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Learning content similarity for music
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Abstract—Many tasks in music information retrieval, such
as recommendation, and playlist generation for online radio,
fall naturally into the query-by-examplesetting, wherein a user
queries the system by providing a song, and the system responds
with a list of relevant or similar song recommendations. Such
applications ultimately depend on the notion ofsimilarity between
items to produce high-quality results. Current state-of-the-art
systems employcollaborative filtermethods to represent musical
items, effectively comparing items in terms of their constituent
users. While collaborative filter techniques perform well when
historical data is available for each item, their reliance on
historical data impedes performance on novel or unpopular items.
To combat this problem, practitioners rely on content-based
similarity, which naturally extends to novel items, but is typically
out-performed by collaborative filter methods.

In this article, we propose a method for optimizing content-
based similarity by learning from a sample of collaborativefilter
data. The optimized content-based similarity metric can then be
applied to answer queries on novel and unpopular items, while
still maintaining high recommendation accuracy. The proposed
system yields accurate and efficient representations of audio
content, and experimental results show significant improvements
in accuracy over competing content-based recommendation tech-
niques.

Index Terms—Audio retrieval and recommendation, music
information retrieval, query-by-example, collaborative filters,
structured prediction.

EDICS Category: AUD-CONT

I. I NTRODUCTION

A N effective notion of similarity forms the basis of many
applications involving multimedia data. For example, an

online music store can benefit greatly from the development
of an accurate method for automatically assessing similarity
between two songs, which can in turn facilitate high-quality
recommendations to a user by finding songs which are similar
to her previous purchases or preferences. More generally, high-
quality similarity can benefit anyquery-by-examplerecom-
mendation system, wherein a user presents an example of an
item that she likes, and the system responds with,e.g., a ranked
list of recommendations.

The most successful approaches to a wide variety of rec-
ommendation tasks — including not just music, but books,
movies,etc. — is collaborative filters(CF). Systems based
on collaborative filters exploit the “wisdom of crowds” to
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Fig. 1. Query-by-example recommendation engines allow a user to search
for new items by providing an example item. Recommendationsare formed
by computing the most similar items to the query item from a database of
potential recommendations.

infer similarities between items, and recommend new items
to users by representing and comparing these items in terms
of the people who use them [1]. Within the domain of
music information retrieval, recent studies have shown that
CF systems consistently outperform alternative methods for
playlist generation [2] and semantic annotation [3]. However,
collaborative filters suffer from the dreaded “cold start” prob-
lem: a new item cannot be recommended until it has been
purchased, and it is less likely to be purchased if it is never
recommended. Thus, only a tiny fraction of songs may be
recommended, making it difficult for users to explore and
discover new music [4].

The cold-start problem has motivated researchers to im-
provecontent-basedrecommendation engines. Content-based
systems operate on music representations that are extracted
automatically from the audio content, eliminating the needfor
human feedback and annotation when computing similarity.
While this approach naturally extends to any item regardless
of popularity, the construction of features and definition of
similarity in these systems are frequently ad-hoc and not
explicitly optimized for the specific task.

In this paper, we propose a method for optimizing content-
based audio similarity by learning from a sample of collabo-
rative filter data. Based on this optimized similarity measure,
recommendations can then be made where no collaborative
filter data is available. The proposed method treats similarity
learning as an information retrieval problem, where similarity
is learned to optimize the ranked list of results in responseto
a query example (Figure 1). Optimizing similarity for rank-
ing requires more sophisticated machinery than,e.g., genre
classification for semantic search. However, the information

http://arxiv.org/abs/1105.2344v1
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retrieval approach offers a few key advantages, which we
believe are crucial for realistic music applications. First, there
are no assumptions of transitivity or symmetry in the proposed
method. This allows, for example, that “The Beatles” may
be considered a relevant result for “Oasis”, but not vice
versa. Second, CF data can be collectedpassivelyfrom users
by mining their listening histories, thereby directly capturing
their listening habits. Finally, optimizing similarity for ranking
directly attacks the main quantity of interest: the orderedlist
of retrieved items, rather than coarse abstractions of similarity,
such as genre agreement.

A. Related work

Early studies of musical similarity followed the general
strategy of first devising a model of audio content (e.g.,
spectral clusters [5] or Gaussian mixture models [6]), ap-
plying some reasonable distance function (e.g., earth-mover’s
distance or Kullback-Leibler divergence), and then evaluating
the proposed similarity model against some source of ground
truth. Logan and Salomon [5] and Aucouturier and Pachet [6]
evaluated against three notions of similarity between songs:
same artist, same genre, and human survey data. Artist or
genre agreement entail strongly binary notions of similarity,
which due to symmetry and transitivity may be unrealistically
coarse in practice. Survey data can encode subtle relationships
between items, for example, triplets of the form“A is more
similar to B than to C” [6]–[8]. However, the expressive
power of human survey data comes at a cost: while artist or
genre meta-data is relatively inexpensive to collect for a set of
songs, similarity survey data may require human feedback on
a quadratic (for pairwise ratings) or cubic (for triplets) number
of comparisons between songs.

Later work in musical similarity approaches the problem
in the context of supervised learning: given a set of training
items (songs), and some knowledge of similarity across those
items, the goal is tolearn a similarity (distance) function
that can predict pairwise similarity. Slaneyet al. [9] derive
similarity from web-page co-occurrence, and evaluate several
supervised and unsupervised algorithms for learning distance
metrics. McFee and Lanckriet [10] develop a metric learning
algorithm for triplet comparisons as described above. Our
proposed method follows in this line of work, but is designed
to optimize structured ranking loss (not just binary or triplet
predictions), and uses a collaborative filter as the source of
ground truth.

The idea to learn similarity from a collaborative filter
follows from a series of positive results in music applications.
Slaney and White [11] demonstrate that an item-similarity
metric derived from rating data matches human perception
of similarity better than a content-based method. Similarly,
it has been demonstrated that when combined with metric
learning, collaborative filter similarity can be as effective as
semantic tags for predicting survey data [10]. Kimet al. [3]
demonstrated that collaborative filter similarity vastly out-
performs content-based methods for predicting semantic tags.
Barringtonet al. [2] conducted a user survey, and concluded
that the iTunes Genius playlist algorithm (which is at least

partially based on collaborative filters1) produces playlists of
equal or higher quality than competing methods based on
acoustic content or meta-data.

Finally, there has been some previous work addressing the
cold-start problem of collaborative filters for music recom-
mendation by integrating audio content. Yoshiiet al. [12]
formulate a joint probabilistic model of both audio content
and collaborative filter data in order to predict user ratings
of songs (using either or both representations), whereas our
goal here is to use audio data to predict the similarities
derived from a collaborative filter. Our problem setting is
most similar to that of Stenzel and Kamps [13], wherein a
CF matrix was derived from playlist data, clustered into latent
“pseudo-genres,” and classifiers were trained to predict the
cluster membership of songs from audio data. Our proposed
setting differs in that we derive similarity at the user level
(not playlist level), and automatically learn the content-based
song similarity that directly optimizes the primary quantity of
interest in an information retrieval system: the quality ofthe
rankings it induces.

B. Our contributions

Our primary contribution in this work is a framework for
improving content-based audio similarity by learning froma
sample of collaborative filter data. Toward this end, we first
develop a method for deriving item similarity from a sample
of collaborative filter data. We then use the sample similarity
to train an optimal distance metric over audio descriptors.
More precisely, a distance metric is optimized to produce
high-quality rankings of the training sample in a query-by-
example setting. The resulting distance metric can then be
applied to previously unseen data for which collaborative filter
data is unavailable. Experimental results verify that the pro-
posed methods significantly outperform competing methods
for content-based music retrieval.

C. Preliminaries

For a d-dimensional vectoru ∈ R
d let u[i] denote itsith

coordinate; similarly, for a matrixA, let A[ij] denote its
ith row and j th column entry. A square, symmetric matrix
A ∈ R

d×d is positive semi-definite(PSD, denotedA � 0)
if each of its eigenvalues is non-negative. For two matrices
A,B of compatible dimension, the Frobenius inner product is
defined as

〈A,B〉F = tr(ATB) =
∑

i,j

A[ij]B[ij].

Finally, let 1[x] denote the binary indicator function of the
eventx.

II. L EARNING SIMILARITY

The main focus of this work is the following information
retrieval problem: given aquery songq, return a ranked list
from a databaseX of n songs ordered by descending similarity
to q. In general, the query may be previously unseen to the

1http://www.apple.com/pr/library/2008/09/09itunes.html
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system, butX will remain fixed across all queries. We will
assume that each song is represented by a vector inR

d, and
similarity is computed by Euclidean distance. Thus, for any
queryq, a natural ordering ofx ∈ X is generated by sorting
according to increasing distance fromq: ‖q − x‖.

Given some side information describing the similarity re-
lationships between items ofX , distance-based ranking can
be improved by applying ametric learningalgorithm. Rather
than rely on native Euclidean distance, the learning algorithm
produces a PSD matrixW ∈ R

d×d which characterizes an
optimized distance:

‖q − x‖W =
√

(q − x)TW (q − x). (1)

In order to learnW , we will apply the metric learning to
rank (MLR) [14] algorithm (Section II-B). At a high level,
MLR optimizes the distance metricW on X , i.e., so thatW
generates optimal rankings of songs inX when using each
song inX as a query. To apply the algorithm, we must provide
a set of similar songsx ∈ X for eachtraining queryq ∈ X .
This is achieved by leveraging the side information that is
available for items inX . More specifically, we will derive a
notion of similarity from collaborative filter data onX . So, the
proposed approach optimizes content-based audio similarity
by learning from a sample of collaborative filter data.

A. Collaborative filters

The term collaborative filter (CF) is generally used to
denote to a wide variety of techniques for modeling the
interactions between a set of items and a set of users [1],
[15]. Often, these interactions are modeled as a (typically
sparse) matrixF where rows represent the users, and columns
represent the items. The entryF [ij] encodes the interaction
between useri and itemj.

The majority of work in the CF literature deals withF
derived from explicit user feedback,e.g., 5-star ratings [11],
[12]. While rating data can provide highly accurate represen-
tations of user-item affinity, it also has drawbacks, especially
in the domain of music. First, explicit ratings require active
participation on behalf of users. This may be acceptable for
long-form content such as films, in which the time required
for a user to rate an item is miniscule relative to the time
required to consume it. However, for short-form content (e.g.,
songs), it seems unrealistic to expect a user to rate even a
fraction of the items consumed. Second, the scale of rating
data is often arbitrary, skewed toward the extremes (e.g., 1-
and 5-star ratings), and may require careful calibration touse
effectively [11].

Alternatively, CF data can also be derived fromimplicit
feedback. While somewhat noisier on a per-user basis than
explicit feedback, implicit feedback can be derived in much
higher volumes by simply counting how often a user interacts
with an item (e.g., listens to an artist) [16], [17]. Implicit
feedback differs from rating data, in that it is positive andun-
bounded, and it does not facilitate explicit negative feedback.
As suggested by Huet al. [17], binarizing an implicit feedback
matrix by thresholding can provide an effective mechanism to
infer positive associations.

In a binary CF matrixF , each columnF [·j] can be
interpreted as abag-of-usersrepresentation of itemj. Of
central interest in this paper is the similarity between items
(i.e., columns ofF ). We define the similarity between two
items i, j as the Jaccard index [18] of their user sets:

S(i, j) =
|F [·i] ∩ F [·j]|

|F [·i] ∪ F [·j]|
=

F [·i]TF [·j]

|F [·i]|+ |F [·j]| − F [·i]TF [·j]
,

(2)
which counts the number of users shared betweenA andB,
and normalizes by the total number of users forA or B.

Equation (2) defines a quantitative metric of similarity
between two items. However, for information retrieval applica-
tions, we are primarily interested in the most similar (relevant)
items for any query. We therefore define therelevantsetX+

q

for any itemq as the topk most similar items according to
Equation (2), i.e., those items which a user of the system
would be shown first. Although binarizing similarity in this
way does simplify the notion of relevance, it still provides
a flexible language for encoding relationships between items.
Note that after thresholding, transitivity and symmetry are not
enforced, so it is possible,e.g., for The Beatlesto be relevant
for Oasis but not vice versa. Consequently, we will need a
learning algorithm which can support such flexible encodings
of relevance.

B. Metric learning to rank

Any query-by-example retrieval system must have at its core
a mechanism for comparing the query to a known database,
i.e., assessing similarity (or distance). Intuitively, the overall
system should yield better results if the underlying similarity
mechanism is optimized according to the chosen task. In
classification tasks, for example, this general idea has ledto
a family of algorithms collectively known asmetric learning,
in which a feature space is optimized (typically by a linear
transformation) to improve performance of nearest-neighbor
classification [19]–[21]. While metric learning algorithms have
been demonstrated to yield substantial improvements in clas-
sification performance, nearly all of them are fundamentally
limited to classification, and do not readily generalize to
asymmetric and non-transitive notions of similarity or rele-
vance. Moreover, the objective functions optimized by most
metric learning algorithms do not clearly relate to ranking
performance, which is of fundamental interest in information
retrieval applications.

Rankings, being inherently combinatorial objects, can be
notoriously difficult to optimize. Performance measures of
rankings,e.g., area under the ROC curve (AUC) [22], are
typically non-differentiable, discontinuous functions of the
underlying parameters, so standard numerical optimization
techniques cannot be directly applied. However, in recent
years, algorithms based on the structural SVM [23] have been
developed which can efficiently optimize a variety of ranking
performance measures [24]–[26]. While these algorithms sup-
port general notions of relevance, they do not directly exploit
the structure of query-by-example retrieval problems.

The metric learning to rank (MLR) algorithm combines
these two approaches of metric learning and structural SVM,
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Fig. 2. Left: a query point⋆ and its relevant (+) and irrelevant (-) results;
ranking by distance from⋆ results in poor retrieval performance. Right: after
learning an optimal distance metric with MLR, relevant results are ranked
higher than irrelevant results.

and is designed specifically for the query-by-example set-
ting [14]. MLR learns a positive semi-definite matrixW such
that rankings induced by learned distances (Equation (1)) are
optimized according to a ranking loss measure,e.g., AUC,
mean reciprocal rank (MRR) [27], or normalized discounted
cumulative gain (NDCG) [28]. In this setting, “relevant”
results should lie close in space to the queryq, and “irrelevant”
results should be pushed far away.

For a query songq, the databaseX is ordered by sorting
x ∈ X according to increasing distance fromq under the
metric defined byW (see Figure 2). The metricW is learned
by solving a constrained convex optimization problem such
that, for each training queryq, a higher score is assigned to
a correct rankingyq than to any other rankingy ∈ Y (the set
of all rankings):

∀q : 〈W,ψ(q, yq)〉F ≥ 〈W,ψ(q, y)〉F +∆(yq, y)− ξq. (3)

Here, the “score” for a query-ranking pair(q, y) is computed
by the Frobenius inner product〈W,ψ(q, y)〉F. ψ(q, y) is a
matrix-valued feature map which encodes the query-ranking
pair (q, y), and∆(yq, y) computes the loss (e.g., decrease in
AUC) incurred by predictingy instead ofyq for the queryq,
essentially playing the role of the “margin” between rankings
yq andy. Intuitively, the score for a correct rankingyq should
exceed the score for any othery by at least the loss∆(yq, y).
In the present context, a correct ranking is any one which
places all relevant resultsX+

q before all irrelevant resultsX−
q .

To allow violations of margins during training, a slack variable
ξq ≥ 0 is introduced for each query.

Having defined the margin constraints (Equation (3)), what
remains to be specified, to learnW , is the feature mapψ and
the objective function of the optimization. To define the feature
mapψ, we first observe that the margin constraints indicate
that, for a queryq, the predicted rankingy should be that
which maximizes the score〈W,ψ(q, y)〉F. Consequently, the
(matrix-valued) feature mapψ(q, y) must be chosen so that
the score maximization coincides with the distance-ranking
induced byW , which is, after all, the prediction rule we
propose to use in practice, for query-by-example recommenda-
tion (Equation (1)). To accomplish this, MLR encodes query-
ranking pairs(q, y) by thepartial order feature [24]:

ψ(q, y) =
∑

i∈X+
q

∑

j∈X−

q

yij
(φ(q, i)− φ(q, j))

|X+
q | · |X−

q |
, (4)

whereX+
q (X−

q ) is the set of relevant (irrelevant) songs forq,
the rankingy is encoded by

yij =

{

+1 i beforej in y

−1 i after j
,

and φ(q, i) is an auxiliary (matrix-valued) feature map that
encodes the relationship between the queryq and an individual
result i. Intuitively, ψ(q, y) decomposes the rankingy into
pairs (i, j) ∈ X+

q × X−
q , and computes a signed average of

pairwise differencesφ(q, i) − φ(q, j). If y placesi beforej
(i.e., correctly ordersi andj), the differenceφ(q, i)− φ(q, j)
is added toψ(q, y), and otherwise it is subtracted. Note that
under this definition ofψ, any two correct rankingsyq, y′q
have the same feature representation:ψ(q, yq) = ψ(q, y′q). It
therefore suffices to only encode a single correct rankingyq
for each queryq to construct margin constraints (Equation (3))
during optimization.

Sinceψ is linear in φ, the score also decomposes into a
signed average across pairs:

〈W,ψ(q, y)〉F =
∑

i∈X+
q

∑

j∈X−

q

yij
〈W,φ(q, i)〉F − 〈W,φ(q, j)〉F

|X+
q | · |X−

q |
.

(5)
This indicates that the score〈W,ψ(q, yq)〉F for a correct
rankingyq (the left-hand side of Equation (3)) will be larger
when the point-wise score〈W,φ(q, ·)〉F is high for relevant
points i, and low for irrelevant pointsj, i.e.,

∀i ∈ X+
q , j ∈ X−

q : 〈W,φ(q, i)〉F > 〈W,φ(q, j)〉F. (6)

Indeed, this will accumulate only positive terms in the score
computation in Equation (5), since a correct ranking ordersall
relevant resultsi before all irrelevant resultsj and, thus, each
yij in the summation will be positive. Similarly, for incorrect
rankingsy, point-wise scores satisfying Equation (6) will lead
to smaller scores〈W,ψ(q, y)〉F. Ideally, after training,W is
maximally aligned to correct rankingsyq (i.e., 〈W,ψ(q, yq)〉F

achieves large margin over scores〈W,ψ(q, y)〉F for incorrect
rankings) by (approximately) satisfying Equation (6). Conse-
quently, at test time (i.e., in the absence of a correct ranking
yq), the ranking for a queryq is predicted by sortingi ∈ X
in descending order of point-wise score〈W,φ(q, i)〉F [24].

This motivates the choice ofφ used by MLR:

φ(q, i) = −(q − i)(q − i)T, (7)

which upon taking an inner product withW , yields the
negative, squared distance betweenq and i underW :

〈W,φ(q, i)〉F = − tr
(

W (q − i)(q − i)T
)

(8)

= −(q − i)TW (q − i)

= −‖q − i‖2W .

Descending point-wise score〈W,φ(q, i)〉F therefore corre-
sponds to increasing distance fromq. As a result, the ranking
predicted by descending score is equivalent to that predicted
by increasing distance fromq, which is precisely the ranking
of interest for query-by-example recommendation.

The MLR optimization problem is listed as Algorithm 1.
As in support vector machines [29], the objective consists of
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Algorithm 1 Metric learning to rank [14]

Input: dataX = {q1, q2, . . . , qn} ⊂ R
d,

correct rankings{yq : q ∈ X},
slack trade-offC > 0

Output: d× d matrixW � 0

min
W�0,ξ

tr(W ) + C ·
1

n

∑

q∈X

ξq

s. t. ∀q ∈ X , ∀y ∈ Y :

〈W,ψ(q, yq)〉F ≥ 〈W,ψ(q, y)〉F +∆(yq, y)− ξq

two competing terms: a regularization termtr(W ), which is
a convex approximation to the rank of the learned metric, and
1/n

∑

ξq provides a convex upper bound on the empirical
training loss∆, and the two terms are balanced by a trade-
off parameterC. Although the full problem includes a super-
exponential number of constraints (one for eachy ∈ Y, for
eachq), it can be approximated by cutting plane optimization
techniques [14], [30].

III. A UDIO REPRESENTATION

In order to compactly summarize audio signals, we rep-
resent each song as a histogram over a dictionary of tim-
bral codewords. This general strategy has been successful
in computer vision applications [31], as well as audio and
music classification [32]–[34]. As a first step, acodebookis
constructed by clustering a large collection of feature descrip-
tors (Section III-A). Once the codebook has been constructed,
each song is summarized by aggregating vector quantization
(VQ) representations across all frames in the song, resulting
in codeword histograms(Section III-B). Finally, histograms
are represented in a non-linear kernel space to facilitate better
learning with MLR (Section III-C).

A. Codebook training

Our general approach to constructing a codebook for vector
quantization is to aggregate audio feature descriptors from a
large pool of songs into a single bag-of-features, which is then
clustered to produce the codebook.

For each songx in the codebook training setXC — which
may generally be distinct from the MLR training setX —
we compute the first 13 Mel frequency cepstral coefficients
(MFCCs) [35] from each half-overlapping 23ms frame. From
the time series of MFCC vectors, we compute the first and sec-
ond instantaneous derivatives, which are concatenated to form
a sequence of 39-dimensional dynamic MFCC (∆MFCC)
vectors [36]. These descriptors are then aggregated acrossall
x ∈ XC to form an unordered bag of featuresZ.

To correct for changes in scale across different∆MFCC
dimensions, each vectorz ∈ Z is normalized according to
the sample meanµ ∈ R

39 and standard deviationσ ∈ R
39

estimated fromZ. The ith coordinatez[i] is mapped by

z[i] 7→
z[i]− µ[i]

σ[i]
. (9)

+

+

+

+

Fig. 3. Two close data pointsx1, x2 (+) and the Voronoi partition for three
VQ codewordsv1, v2, v3 (�). Left: hard VQ (τ = 1) assigns similar data
points to dissimilar histograms. Right: assigning each data point to its top
τ = 2 codewords reduces noise in codeword histogram representations.

The normalized∆MFCC vectors are then clustered into a set
V of |V| codewords by k-means (specifically, an online variant
of Hartigan’s method [37]).

B. (Top-τ ) Vector quantization

Once the codebookV has been constructed, a songx is
represented as a histogramhx over the codewords inV . This
proceeds in three steps: 1) a bag-of-features is computed from
x’s ∆MFCCs, denoted asx = {xi} ⊂ R

39; 2) eachxi ∈
x is normalized according to Equation (9); 3) the codeword
histogram is constructed by counting the frequency with which
each codewordv ∈ V quantizes an element ofx:2

hx[v] =
1

|x|

∑

xi∈x

1

[

v = argmin
u∈V

‖xi − u‖

]

. (10)

Codeword histograms are normalized by the number of frames
|x| in the song in order to ensure comparability between songs
of different lengths;hx may therefore be interpreted as a
multinomial distribution over codewords.

Equation (10) derives from the standard notion of vector
quantization (VQ), where each vector (e.g., data pointxi)
is replaced by its closest quantizer. However, VQ can be-
come unstable when a vector has multiple, (approximately)
equidistant quantizers (Figure 3, left), which is more likely to
happen as the size of the codebook increases. To counteract
quantization errors, we generalize Equation (10) to support
multiple quantizers for each vector.

For a vectorxi, a codebookV , and aquantization threshold
τ ∈ {1, 2, . . . , |V|}, we define the quantization set

argmin
u∈V

τ‖xi − u‖
.
= {u is a τ -nearest neighbor ofxi} .

Thetop-τ codeword histogram for a songx is then constructed
as

hτx[v] =
1

|x|

∑

xi∈x

1

τ
1

[

v ∈ argmin
u∈V

τ‖xi − u‖

]

. (11)

Intuitively, Equation (11) assigns1/τ mass to each of theτ
closest codewords for eachxi ∈ x (Figure 3, right). Note
that whenτ = 1, Equation (11) reduces to Equation (10).
The normalization by1/τ ensures that

∑

v h
τ
x[v] = 1, so

that for τ > 1, hτx retains its interpretation as a multinomial
distribution overV .

2To simplify notation, we denote byhx[v] the bin of histogramhx

corresponding to the codewordv ∈ V . Codewords are assumed to be unique,
and the usage should be clear from context.
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C. Histogram representation and distance

After summarizing each songx by a codeword histogram
hτx, these histograms may be interpreted as vectors inR

|V|.
Subsequently, for a query songq, retrieval may be performed
by ordering x ∈ X according to increasing (Euclidean)
distance‖hτq − hτx‖. After optimizingW with Algorithm 1,
the same codeword histogram vectors may be used to perform
retrieval with respect to the learned metric‖hτq − hτx‖W .

However, treating codeword histograms directly as vec-
tors in a Euclidean space ignores the simplical structure
of multinomial distributions. To better exploit the geometry
of codeword histograms, we represent each histogram in a
probability product kernel(PPK) space [38]. Inner products in
this space can be computed by evaluating the corresponding
kernel functionk. For PPK space,k is defined as:

k(hτq , h
τ
x) =

∑

v∈V

√

hτq [v] · h
τ
x[v]. (12)

The PPK inner product in Equation (12) is equivalent to the
Bhattacharyya coefficient [39] betweenhτq and hτx. Conse-
quently, distance in PPK space induces the same rankings as
Hellinger distance between histograms.

Typically in kernel methods, data is represented implic-
itly in a (typically high-dimensional) Hilbert space via the
n × n matrix of inner products between training points,i.e.,
the kernel matrix [40]. This representation enables efficient
learning, even when the dimensionality of the kernel space is
much larger than the number of points (e.g., for histogram-
intersection kernels [41]) or infinite (e.g., radial basis func-
tions). The MLR algorithm has been extended to support
optimization of distances in such spaces by reformulating the
optimization in terms of the kernel matrix, and optimizing
an n × n matrix W � 0 [42]. While kernel MLR supports
optimization in arbitrary inner product spaces, it can be
difficult to scale up to large training sets (i.e., largen), which
may require some approximations,e.g., by restrictingW to be
diagonal.

However, for the present application, we can exploit the spe-
cific structure of the probability product kernel (on histograms)
and optimize distances in PPK space with complexity that de-
pends on|V| rather thann, thereby supporting larger training
sets. Note that PPK enables anexplicit representation of the
data according to a simple, coordinate-wise transformation:

hτx[v] 7→
√

hτx[v], (13)

which, sincek(hτx, h
τ
x) = 1 for all hτx, can be interpreted as

mapping the|V|-dimensional simplex to the|V|-dimensional
unit sphere. Training data may therefore be represented as a
|V| × n data matrix, rather than then × n kernel matrix. As
a result, we can equivalently apply Equation (13) to the data,
and learn a|V| × |V| matrix W with Algorithm 1, which is
more efficient than using kernel MLR when|V| < n, as is
often the case in our experiments.

IV. EXPERIMENTS

Our experiments are designed to simulate query-by-example
content-based retrieval of songs from a fixed database. Fig-
ure 4 illustrates the high-level experimental setup: training

Codebook 
training

Collaborative filter

Audio

Training data

Audio

Testing data

Similarity
estimation

Vector 
quantization

MLR

Retrieval
Recommendation 1
Recommendation 2
Recommendation 3
             ...

Fig. 4. Schematic diagram of training and retrieval. Here, “training data”
encompasses both the subset ofX used to train the metricW , and the
codebook setXC used to build the codebookV . While, in our experiments,
both sets are disjoint, in general, data used to build the codebook may also
be used to train the metric.

and evaluation are conducted with respect to collaborative
filter similarity (as described in Section II-A). In this section,
we describe the sources of collaborative filter and audio data,
experimental procedure, and competing methods against which
we compare.

A. Data

1) Collaborative filter: Last.FM: Our collaborative filter
data is provided by Last.fm3, and was collected by Celma [4,
chapter 3]. The data consists of a users-by-artists matrixF of
359,347 unique users and 186,642 unique, identifiable artists;
the entryF [ij] contains the number of times useri listened
to artist j. We binarize the matrix by thresholding at 10,i.e.,
a user must listen to an artist at least 10 times before we
consider the association meaningful.

2) Audio: CAL10K: For our audio data, we use the
CAL10K data set [43]. Starting from 10,832 songs by 4,661
unique artists, we first partition the set of artists into those
with at least 100 listeners in the binarized CF matrix (2015,
the experiment set), and those with fewer than 100 listeners
(2646, thecodebook set). We then restrict the CF matrix to
just those 2015 artists in the experiment set, with sufficiently
many listeners. From this restricted CF matrix, we compute
the artist-by-artist similarity matrix according to Equation (2).

Artists in the codebook set, with insufficiently many listen-
ers, are held out from the experiments in Section IV-B, but
their songs are used to construct four codebooks as described
in Section III-A. From each held out artist, we randomly
select one song, and extract a 5-second sequence of∆MFCC
vectors (431 half-overlapping 23ms frames at 22050Hz). These
samples are collected into a bag-of-features of approximately
1.1 million samples, which is randomly permuted, and clus-
tered via online k-means in a single pass to build four
codebooks of sizes|V| ∈ {256, 512, 1024, 2048}, respectively.

3http://www.last.fm/
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Training Validation Test
# Artists 806 604 605
# Songs 2122.3± 36.3 1589.3± 38.6 1607.5± 64.3
# Relevant 36.9± 16.4 36.4± 15.4 37.1± 16.0

TABLE I
STATISTICS OFCAL10K DATA , AVERAGED ACROSS TEN RANDOM

TRAINING /VALIDATION /TEST SPLITS. # RelevantIS THE AVERAGE NUMBER
OF RELEVANT SONGS FOR EACH TRAINING/VALIDATION /TEST SONG.

Cluster centers are initialized to the first (randomly selected)
k points. Note thatonly the artists from the codebook set (and
thus no artists from the experiment set) are used to construct
the codebooks. As a result, the previous four codebooks are
fixed throughout the experiments in the following section.

B. Procedure

For our experiments, we generate 10 random splits of
the experiment set of 2015 artists into 40% training, 30%
validation and 30% testartists4. For each split, the set of all
training artist songs forms thetraining set, which serves as
the database of “known” songs,X . For each split, and for
each (training/test/validation) artist, we then define therelevant
artist setas the top 10 most similartraining5 artists. Finally,
for any songq by artist i, we defineq’s relevant song set,
X+

q , as all songs by all artists ini’s relevant artist set. The
songs by all other training artists, not ini’s relevant artist set,
are collected intoX−

q , the set of irrelevant songs forq. The
statistics of the training, validation, and test splits arecollected
in Table I.

For each of the four codebooks, constructed in the pre-
vious section, each song was represented by a histogram
over codewords using Equation (11), withτ ∈ {1, 2, 4, 8}.
Codeword histograms were then mapped into PPK space by
Equation (13). For comparison purposes, we also experiment
with Euclidean distance and MLR on the raw codeword
histograms.

To train the distance metric with Algorithm 1, we varyC ∈
{10−2, 10−1, · · · , 109}. We experiment with three ranking
losses∆ for training: area under the ROC curve (AUC), which
captures global qualities of the ranking, but penalizes mistakes
equally regardless of their position in the ranking; normalized
discounted cumulative gain (NDCG), which applies larger
penalties to mistakes at the beginning of the ranking than at
the end, and is therefore more localized than AUC; and mean
reciprocal rank (MRR), which is determined by the position
of the first relevant result, and is therefore the most localized
ranking loss under consideration here. After learningW on the
training set, retrieval is evaluated on the validation set,and the
parameter setting(C,∆) which achieves highest AUC on the
validation set is then evaluated on the test set.

To evaluate a metricW , the training setX is ranked
according to distance from each test (validation) songq under

4Due to recording effects and our definition of similarity, itis crucial to
split at the level of artists rather than songs [44].

5Also for test and validation artists, we restrict the relevant artist set to the
training artists to mimic the realistic setting of retrieving “known” songs from
X , given an “unknown” (test/validation) query.

W , and we record the mean AUC of the rankings over all test
(validation) songs.

Prior to training with MLR, codeword histograms are com-
pressed via principal components analysis (PCA) to capture
95% of the variance as estimated on the training set. While
primarily done for computational efficiency, this step is similar
to the latent perceptual indexing method described by Sun-
daram and Narayanan [32], and may also be interpreted as
de-noising the codeword histogram representations. In prelim-
inary experiments, compression of codeword histograms was
not observed to significantly affect retrieval accuracy in either
the native or PPK spaces (without MLR optimization).

C. Comparisons

To evaluate the performance of the proposed system, we
compare to several alternative methods for content-based
query-by-example song retrieval: first, similarity derived from
comparing Gaussian mixture models of∆MFCCs; second, an
alternative (unsupervised) weighting of VQ codewords; and
third, a high-level, automatic semantic annotation method. We
also include a comparison to a manual semantic annotation
method (i.e., driven by human experts), which although not
content-based, can provide an estimate of an upper bound on
what can be achieved by content-based methods. For both
manual and automatic semantic annotations, we will also
compare to their MLR-optimized counterparts.

1) Gaussian mixtures:From each song, a Gaussian mix-
ture model (GMM) over its∆MFCCs was estimated via
expectation-maximization [45]. Each GMM consists of 8
components with diagonal covariance. The training setX is
therefore represented as a collection of GMM distributions
{px : x ∈ X}. This approach is fairly standard in music
information retrieval [6], [8], [46], and is intended to serve
as a baseline against which we can compare the proposed VQ
approach.

At test time, given a query songq, we first estimate its
GMM pq. We would then like to rank eachx ∈ X by
increasing Kullback-Leibler (KL) divergence [47] frompq:

D(pq‖px) =

∫

pq(z) log
pq(z)

px(z)
dz. (14)

However, we do not have a closed-form expression for KL di-
vergence between GMMs, so we must resort to approximate
methods. Several such approximation schemes have been
devised in recent years, including variational methods and
sampling approaches [48]. Here, we opt for the Monte Carlo
approximation:

D(pq‖px) ≈

m
∑

i=1

1

m
log

pq(zi)

px(zi)
, (15)

where {zi}
m
i=1 is a collection ofm independent samples

drawn frompq. Although the Monte Carlo approximation is
considerably slower than closed-form approximations (e.g.,
variational methods), with enough samples, it often exhibits
higher accuracy [46], [48]. Note that because we are only
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interested in the rank-ordering ofX givenpq, it is equivalent to
order eachpx ∈ X by increasing (approximate) cross-entropy:

H(pq, px) =

∫

pq(z) log
1

px(z)
dz ≈

m
∑

i=1

1

m
log

1

px(zi)
.

(16)
For efficiency purposes, for each queryq we fix the sample
{zi}

m
i=1 ∼ pq across allx ∈ X . We usem = 2048 samples

for each query, which was found to yield stable cross-entropy
estimates in an informal, preliminary experiment.

2) TF-IDF: The algorithm described in Section II-B is
a supervised approach to learning an optimal transformation
of feature descriptors (in this specific case, VQ histograms).
Alternatively, it is common to use the natural statistics of
the data in an unsupervised fashion to transform the feature
descriptors. As a baseline, we compare to the standard method
of combiningterm frequency–inverse document frequency(TF-
IDF) [49] representations with cosine similarity, which is
commonly used with both text [49] and codeword representa-
tions [50].

Given a codeword histogramhτq , for eachv ∈ V , hτq [v] is
mapped to its TF-IDF value by6

hτq [v] 7→ hτq [v] · IDF[v], (17)

where IDF[v] is computed from the statistics of the training
set by7

IDF[v] = log
|X |

|{x ∈ X : x[v] > 0}|
. (18)

Intuitively, IDF[v] assigns more weight to codewordsv which
appear in fewer songs, and reduces the importance of code-
words appearing in many songs. The training setX is ac-
cordingly represented by TF-IDF vectors. At test time, each
x ∈ X is ranked according to decreasing cosine-similarity to
the queryq:

cos(hτq , h
τ
x) =

hτq
Thτx

‖hτq‖ · ‖h
τ
x‖
. (19)

3) Automatic semantic tags:The proposed method relies
on low-level descriptors to assess similarity between songs.
Alternatively, similarity may be assessed by comparing high-
level content descriptors in the form ofsemantic tags. These
tags may include words to describe genre, instrumentation,
emotion,etc. Because semantic annotations may not be avail-
able for novel query songs, we restrict attention to algorithms
which automatically predict tags given only audio content.

In our experiments, we adapt the auto-tagging method
proposed by Turnbullet al. [51]. This method summarizes
each song by asemantic multinomial distribution(SMD) over
a vocabulary of 149 tag words. Each tagt is characterized
by a GMM pt over ∆MFCC vectors, each of which was
trained previously on the CAL500 data set [52]. A songq

6Since codeword histograms are pre-normalized, there is no need to re-
compute the term frequency in Equation (17).

7To avoid division by 0, we define IDF[v] = 0 for any codewordv which
is not used in the training set.

is summarized by a multinomial distributionsq, where thetth

entry is computed by the geometric mean of the likelihood of
q’s ∆MFCC vectorsqi underpt:

sq[t] ∝

(

∏

qi∈q

pt(qi)

)1/|q|

. (20)

(Each SMDsq is normalized to sum to 1.) The training set
X is thus described as a collection of SMDs{sx : x ∈ X}.
At test time,X is ranked according to increasing distance
from the test query under the probability product kernel8

as described in Section III-C. This representation is also
amenable to optimization by MLR, and we will compare to
retrieval performance after optimizing PPK representations of
SMDs with MLR.

4) Human tags:Our final comparison uses semantic anno-
tations manually produced by humans, and may therefore be
interpreted as an upper bound on how well we may expect
content-based methods to perform. Each song in CAL10K
includes a partially observed, binary annotation vector over
a vocabulary of 1053 tags from the Music Genome Project9.
The annotation vectors areweakin the sense that a 1 indicates
that the tag applies, while a 0 indicates only that the tagmay
not apply.

In our experiments, we observed the best performance by
using cosine similarity as the retrieval function, although we
also tested TF-IDF and Euclidean distances. As in the auto-tag
case, we will also compare to tag vectors after optimization
by MLR. When training with MLR, annotation vectors were
compressed via PCA to capture 95% of the training set
variance.

V. RESULTS

Vector quantization

In a first series of experiments, we evaluate various ap-
proaches and configurations based on VQ codeword his-
tograms. Figure 5 lists the AUC achieved by four different
approaches (Native, TF-IDF, MLR, PPK-MLR), based on VQ
codeword histograms, for each of four codebook sizes and
each of four quantization thresholds. We observe that using
Euclidean distance on raw codeword histograms10 (Native)
yields significantly higher performance for codebooks of in-
termediate size (512 or 1024) than for small (256) or large
(2048) codebooks. For the 1024 codebook, increasingτ results
in significant gains in performance, but it does not exceed the
performance for the 512 codebook. The decrease in accuracy
for |V| = 2048 suggests that performance is indeed sensitive
to overly large codebooks.

After learning an optimal distance metric with MLR on raw
histograms (i.e., not PPK representations) (MLR), we observe

8We also experimented withχ2-distance,ℓ1, Euclidean, and (symmetrized)
KL divergence, but PPK distance was always statistically equivalent to the
best-performing distance.

9http://www.pandora.com/mgp.shtml
10For clarity, we omit the performance curves for native Euclidean distance

on PPK representations, as they do not differ significantly from the Native
curves shown.
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Fig. 5. Retrieval accuracy with vector quantized∆MFCC represen-
tations. Each grouping corresponds to a different codebooksize |V| ∈
{256, 512, 1024, 2048}. Each point within a group corresponds to a different
quantization thresholdτ ∈ {1, 2, 4, 8}. TF-IDF refers to cosine similarity
applied to IDF-weighted VQ histograms;Native refers to Euclidean distance
on unweighted VQ histograms;MLR refers to VQ histograms after optimiza-
tion by MLR; PPK MLR refers to distances after mapping VQ histograms
into probability product kernel space and subsequently optimizing with MLR.
Error bars correspond to one standard deviation across trials.

two interesting effects. First, MLR optimization always yields
significantly better performance than the native Euclidean
distance. Second, performance is much less sensitive to the
choice of codebook size and quantization threshold: all settings
of τ for codebooks of size at least|V| ≥ 512 achieve
statistically equivalent performance.

Finally, we observe the highest performance by combining
the PPK representation with MLR optimization (PPK-MLR).
For |V| = 1024, τ = 1, the mean AUC score improves from
0.680 ± 0.006 (Native) to 0.808 ± 0.005 (PPK-MLR). The
effects of codebook size and quantization threshold are dimin-
ished by MLR optimization, although they are slightly more
pronounced than in the previous case without PPK. We may
then ask: does top-τ VQ provide any benefit?

Figure 6 lists the effective dimensionality — the number
of principal components necessary to capture 95% of the
training set’s variance — of codeword histograms in PPK
space as a function of quantization thresholdτ . Although
for the best-performing codebook size|V| = 1024, each of
τ ∈ {1, 2, 4} achieves statistically equivalent performance,
the effective dimensionality varies from253.1 ± 6.0 (τ = 1)
to 106.6 ± 3.3 (τ = 4). Thus, top-τ VQ can be applied to
dramatically reduce the dimensionality of VQ representations,
which in turn reduces the number of parameters learned by
MLR, and therefore improves the efficiency of learning and
retrieval, without significantly degrading performance.

Qualitative results

Figure 7 illustrates an example optimized similarity space
produced by MLR on PPK histogram representations, as
visualized in two dimensions by t-SNE [53]. Even though the
algorithm is never exposed to any explicit semantic informa-
tion, the optimized space does exhibit regions which seem to
capture intuitive notions of genre, such aship-hop, metal, and
classical.

Table II illustrates a few example queries and their top-
5 closest results under the Euclidean and MLR-optimized
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Fig. 6. Theeffective dimensionalityof codeword histograms in PPK space,
i.e., the number of principal components necessary to capture 95% of the
training set’s variance, as a function of the quantization thresholdτ . (The
results reported in the figure are the average effective dimension ± one
standard deviation across trials.)

metric. The native space seems to capture similarities due to
energy and instrumentation, but does not necessarily matchCF
similarity. The optimized space captures aspects of the audio
data which correspond to CF similarity, and produces playlists
with more relevant results.

Comparison

Figure 5 lists the accuracy achieved by using TF-IDF
weighting on codeword histograms. For all VQ configurations
(i.e., for each codebook size and quantization threshold) TF-
IDF significantly degrades performance compared to MLR-
based methods, which indicates that inverse document fre-
quency may not be as an accurate predictor of salience in
codeword histograms as in natural language [49].

Figure 8 shows the performance of all other methods
against which we compare. First, we observe thatraw SMD
representations provide more accurate retrieval than boththe
GMM approach andraw VQ codeword histograms (i.e., prior
to optimization by MLR). This may be expected, as previous
studies have demonstrated superior query-by-example retrieval
performance when using semantic representations of multime-
dia data [54], [55].

Moreover, SMD and VQ can be optimized by MLR to
achieve significantly higher performance than raw SMD and
VQ, respectively. The semantic representations in SMD com-
press the original audio content to a small set of descriptive
terms, at a higher level of abstraction. In raw form, this
representation provides a more robust set of features, which
improves recommendation performance compared to matching
low-level content features that are often noisier. On the other
hand, semantic representations are inherently limited by the
choice of vocabulary and may prematurely discard important
discriminative information (e.g., subtle distinctions within sub-
genres). This renders them less attractive as starting point
for a metric learning algorithm like MLR, compared to less-
compressed (but possibly noisier) representations, like VQ.
Indeed, the latter may retain more information for MLR to
learn an appropriate similarity function. This is confirmedby
our experiments: MLR improves VQ significantly more than
it does for SMD. As a result, MLR-VQ outperforms all other
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Sibelius, Jean −Symphony No. 1 In E Mi

Sibelius, Jean −Symphony No. 5 In E Flat Ma

Sibelius, Jean −Symphony No. 6 In D Minor, Op

(from Kuolema), Op. 44?1
belius, Jean −Violin Concerto in D minor, Op. 47

Telemann, Georg Philipp −Concerto For 2 Horns

der, Strings & Continuo In C Major, TWV 51?C1

WV40?101
e No. 5), TWV40?105

Wagner, Richard −Lohengrin, Opera, W

Williams, John −Star Wars, Episode V? The

Fig. 7. A t-SNE visualization of the optimized similarity space produced by PPK+MLR on one training/test split of the data (|V| = 1024, τ = 1). Close-ups
on three peripheral regions revealhip-hop (upper-right),metal (lower-left), andclassical (lower-right) genres.

Test query VQ (Native) VQ (PPK+MLR)

Ornette Coleman - Africa is the Mirror of
All Colors

Judas Priest - You’ve Got Another Thing Comin’ Wynton Marsalis - Caravan
Def Leppard - Rock of Ages ◮Dizzy Gillespie - Dizzy’s Blues
KC & The Sunshine Band - Give it Up ◮Michael Brecker - Two Blocks from the Edge
Wynton Marsalis - Caravan ◮Eric Dolphy - Miss Ann (live)
Ringo Starr - It Don’t Come Easy Ramsey Lewis - Here Comes Santa Claus

Fats Waller - Winter Weather

◮Dizzy Gillespie - She’s Funny that Way Chet Atkins - In the Mood
Enrique Morente - Solea ◮Charlie Parker - What Is This Thing Called Love?
Chet Atkins - In the Mood ◮Bud Powell - Oblivion
Rachmaninov - Piano Concerto #4 in Gmin ◮Bob Wills & His Texas Playboys - Lyla Lou
Eluvium - Radio Ballet ◮Bob Wills & His Texas Playboys - Sittin’ On Top

Of The World

The Ramones - Go Mental

Def Leppard - Promises ◮The Buzzcocks - Harmony In My Head
◮The Buzzcocks - Harmony In My Head Motley Crue - Same Ol’ Situation

Los Lonely Boys - Roses ◮The Offspring - Gotta Get Away
Wolfmother - Colossal ◮The Misfits - Skulls
Judas Priest - Diamonds and Rust (live) ◮AC/DC - Who Made Who (live)

TABLE II
EXAMPLE PLAYLISTS GENERATED BY 5-NEAREST(TRAINING) NEIGHBORS OF THREE DIFFERENT QUERY(TEST) SONGS(LEFT) USING EUCLIDEAN

DISTANCE ON RAW CODEWORD HISTOGRAMS(CENTER) AND MLR-OPTIMIZED PPKDISTANCES(RIGHT). RELEVANT RESULTS ARE INDICATED BY◮.

content-based methods in our experiments.

Finally, we provide an estimate of an upper bound on
what can be achieved by automatic, content-based methods,
by evaluating the retrieval performance when using manual
annotations (Tag in Figure 8): 0.834 ± 0.005 with cosine
similarity, and0.907± 0.008 with MLR-optimized similarity.
The improvement in accuracy for human tags, when using
MLR, indicates that even hand-crafted annotations can be
improved by learning an optimal distance over tag vectors. By
contrast, TF-IDF on human tag vectors decreases performance
to 0.771±0.004, indicating that IDF does not accurately model
(binary) tag salience. The gap in performance between content-
based methods and manual annotations suggests that there
is still room for improvement. Closing this gap may require

incorporating more complex features to capture rhythmic and
structural properties of music which are discarded by the
simple timbral descriptors used here.

VI. CONCLUSION

In this article, we have proposed a method for improving
content-based audio similarity by learning from a sample of
collaborative filter data. Collaborative filters form the basis of
state-of-the-art recommendation systems, but cannot directly
form recommendations or answer queries for items which
have not yet been consumed or rated. By optimizing content-
based similarity from a collaborative filter, we provide a
simple mechanism for alleviating the cold-start problem and



SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 11

GMM

SMD

SMD MLR

VQ

VQ−PPK MLR

Tag cos

Tag MLR

0.65 0.7 0.75 0.8 0.85 0.9 0.95
AUC

 

 

Fig. 8. Comparison of VQ-based retrieval accuracy to competing methods.
VQ corresponds to a codebook of sizeV = 1024 with quantization
thresholdτ = 1. Tag-based methods (red) use human annotations, and are
not automatically derived from audio content. Error bars correspond to one
standard deviation across trials.

extending music recommendation to novel or less known
songs.

By using implicit feedback in the form of user listening
history, we can efficiently collect high-quality training data
without active user participation, and as a result, train onlarger
collections of music than would be practical with explicit
feedback or survey data. Our notion of similarity derives from
user activity in a bottom-up fashion, and obviates the need for
coarse simplifications such as genre or artist agreement.

Our proposed top-τ VQ audio representation enables effi-
cient and compact description of the acoustic content of music
data. Combining this audio representation with an optimized
distance metric yields similarity calculations which are both
efficient to compute and substantially more accurate than
competing content-based methods.

While in this work, our focus remains on music rec-
ommendation applications, the proposed methods are quite
general, and may apply to a wide variety of applications
involving content-based similarity, such as nearest-neighbor
classification of audio signals.

ACKNOWLEDGMENT

The authors acknowledge support from Qualcomm, Inc,
eHarmony, Inc., Yahoo! Inc., and NSF Grants CCF-0830535
and IIS-1054960. This research was supported in part by the
UCSD FWGrid Project, NSF Research Infrastructure Grant
Number EIA-0303622.

REFERENCES

[1] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using
collaborative filtering to weave an information tapestry,”Commun.
ACM, vol. 35, pp. 61–70, December 1992. [Online]. Available:
http://doi.acm.org/10.1145/138859.138867

[2] L. Barrington, R. Oda, and G. Lanckriet, “Smarter than genius? Human
evaluation of music recommender systems,” inProceedings of the 10th
International Conference on Music Information Retrieval, 2009.

[3] J. H. Kim, B. Tomasik, and D. Turnbull, “Using artist similarity to prop-
agate semantic information,” inProceedings of the 10th International
Conference on Music Information Retrieval, 2009.

[4] O. Celma, Music Recommendation and Discovery in the Long Tail.
Springer, 2010.

[5] B. Logan and A. Salomon, “A music similarity function based on signal
analysis,” Multimedia and Expo, IEEE International Conference on,
vol. 0, p. 190, 2001.

[6] J.-J. Aucouturier and F. Pachet, “Music similarity measures: What’s
the use?” inInernational Symposium on Music Information Retrieval
(ISMIR2002), 2002, pp. 157–163.

[7] D. Ellis, B. Whitman, A. Berenzweig, and S. Lawrence, “The quest for
ground truth in musical artist similarity,” inProeedings of the Inter-
national Symposium on Music Information Retrieval (ISMIR), October
2002, pp. 170–177.

[8] A. Berenzweig, B. Logan, D. P. Ellis, and B. Whitman, “A large-
scale evaluation of acoustic and subjective music-similarity measures,”
Computer Music Journal, vol. 28, no. 2, pp. 63–76, 2004.

[9] M. Slaney, K. Weinberger, and W. White, “Learning a metric for music
similarity,” in International Symposium on Music Information Retrieval
(ISMIR2008), September 2008, pp. 313–318.

[10] B. McFee and G. Lanckriet, “Learning multi-modal similarity,” Journal
of Machine Learning Research, vol. 12, pp. 491–523, February 2011.

[11] M. Slaney and W. White, “Similarity based on rating data,” in Interna-
tional Symposium on Music Information Retrieval (ISMIR2007), 2007,
pp. 479–484.

[12] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. Okuno, “An efficient
hybrid music recommender system using an incrementally trainable
probabilistic generative model,”IEEE Transactions on Audio, Speech,
and Language Processing, vol. 16, no. 2, pp. 435–447, 2008.

[13] R. Stenzel and T. Kamps, “Improving content-based similarity measures
by training a collaborative model,” inInternational Symposium on Music
Information Retrieval (ISMIR2005), 2005, pp. 264–271.

[14] B. McFee and G. Lanckriet, “Metric learning to rank,” inProceedings of
the 27th annual International Conference on Machine Learning (ICML),
J. Fürnkranz and T. Joachims, Eds., Haifa, Israel, June 2010, pp. 775–
782.

[15] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based
collaborative filtering recommendation algorithms,” inProceedings of
the 10th international conference on World Wide Web, ser. WWW ’01.
New York, NY, USA: ACM, 2001, pp. 285–295. [Online]. Available:
http://doi.acm.org/10.1145/371920.372071

[16] M. Deshpande and G. Karypis, “Item-based top-n recommendation
algorithms,”ACM Trans. Inf. Syst., vol. 22, pp. 143–177, January 2004.
[Online]. Available: http://doi.acm.org/10.1145/963770.963776

[17] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” inData Mining, 2008. ICDM ’08. Eighth IEEE
International Conference on, 2008, pp. 263 –272.

[18] P. Jaccard, “́Etude comparative de la distribution florale dans une portion
des Alpes et des Jura,”Bulletin del la Société Vaudoise des Sciences
Naturelles, vol. 37, pp. 547–579, 1901.

[19] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance met-
ric learning, with application to clustering with side-information,” in
Advances in Neural Information Processing Systems 15. Cambridge,
MA: MIT Press, 2003, pp. 505–512.

[20] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning
for large margin nearest neighbor classification,” inAdvances in Neural
Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt,
Eds. Cambridge, MA: MIT Press, 2006, pp. 451–458.

[21] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon,
“Information-theoretic metric learning,” inProceedings of the 24th
international conference on Machine learning, ser. ICML ’07. New
York, NY, USA: ACM, 2007, pp. 209–216. [Online]. Available:
http://doi.acm.org/10.1145/1273496.1273523

[22] J. P. Egan,Signal detection theory and ROC analysis, ser. Series in
Cognition and Perception. New York, NY: Academic Press, 1975.

[23] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin
methods for structured and interdependent output variables,” J. Mach.
Learn. Res., vol. 6, pp. 1453–1484, 2005.

[24] T. Joachims, “A support vector method for multivariateperformance
measures,” inProceedings of the 22nd international conference on
Machine learning. New York, NY, USA: ACM, 2005, pp. 377–384.

[25] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector
method for optimizing average precision,” inSIGIR ’07: Proceedings
of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval. New York, NY, USA: ACM,
2007, pp. 271–278.

[26] S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya, “Struc-
tured learning for non-smooth ranking losses,” inKDD ’08: Proceeding
of the 14th ACM SIGKDD international conference on Knowledge



12 JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

discovery and data mining. New York, NY, USA: ACM, 2008, pp.
88–96.

[27] E. M. Voorhees, “Overview of the trec 2001 question answering track,”
in In Proceedings of the Tenth Text REtrieval Conference (TREC), 2001,
pp. 42–51.
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