAP perspective. Two main novel features
were randomly positioned at different directions to generavéere introduced with respect to other T-F masking approaches.
a total of 50 test mixtures in the anechoic scenario and &@'st, a likelihood model for the observed mixing parameters
test mixtures in the reverberant one. STFTs were computédder a source dominance assumption was described. To this
using Hamming windows of 1024 samples length and 75¢#d, ratios of complex dependent Cauchy distributions were

overlap. The proposed method was applied using a Gaussi@mputed and statistically characterized by means of Monte-
smoothing filter with variances? = 25 ms andgg =23 Hz, Carlo processing. Second, smoothed posteriors in the MAP de-

implemented by 8 x 3 kernel matrix. ’ cision were proposed to model the influence of neighboring T-
Fpomts reducing the amount of noisy points in the estimated
asks. The proposed method was shown to outperform other
separation approaches in anechoic and reverberant environ-
ents, providing average results closer to the ones provided by
e ideal binary masking benchmark. However, further work
is needed to adapt the model to a reverberant case to make it
d@f)re robust against room reflections.

The following systems were compared: the proposed a
proach Prop), the proposed approach without using smooth
posteriors Prop w/9, the DUET algorithm [5] DUET), the
smoothed DUET algorithm using a plus sign-shaped medl
filter [11] (S-DUET), the algorithm for reverberant mlxtures
by Duong et al. [20] Duong and ideal binary maskindgM).
The ideal binary mask was computed by comparing the tar
source signal and the interfering source images as in [7]. APPENDIX

Results for the anechoic and reverberant environments ar'he optimum parameter vectg is found by iteratively
shown in Table | and Table II, respectively. It can be obminimizing the difference between the distributions of the
served that, in the anechoic environment, the proposed methedl measured data and the synthetically generated data. To
outperforms all the other systems, providing results that atfis end, we search for the best fit in the least squares
closer to the ones obtained by ideal binary masking. Moreovesnse by considering only the relative amplitude of the peaks
the usefulness of the model is here demonstrated in teragrmalized to unit power) in both histograms. The solution
of separation performance, since the results obtained by @ifound by minimizing the function
method without smoothing are still better than the ones of _ 2
DUET and S-DUET. In the case of reverberant mixtures, the F(B) = Hb - PH ) (26)

proposed method still provides better results than DUET agghere b(3) = % and p 7“ are the generated and

S-DUET but only outperforms Duong’s algorithm in terms ofbserved normalise peak amphtudes respectively. Next, we
SIR and ISR. This fact highlights the importance of havingissume a simplified linear modél(3) = D@, where the

a suitable model for a specific application scenario since, gplitude of a peal, only depends on its corresponding
opposed to Duong’s algorithm, the proposed method does mpt parameter:

take into account room reverberation effects. Nevertheless,

note that, as the number of sources increases, our proposed gl d(l)l dO 8 gl
method and Duong’s tend to be comparable as shown by - 22 2 (27)
the results withN = 4. Despite the proposed method has : : c 0 :

been shown to be the most effective in anechoic scenarios, | by 0 0 -+ dnn On
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of F(ﬁ) can be expressed as source separation using laplacian mixture moddBEE Transactions
on Audio, Speech and Language Processiral. 15, no. 6, pp. 1818—
VF(ﬂ) =2D (b(’@) - p) ’ (28) [16] R. Martin and C. Breithaupt, “Speech enhancement in the DFT domain
using laplacian speech priors,” international Workshop on Acoustic
same linear dependence with its associated paraniBtes 90.
aI), |eading to the next simplified gradient expression [17] P. Teo, G. Sapiro, and B. Wandell, “Anisotropic smoothing of posterior
Santa Barbara, CA, USA, 1997, pp. 675-678.
[18] S. Haker, G. Sapiro, and A. Tannenbaum, “Knowledge-based segmen-
Finally, the optimize arameters can be iteratively found
y. P . B P ] y Processingvol. 9, no. 2, pp. 299-301, 2000.
by following a gradient descent approach: [19] E. Vincent, R. Gribonval, and C.&votte, “Performance measurement

Thus, considering the above diagonal matrix, the gradigm$] N. Mitianoudis and T. Stathaki, “Batch and online underdetermined
1832, 2007.
Moreover, we can further assume that all the peaks have the -/, = = "\ o0 °E ol (IWAENC 200%yoto, Japan, 2003, pp. 87—
B probabilities,” inIEEE International Conference on Image Processing
VF(B) = 2a (b(B) — D) - (29)
tation of SAR data with learned priorslEEE Transactions on Image
— _ in blind audio source separatiolEEE Transactions on Audio, Speech
BT =B-VF@B)=8-1(bB)-p), (30)

: . . [20
where~ > 0 is a small number controlling the step size. The

constant factom = 2ya can be experimentally adjusted. In

and Language Processingol. 14, no. 4, pp. 1462-1469, 2006.

] N. Duong, E. Vincent, and R. Gribonval, “Under-determined reverberant

audio source separation using a full-rank spatial covariance model,”
IEEE Transactions on Audio, Speech, and Language Processihd.8,

this paper, we assumeﬂ: 1. no. 7, pp. 1830-1840, 2010.
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