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Separation
Nikolaos Mitianoudis, Senior Member, IEEE,

Abstract—Directional or Circular statistics are pertaining to
the analysis and interpretation of directions or rotations. In
this work, a novel probability distribution is proposed to model
multidimensional sparse directional data. The Generalised Di-
rectional Laplacian Distribution (DLD) is a hybrid between the
Laplacian distribution and the von Mises-Fisher distribution.
The distribution’s parameters are estimated using Maximum-
Likelihood Estimation over a set of training data points. Mix-
tures of Directional Laplacian Distributions (MDLD) are also
introduced in order to model multiple concentrations of sparse
directional data. The author explores the application of the
derived DLD mixture model to cluster sound sources that exist in
an underdetermined instantaneous sound mixture. The proposed
model can solve the general K × L (K < L) underdetermined
instantaneous source separation problem, offering a fast and
stable solution.

Index Terms—Directional statistics, Sparse models, Gener-
alised Directional Laplacian Density, Underdetermined Source
Separation

I. INTRODUCTION

A
NGLES, rotations, months and days fall into the same

category commonly known as circular or directional

data, since they can be represented by points on the surface

of the unit p-dimensional sphere [1]. Circular Statistics is the

branch of statistics that addresses the modeling and inference

from circular data, i.e. data with rotating values. To model

directional data, one can generate many interesting circular

models from known probability distributions by either wrap-

ping a linear distribution around the unit circle or transforming

a bivariate linear r.v. to its directional component [1]. However,

there exist distributions that are periodic by definition and can

therefore offer closed-form models for circular or directional

data.

The von Mises distribution (also known as the circular

normal distribution) is a continuous probability distribution

on the unit circle [1], [2]. It may be considered the circular

equivalent of the normal distribution and is defined by:

p(θ) =
ek cos(θ−m)

2πI0(k)
, ∀ θ ∈ [0, 2π) (1)

where I0(k) is the modified Bessel function of the first kind

of order 0, m is the mean and k > 0 describes the “width”
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of the distribution. Recently, Gattoa and Jammalamadaka [3]

proposed a “Generalized von Mises” (GvM) distribution in the

form of p(θ) ∝ ek1 cos(θ−m1)+k2 sin(θ−m2), offering symmet-

ric, asymmetric, unimodal or bimodal varieties of the original

von Mises distribution.

A generalisation of the previous density is the p-D von

Mises-Fisher distribution [4], [5]. A p-dimensional unit ran-

dom vector x (||x|| = 1) follows a von Mises-Fisher distribu-

tion, if its probability density function is described by:

p(x) ∝ ekmT
x , ∀||x|| ∈ Sp−1 (2)

where ||m|| = 1 defines the centre, k ≥ 0 and Sp−1 is

the p dimensional unit hypersphere. Since the random vector

x resides on the surface of a p-D unit-sphere, x essentially

describes directional data. In the case of p = 2, x models data

that exist on the unit circle and thus can be described only

by an angle. In this case, the von Mises-Fisher distribution is

reduced to the von-Mises distribution of (1). The von Mises-

Fisher distribution has been extensively studied and many

methods have been proposed to fit the distribution or its

mixtures to normally distributed circular data [1], [4]–[6].

This study proposes a novel distribution to model directional

sparse data. Sparsity is mainly used to describe data that

are mostly close to their mean value with the exception of

several outlying values. There are several sparse models that

have been proposed for linear sparse data [7]. The Laplacian

distribution p(x) ∝ ek|x−m| appears to be a strong candidate

in modelling sparse data [7], [8]. In [9], Eltoft et al proposed

a multidimensional extension of the Laplacian distribution for

p-D random variables with infinite support and provided pa-

rameter estimation algorithms for the proposed distribution and

its mixtures. In [10], Kotz et al provided a multidimensional

asymmetric model for the Laplacian distribution, which is a

generalization of the previous approach again for p-D random

variables with infinite support. There were several attempts to

model circular sparse signals by wrapping an 1-D or multidi-

mensional Laplace distributions of infinite support [11]–[13].

The density wrapping solution is reported to have increased

computational cost, as it is equivalent to using mixture models

(the periodic repetition of a density function is equivalent

to a mixture of density functions) [14]. Building from the

original von Mises-Fisher distribution, this work proposes

a Generalised Directional Laplacian Distribution (DLD) as

a direct modelling solution for multidimensional directional

sparse data. The Maximum Likelihood estimates (MLE) of

http://arxiv.org/abs/1708.04816v1
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the model’s parameters are derived, along with an Expectation-

Maximisation (EM) algorithm that estimates the parameters of

a Mixture of Directional Laplacian Distributions (MDLD).

One application where directional statistical modelling is

essential is Underdetermined Audio Blind Source Separa-

tion (BSS) [7], [13]–[17]. Assume that a set of K sensors

x(n) = [x1(n), . . . , xK(n)]T observes a set of L (K < L)
sound sources s(n) = [s1(n), . . . , sL(n)]

T . The instantaneous

(anechoic) mixing model can be expressed in mathematical

terms, by

x(n) = As(n) (3)

where A represents a K ×L mixing matrix and n the sample

index. Blind source separation algorithms provide an estimate

of the source signals s and the mixing matrix A, based on

the observed microphone signals and some general statistical

source profile. A variety of solutions exist for the complete

instantaneous case (K = L) providing hiqh-quality separation

(for more information, please refer to [18]–[20]). The underde-

termined instantaneous case is more challenging, since in this

case, the estimation of the mixing matrix A is not sufficient for

the estimation of the source signals s [13]. The two-channel

(K = 2) BSS scenario has been examined in detail in the

past [7], [13], [15]–[17]. In this particular case, the source

separation problem is reduced to an angular clustering problem

of sparse data, as initially introduced by Hyvärinen [15] and

Zibulevsky et al [16]. O’Grady and Pearlmutter [21] proposed

an algorithm to perform separation via Oriented Lines Separa-

tion (LOST) using clustering along lines in a similar manner to

Hyvärinen [15]. Davies and Mitianoudis [22] employed two-

state Gaussian Mixture Models (GMM) to model the source

densities in a sparse representation and also the possible addi-

tive noise. In [14], the authors introduced Laplacian Mixture

Models to perform angular clustering of sparse sources. To

tackle the angular wrapping at π, the authors also examined the

use of Wrapped Laplacian Mixtures (MoWL) [13]. However,

the last two efforts do not offer a closed form solution to the

problem and they can not be easily expanded to more than

two sensors. Recently, Arberet et al [23] proposed a method

to count and locate sources in underdetermined mixtures.

Their approach is based on the hypothesis that in localised

neighbourhoods around some time-frequency points (t, f) (in

the Short-Time Fourier Transform (STFT) representation) only

one source essentially contributes to the mixture. Thus, they

estimate the most dominant source (the Estimated Steering

Vector) and a local confidence Measure which increases where

a single component is only present. A clustering approach

merges the above information and estimates the mixing matrix

A. In [24], Vincent et al used local Gaussian Modelling

of minimal constrained variance of the local time-frequency

neighbours assuming knowledge of the mixing matrix A. The

candidate sources’ variances are estimated after minimising the

Kullback-Leibler (KL) divergence between the empirical and

expected mixture covariances, assuming that at maximum 3

sources contribute to each time-frequency neighbourhood and

the sources are derived using Wiener filtering. There are also a

number of source separation approaches that attempt to solve

the convolutive underdetermined source separation problem. In

this setup, the sound sources are recorded in a room and the

elements of the mixing matrix A are replaced by FIR filters

modelling the impulse responses between each source and

microphone. Sawada et al [25]–[27], Winter et al [28], Duong

et al [29] and many other researchers have proposed a variety

of algorithms that can tackle the convolutive mixture problem;

however, these approaches go beyond the scope of this paper,

which is instantaneous underdetermined source separation.

This study extends previous work by Mitianoudis and

Stathaki [13], [14]. The proposed multidimensional DLD

model offers a closed form solution to the modelling of

directional sparse data and can also address the general K×L
underdetermined source separation problem, which is rarely

tackled in the literature. In addition, the proposed model

is more computationally efficient compared to the warped

laplacian solution in [14]. The derived MLE algorithms are

tested with several synthetic modelling experiments and real

audio BSS examples and are compared with the solution of

Vincent et al [24] that can address the general multichannel

problem.

II. A GENERALISED DIRECTIONAL LAPLACIAN MODEL

A. Definition

Assume a r.v. θ modelling directional data with π-

periodicity. The periodicity of the density function can be

amended to reflect a “fully circular” phenomenon (2π), how-

ever, for the rest of the paper we will assume that θ ∈ [0, π),
since it is required by the source separation application. From

the definition of the von-Mises distribution in (1), one can

create a Laplacian structure simply by introducing a | · |
operator in the superscript of the exponential. This action

introduces a large concentration around the mean, which is

needed to describe a sparse or Laplacian density. Values far

away from the mean are smoothed out by the exponential.

Additionally, we have to perform some minor amendments

to the phase shift and also invert the distribution in order to

impose the desired shape on the derived density.

Definition 1. The following probability density function mod-

els directional Laplacian data over [0, π) and is termed Direc-

tional Laplacian Density (DLD):

p(θ) = c(k)e−k| sin(θ−m)| , ∀ θ ∈ [0, π) (4)

where m ∈ [0, π) defines the mean, k > 0 defines the width

(“approximate variance”) of the distribution, c(k) = 1
πI0(k)

and I0(k) =
1
π

∫ π

0 e−k sin θdθ.

The normalisation coefficient c(k) = 1/πI0(k) is derived

from the fundamental normalisation property of probability

density functions [30]. Examples of (4) and more details on

the special 1D DLD case can be found in [30].

The next step is to derive a generalised definition for the

Directional Laplacian model. To generalise the concept of 1D

DLD in the p-dimensional space, we will be inspired by the p-

D von Mises-Fisher distribution [4], [5]. The von Mises-Fisher

distribution is described by p(x) ∝ ekm
T
x (see (2)). Since

||x|| = ||m|| = 1, the inner product mT
x = cosψ, where ψ

is the angle between the two vectors x and m. Following a
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Fig. 1. The proposed Generalised Directional Laplacian Distribution for k =
5 and p = 3.

similar methodology to the 1D-DLD, we need to formulate

the term −k| sinψ| in the superscript of the exponential.

It is straightfoward to derive | sinψ| =
√

1− cos2 ψ =
√

1− (mTx)2. Thus, the superscript of the generalised DLD

can be given by −k
√

1− (mTx)2.

Definition 2. The following probability density function mod-

els p-D directional Laplacian data and is termed Generalised

Directional Laplacian Distribution (DLD):

p(x) = cp(k)e
−k
√

1−(mTx)2 , ∀ ||x|| ∈ Sp−1 (5)

where m defines the mean, k ≥ 0 defines the width (“ap-

proximate variance”) of the distribution, cp(k) =
Γ( p−1

2
)

π
p+1

2 Ip−2(k)
,

Ip(k) = 1
π

∫ π

0 e−k sin θ sinp θdθ and Γ(·) represents the

Gamma function1.

The normalisation coefficient cp(k) is calculated in Ap-

pendix A. In the case of p = 2, the generalised DLD is reduced

to the one dimensional DLD of (4), verifying the validity

of the above model. The generalised DLD density models

“directional” data on the half-unit p-D sphere, however, it

can be extended to the unit p-D sphere, depending on the

specifications of the application. In Figure 1, an example of

the generalised DLD is depicted for p = 3 and k = 5.

The centre m is calculated using spherical coordinates m =
[cos θ1 cos θ2; cos θ1 sin θ2; sin θ1] for θ1 = 0.2 and θ2 = 2.

B. Generalised Directional Laplacian Density samples gener-

ation

To generate 1D Directional Laplacian data, we employed the

inversion of the cumulative distribution method [31]. Inversion

1Note that for n positive integer, we have that Γ(n) = (n− 1)!

methods are based on the observation that continuous cumu-

lative distribution functions (cdf) range uniformly over the

interval (0, 1). Since the proposed density is bound between

[0, π), we can evaluate the cdf of the Directional Laplacian

density with uniform sampling at [0, π) and approximate the

inverse mapping using spline interpolation. Thus, uniform

random data in the interval (0, 1) can be transformed to 1D

Directional Laplacian random samples, using the described

inverse mapping procedure.

To simulate 2-D Directional Laplacian random data (p = 3),

we sampled the 2-D density function for specific m, k.

The bounded value space (θ1, θ2 ∈ [0, π)) is quantised into

small rectangular blocks, where the density is assumed to

be uniform. Consequently, we generate a number of uniform

random samples for each block. The number of samples gen-

erated from each block is different and defined by the overall

DL density. The required 3-D unit-norm random vectors are

produced using spherical coordinates with unit distance and

angles θ1, θ2 from the random 2-D Directional data. The

above procedure can be extended for the generation of p-D

directional data.

C. Maximum Likelihood Estimation of parameters m, k

Assume a population of p-dimensional angular data X =
{x1, . . . ,xn, . . . ,xN} that follow a p-dimensional Directional

Laplacian Distribution. To estimate the model parameters

using Maximum Likelihood Estimation (MLE), one can form

the log-likelihood and estimate the parameters m, k that max-

imise it. For the Generalised DLD density, the log-likelihood

function can be expressed, as follows:

J(X,m, k) = N log
Γ(p−1

2 )

π
p+1

2 Ip−2(k)
− k

N
∑

n=1

√

1− (mTxn)2

(6)

Alternate optimisation is performed to estimate m and k. The

gradients of J along m and k are calculated in Appendix

B. The update for m is given by gradient ascent on the log-

likelihood via:

m
+ ←m+ η

N
∑

n=1

m
T
xn

√

1− (mTxn)2
xn (7)

m
+ ←m

+/||m+|| (8)

where η defines the gradient step size. Since the gradient step

does not guarantee that the new update for m will remain on

the surface of Sp−1, we normalise the new update to unit

norm. To estimate k, a numerical solution to the equation

∂J(X,m, k)/∂k = 0 is estimated. From the analysis in

Appendix B, we have that

Ip−1(k)

Ip−2(k)
=

1

N

N
∑

n=1

√

1− (mTxn)2 (9)

To calculate k analytically from the ratio Ip−1(k)/Ip−2(k)
is not straightforward. However, after numerical evaluation,

it can be demonstrated that the ratio Ip−1(k)/Ip−2(k) is a

smooth monotonic 1− 1 function of k. In Figure 2, the ratio

Ip−1(k)/Ip−2(k) is estimated for uniformly sampled values of
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Fig. 2. The ratio Ip(k)/Ip−1(k) is a monotonic 1− 1 function of k.

k ∈ [0.01, 30] and p = 2, 3, 4. Since this ratio is not dependent

on data, one can create a look-up table for a variety of k values

and use interpolation to estimate k from an arbitrary value of

Ip−1(k)/Ip−2(k). This look-up table solution is more efficient

compared to possible iterative estimation approaches of k and

generally accelerates the model’s training.

D. Mixtures of Generalised Directional Laplacians

One can employ Mixtures of Generalised Directional Lapla-

cians (MDLD) in order to model multiple concentrations of

directional generalised “heavy-tailed signals”.

Definition 3. Mixtures of Generalised Directional Laplacian

Distributions are defined by the following pdf:

p(x) =

K
∑

i=1

aicp(ki)e
−ki

√
1−(mT

i
x)2 , ∀ ||x|| ∈ Sp−1 (10)

where ai denotes the weight of each distribution in the

mixture, K the number of DLDs used in the mixture and mi,

ki denote the mean and the “width” (approximate variance) of

each distribution.

The mixtures of DLD can be trained using the Expectation-

Maximisation (EM) algorithm. Following the previous analysis

in [13], [14], [32], one can yield the following simplified

likelihood function:

L(ai,mi, ki) = (11)

N
∑

n=1

K
∑

i=1

(

log
aiΓ(

p−1
2 )

π
p+1

2 Ip−2(k)
− k
√

1− (mTx)2

)

p(i|xn)

where p(i|xn) represents the probability of sample xn be-

longing to the ith Directional Laplacian of the mixture. In a

similar fashion to other mixture model estimation, the updates

for p(i|xn) and αi can be given by the following equations:

p(i|xn)←
aicp(ki)e

−ki

√
1−(mT

i
x)2

∑K

i=1 aicp(ki)e
−ki

√
1−(mT

i
x)2

(12)

ai ←
1

N

N
∑

n=1

p(i|xn) (13)

Based on the derivatives calculated in Appendix B, it is

straightforward to derive the following updates for mi and

ki, as follows:

m
+
i ←mi + η

N
∑

n=1

ki
m

T
xn

√

1− (mTxn)2
xnp(i|xn) (14)

m
+
i ←m

+
i /||m+

i || (15)

To estimate ki, we solve the equation ∂I/∂ki = 0 numerically.

The equation yields:

Ip−1(ki)

Ip−2(ki)
=

∑N

n=1

√

1− (mT
i xn)2p(i|xn)

∑N

n=1 p(i|xn)
(16)

The training of this mixture model is also dependent on the ini-

tialisation of its parameters, especially the means mi [13]. In

Appendix C, the standard K-Means algorithm is reformulated

in order to tackle p-dimensional directional data. The proposed

p-dimensional Directional K-Means is used to initialise the

means mi of the DLDs in the generalised DLD mixture EM

training. A Directional K-Means already exists in the liter-

ature [33], however, the proposed p-dimensional Directional

K-Means in Appendix C employs a distance function more

relevant to sparse directional data.

III. AUDIO SOURCE SEPARATION USING MIXTURES OF

DLD

In underdetermined audio source separation a set of K
sensors x(n) = [x1(n), . . . , xK(n)]T observes a set of L
(K < L) sound sources s(n) = [s1(n), . . . , sL(n)]

T . The

instantaneous (anechoic) mixing model can be expressed in

mathematical terms, by x(n) = As(n), where A represents

a K × L mixing matrix. The underdetermined instantaneous

source separation problems consists of two sub-problems a)

estimate the mixing matrix A, b) estimate the sound sources

s(n), given the observed signals x(n) [14]. The solution of this

problem can have a unique and identifiable solution, according

to Eriksson and Koivunen [34], as long i) there are no Gaussian

sources present in the mixture, ii) the mixing matrix A is of

full row rank, i.e. rank(A) = M and iii) none of the source

variables has a characteristic function featuring a component in

the form exp(Q(u)), where Q(u) is a polynomial of a degree

of at least two.

Assume a two-sensor instantaneous mixing approach (K =
2) and that the source signals si(n) are sparse. When the

sources are sparse, smaller coefficients are more probable,

whereas all the signal’s energy is concentrated in few large

values. Therefore, the density of the data in the mixture

space shows a tendency to cluster along the directions of

the mixing matrix columns [16]. That is to say, that the

phase difference θn = atan
x2(n)
x1(n)

between the two sensors

can be used to identify source concentrations (clusters). The

centres of the clusters denote the columns of the mixing

matrix [14]. Using the phase difference information between

the two sensors is equivalent to mapping all the observed data

points on the unit-circle. This is equivalent to the concept

of mapping all the observed data points to the half-unit p-

dimensional sphere, as proposed by Zibulevsky et al [16].
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Thus, the general underdetermined source separation problem

becomes a directional clustering problem on the half-unit p-

dimensional sphere. For a more detailed analysis of the above,

the reader is referred to [13], [14], [16], [17], [20], [23].

In [13], the authors introduced the concept of Mixture of

Laplacians (MoL) to tackle this angular clustering problem

in the case of a two-sensor setup. Once the MoL was fitted

to the angular data θn, each source was represented by each

of the Laplacians in the mixture. Separation was performed

either by hard thresholding or soft (fuzzy) thresholding. This

solution suffered from clusters centred closer to 0o or 180o,

since the Laplacian distribution used in these Mixture models

has infinite instead of a circular support. To offer a more

complete solution to this problem, in [14], the authors pro-

posed a Mixture of Warped Laplacians (MoWL) (i.e. periodic

repetitions of the Laplacian density) that tackles clustering

across the borders. Neverless, the two approaches handled only

the two-sensor case (1D) and the speed of training MoWL was

rather slow, as it is equivalent to training two mixture models

(one EM for the warping of each Laplacian and one EM for

the mixture of warped Laplacians).

The generalised Directional Laplacian Density offers a

faster and complete solution to the problem, since the pro-

posed function addresses directional data by definition and is

multidimensional, which implies that it can be automatically

applied to the general K × L separation scenario. Once the

Mixtures of DLD are fitted to the multichannel directional

data, separation can be performed by ”hard-thresholding” for

the 1D-case (intersections of the individual DLDs), or ”soft-

thresholding” for the general p-D case in a similar manner

to [14]. That is to say, we can attribute points that constitute a

chosen ratio q (i.e. 0.7−0.9) of the density of each DLD to the

corresponding source. Hence, the ith source can be associated

with those points on the unit xn p-dimensional sphere , for

which p(xn) ≥ (1−q)αicp(ki), where p(xn) is given by (10).

Having attributed the points x(n) to the L sources, using

either the “hard” or the “soft” thresholding technique, the next

step is to reconstruct the sources. Let Si ⊑ N represent the

point indices that have been attributed to the ith source and mi

the corresponding mean vector, i.e. the corresponding column

of the mixing matrix. We initialise ui(n) = 0, ∀ n = 1, . . . , N
and i = 1, . . . , L. The source reconstruction is performed by

substituting:

ui(Si) = m
T
i x(Si) ∀ i = 1, . . . , L (17)

In the case that we need to capture the multichannel im-

age of the separated source, the result of the separation is

a multichannel output that is initialised to ui(n) = 0, ∀
n = 1, . . . , N . The source image reconstruction is performed

by:

ui(Si) = x(Si) ∀ i = 1, . . . , L (18)

IV. EXPERIMENTS

In this section, we verify the validity of the above derived

MLE algorithms and the goodness-of-fit of the proposed

Directional Laplacian model and its mixtures. The first part

of the evaluation process contains several synthetic examples

0 0.5 1 1.5 2 2.5 3
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(a) MLE for a DLD
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(b) EM estimation for a DLD mixture

Fig. 3. Examples of 2D ML parameter estimation for the DLD model (left)
and its mixture model (right) using 2000 randomly generated 2D Directional
Laplacian data.

that verify the principles of the derived algorithms. The second

part demonstrates the density’s relevance and performance

in underdetermined audio source separation. At this point,

we need to clarify that the main scope of the paper is the

proposal of a novel multi-dimensional density that can find

applications in many other fields, including underdetermined

source separation. Therefore, we are not aiming at proposing

the best-performing source separation algorithm, but an algo-

rithm that improves our previous efforts both in stability, speed

and performance and offers a fast alternative to state-of-the-art

algorithms with reasonable separation performance.

For the rest of the section, we note that the integral

Ip(k) was numerically estimated using MATLAB’s quadl

command. As mentioned earlier, the estimation of k from

equations (9), (16) is performed using spline interpolation

(as implemented by MATLAB’s interp1 command) from

a look-up table for several values of k and Ip−1(k)/Ip−2(k)
that is created and stored before optimisation.

A. Synthetic Examples

The first step was to test the derived algorithms with

synthetic data. The 2-dimensional case (p = 3) was selected

in order to facilitate the visualisation of the training results.

We explored various cases of m, k,N , especially centres that

are closer to the wrapping boundaries of 0 and π. For the

MLE of the DLD’s parameters, we employed equations (7),

(8) and (9) with random initialisation of the centres and k. The

gradient step size value of η = 0.01 in (7) (and in (14)) has

shown efficient and fast convergence for all the experiments in

the paper. Similarly to all gradient-based iterative optimisation

algorithms, a “bad” choice of η may lead to either slow

convergence or inaccurate optimum estimation. Keeping the

η = 0.01 did not seem to affect the estimation performance in

our experiments. In Figure 3(a), an example of fitting the 2D

DLD on 2000 directional Laplacian samples centred close to

the wrapping border and k = 15 is presented. In this figure, the

data-point scatter plot is overlaid by a contour plot of the fitted

2D-DLD model. To evaluate the efficiency of m estimation,

we examined several extreme cases summarised in Table I. For

each different experiment, we evaluated 50 independent runs

with random directional Laplacian data. The average estimates

of mT
m̂ for each case are displayed in Table I. It is evident

that one can get very accurate results in terms of m̂ (estimate
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Fig. 4. Estimation of m
T
m̂ for various values of N =

500, 1000, 2000, 3000 and k ∈ [4, 15] for the p = 3 (2D case).

TABLE I
MLE OF m FOR THE 2D DIRECTIONAL LAPLACIAN (p = 3) FOR VARIOUS

VALUES OF m, k,N . AVERAGE RESULTS FOR 50 INDEPENDENT RUNS FOR

EACH EXPERIMENT.

m k N m
T
m̂

[-0.4329 0.3234 0.8415] 12 100 0.9994

[-0.4329 0.3234 0.8415] 12 1000 1.000

[-0.4329 0.3234 0.8415] 12 2000 1.000

[-0.4329 0.3234 0.8415] 4 1000 0.9998

[-0.4161 0 0.9093] 8 100 0.9995

[-0.4161 0 0.9093] 8 1000 0.9999

[-0.4161 0 0.9093] 15 100 0.9997

[-0.4161 0 0.9093] 15 1000 1.0000

[-0.4161 0.9093 0] 8 100 0.9994

[-0.4161 0.9093 0] 8 1000 0.9999

[-0.4161 0.9093 0] 15 100 0.9999

[-0.4161 0.9093 0] 15 1000 1.000

of m), regardless of the dataset size N for fairly concentrated

data (values of k > 6). The effect of sample size N is also

demonstrated in Figure 4. The estimation of m
T
m̂ for the

2D case is examined for values of N = 500, 1000, 2000, 3000
and k ∈ [4, 15]. We can see that the estimate m̂ gets closer or

identical to m for greater values of k (i.e. more concentrated

centres) and more data points.

To evaluate the efficiency of k estimation, we conducted

a series of experiments for N = 500, 1000, 2000, 3000 and

k ∈ [4, 15]. For each set of values N, k, we averaged the

results of 50 independent runs. The results are depicted in

Figure 5 for the 1D (p = 2) and the 2D (p = 3) case. The

results demonstrate accurate estimates for all cases, especially

for the 1D case. The estimation of k for the 2D case seems

to improve with the sample size, while the small difference

between the estimated and the actual value of k for small

values of k is due to possible model overfitting especially for

smaller number of data points. This difference is very small

and does not introduce any serious side-effects in applications,

such as audio source separation.

The next step is to evaluate the efficiency of the derived EM

algorithm for the estimation of the p-D Directional Laplacian

Density Mixtures. We created a mixture of 5 concentrations

of 2D-DLD samples centred at various positions mi and

various values of ki and ai, as summarised in Table II. The
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(a) 1D case (p = 2)
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(b) 2D case (p = 3)

Fig. 5. Estimation of k for various values of N = 500, 1000, 2000, 3000
and k ∈ [4, 15] for p = 2 (1D case) (a) and for p = 3 (2D case) (b).

total number of samples were 3000. For the initialisation of

the centres, we used the Directional K-Means algorithm, as

described in Appendix C. We ran 50 independent runs of

the EM-algorithm as described in Section II-D. The average

estimated m
T
i m̂i, k̂i and âi are depicted in Table II. We wit-

nessed several incorrect initialisations caused by the Circular

K-Means algorithm, especially in the smaller clusters (small

ai) or closely spaced clusters (around 7/50 times for DLD2,

whereas 0/50 times for DLD3 or DLD5). These incorrect

initialisations resulted into a drop of the average performance.

In the case of accurate initialisation, the clustering perfor-

mance was very good. In Figure 3 (right), we demonstrated

a successful clustering and training of the DLD mixture for

the synthetic source compilation. The random samples are

depicted in a 2-D cluster plot along with the fitted MDLDs

of the mixture. The clustering produced by the proposed EM

algorithms seems to offer adequate accuracy.

Finally, in order to compare the goodness-of-fit of the

proposed DLD model with the von Mises-Fisher distribution,

we generated 2000 random Directional Laplacian 1D and 2D

data for various values of k. Then, the proposed DLD MLE

algorithm and a von Mises-Fisher MLE algorithm [4], [5] were

used to fit the models to the data. An example of the two

models fitted to the data is depicted in Figure 6. It can be

observed that the proposed density offers a closer fit compared

to the vonMises-Fisher density. The Pearson Chi-Square test

was calculated to compare the data normalised histogram with
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TABLE II
PARAMETER ESTIMATION FOR A MIXTURE OF 2D-DIRECTIONAL LAPLACIAN (K = 5, p = 3) USING THE PROPOSED EM ALGORITHM. AVERAGE

PARAMETER RESULTS FOR 50 INDEPENDENT RUNS.

mi ki ai |mT
i
m̂i| |k̂i − ki|/ki âi

DLD1 [-0.9001 0.3200 0.2955] 12 0.1333 0.9277 0.0431 0.1215

DLD2 [ 0.6092 0.1235 0.7833] 10 0.2 0.8730 0.1072 0.1663

DLD3 [-0.5970 -0.6147 0.5155] 14 0.3333 0.9997 0.0299 0.3259

DLD4 [0.1732 -0.3784 0.9093] 15 0.1667 0.98986 0.0986 0.2001

DLD5 [0.5826 -0.8004 0.1411] 15 0.1667 0.9995 0.0248 0.1779
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Fig. 6. Model fitting comparison between the DLD and the von Mises-Fisher
distribution to Directional Laplacian Data (m = 30o, k = 6).

the fitted models [35]. A lower Chi-Square score indicates

a closer match of the fitted model to the actual data. A

comparison of the Pearson Chi-Square score for the two

distributions for the 1D and the 2D case is depicted in Figure

7. It is clear that the proposed DLD model offers a closer

match to the actual sparse data distribution compared to the

more Gaussian-like von Mises-Fisher model. This conclusion

applies for various values of k. A comparison of the Pearson

Chi-Square scores for N = 500, 1000, 2000, 3000 points for

the 1D case and k = 6 is shown in Figure 8. The goodness-

of-fit increases with the number of training points for both

distributions. Since the proposed MDLD offers a closer fit

for sparse data, it is rational to be preferred instead of the

vonMises-Fisher to perform separation of sparse clusterings.

B. Audio Source Separation

In this section, we evaluate the proposed MDLD algorithm

for audio source separation.

We will use Hyvärinen’s clustering approach [15], the

MoWL algorithm [13] and the “GaussSep” algorithm [24] for

comparison. After fitting the MDLD with the proposed EM

algorithm, separation will be performed using hard or soft

thresholding, as described in our previous work [13], [14].

In order to quantify the performance of the algorithms, we

estimate the Signal-to-Distortion Ratio (SDR), the Signal-to-

Interference Ratio (SIR) and the Signal-to-Artifact Ratio from
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(b) 2D case

Fig. 7. The Pearson Chi-Square Tests for the DLD and the von Mises-
Fisher distribution for k ∈ [4, 15] and the 1D and 2D cases. The proposed
DLD offers a closer fit to Laplacian data compared to the von Mishes-Fisher
distribution.

the BSS EVAL Toolbox v.3 [36]. The input signals for the

MDLD, MoWL and Hyvärinen’s approaches are sparsified

using the Modified Discrete Cosine Transformation (MDCT),

as developed by Daudet and Sandler [37]. The frame length

for the MDCT analysis is set to 32 msec for the speech signals

and 128 msec for the music signals sampled at 16 KHz, and to

46.4 msec for the music signals at 44.1 KHz. We initialise the

parameters of the MoWL and MDLD as follows: αi = 1/N
and ci = 0.001, T = [−1, 0, 1] (for MoWL only) and ki = 15
(for the DLD only). The centres mi were initialised in either

case using the Directional K-means step, as described in

Appendix C. We used the “GaussSep” algorithm, as publicly

available by the authors2. For the estimation of the mixing

2MATLAB code for the “GaussSep” algorithm is available from
http://www.irisa.fr/metiss/members/evincent/software.

http://www.irisa.fr/metiss/members/evincent/software
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TABLE III
THE PROPOSED MDLD APPROACH IS COMPARED FOR SOURCE ESTIMATION PERFORMANCE (K = 2) IN TERMS OF SDR (DB), SIR (DB) AND SAR(DB)

WITH GAUSSSEP, WMOL AND HYVÄRINEN’S APPROACH. THE MEASUREMENTS ARE AVERAGED FOR ALL SOURCES OF EACH EXPERIMENT.

SDR (dB) SIR (dB) SAR (dB)

MDLD GaussSep MoWL Hyva MDLD GaussSep MoWL Hyva MDLD GaussSep MoWL Hyva

Latino1 6.38 5.51 5.72 0.89 18.63 8.96 18.59 9.61 6.93 9.20 6.26 3.63

Latino2 3.21 4.71 2.10 0.89 11.50 8.87 11.28 9.61 4.95 9.20 3.85 3.63

Groove 0.22 0.39 -0.43 -0.08 9.48 3.62 9.60 8.88 2.12 7.37 1.00 1.83

Dev2Male3 3.04 6.22 2.11 -3.10 13.69 12.14 13.30 4.73 4.10 8.04 3.33 2.72

Dev2Female3 4.68 5.70 3.86 -1.85 15.28 11.45 16.58 5.02 5.41 7.51 4.61 3.13

Dev2WDrums 9.59 16.57 10.16 0.63 19.77 23.83 19.98 7.57 10.55 17.68 10.54 5.54

Dev1WDrums 4.96 16.54 3.81 6.86 13.88 20.94 12.38 16.75 6.37 19.30 5.20 7.73

Average 4.58 7.96 3.91 0.6 14.61 12.83 13.82 8.88 5.78 11.19 4.97 4.03
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Fig. 8. The Pearson Chi-Square Tests for the DLD and the von Mises-Fisher
distribution for k = 6 for the 1D case as a function of number of functions.
The goodness-of-fit increases with the number of training points for both
distributions.

matrix, we used Arberet et al’s [23] DEMIX algorithm3, as

suggested in [24]. The number of sources in the mixture was

also provided to the DEMIX algorithm, as it was provided to

all other algorithms. The “GaussSep” algorithm operates in the

STFT domain, where we used the same frame length with the

other approaches and a time-frequency neighbourhood size of

5 for speech sources and 15 for music sources.

1) Two-microphone examples: We tested the algorithms

with the Groove, Latino1 and Latino2 datasets, available by

BASS-dB [38], and sampled at 44.1 KHz. The “Groove”

dataset features four widely spaced sources: bass (far left),

distorted guitar (center left), clean guitar (center right) and

drums (far right). The two “Latino” datasets features four

widely spaced sources: bass (far left), drums (center left), key-

boards (center right) and distorted guitar (far right). We also

used a variety of test signals from the Signal Separation Eval-

uation Campaigns SiSEC2008 [39] and SiSEC2010 [40]. We

employed two audio instantaneous mixtures from the “dev1”

and “dev2” data sets (“Dev2WDrums” and “Dev1WDrums”

sets - 3 instruments at 16KHz) and two speech instanta-

neous mixtures from the “dev2” data set (“Dev2Male3” and

“Dev2Female3” sets - 4 closely located sources at 16 KHz).

3MATLAB code for the “DEMIX” algorithm is available from
http://infoscience.epfl.ch/record/165878/files/.

We used the development (dev) datasets instead of the test

data sets, in order to have all the source audio files for proper

benchmarking.

In Table III, we can see the results for the four methods in

terms of SDR, SIR and SAR. For simplicity, we averaged

the results for all sources at each experiment. The reader

of the paper can visit the following url4 and listen to the

described separation results. The proposed MDLD approach

seems to outperform our previous separation effort MoWL

and Hyvärinen’s algorithm in terms of all the performance

indexes. The proposed MDLD approach is not susceptible

to bordering effects, since it is circular by definition and

avoids shortcomings of our previous offerings. Compared to

a state-of-the-art method, such as “GaussSep”, our method

is better in terms of the SIR index but is falling behing in

terms of the SDR and SAR indexes. The SIR index reflects

the capability of an algorithm to remove interfence from

other sources in the mixture. The SAR index refers to the

audible artifacts that remain in the separated signals, due to

the overlapping of several points in the time-frequency space

(even in the MDCT representation) in the underdetermined

mixture that are incorrectly attributed to either source. In this

sense, our algorithm seems to perform slightly better compared

to “GaussSep” in terms of removing “crosstalk” from other

sources, but there seem to be more audible artifacts after

separation in our approach compared to “GaussSep”. This

is due to the fact that the “GaussSep” segments the time-

frequency representation in small localised neighbourhoods

and performs local Gaussian Modelling so as to separate

and filter sources from those areas that separation is more

achievable. Instead, our approach simply clusters all time-

frequency points according to the fitted DLD using hard

thresholds (or soft-thresholds in the case K > 2).

Another important issue is to compare the processing time

of the three best performing algorithms. All experiments were

conducted on an Intel Core i5-460M (2.53 GHz) with 4GB

DDR3 SDRAM running Windows Professional 64-bit and

MATLAB R2011a. Our MATLAB implementations of the

MDLD and MoWL algorithms were not optimised in terms

of execution speed. In Table IV, the typical running time in

seconds is summarised for each experiment and method. The

first observation is that the MDLD approach is faster compared

4 http://utopia.duth.gr/∼nmitiano/mdld.htm

http://utopia.duth.gr/~nmitiano/mdld.htm
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TABLE IV
RUNNING TIME COMPARISON WITH GAUSSSEP AND MOWL APPROACHES.

THE MEASUREMENTS ARE IN SECONDS.

MDLD Gaussep MoWL

Groove 2.39 224.21 20.46

Latino1 1.27 122.02 5.48

Latino2 1.28 129.09 3.59

Dev2Male3 2.31 72.64 19.67

Dev2Female3 2.33 75.92 16.09

Dev2WDrums 2.07 56.79 8.55

Dev1WDrums 1.55 54.06 11.88

Average 1.88 104.96 12.24

Dev3Female3 9.56 1021.31 -

Example(3×5) 4.04 1598.7 -

Example(4×8) 9.393 2359.1 -

Average 7.66 1659.70 -

to our previous MoWL. As it was previously mentioned,

employing a mixture of wrapped Laplacians to solve the “cir-

cularity” problem entails the running of two EM algorithms:

one for the wrapped Laplacians and one for the mixture of

wrapped Laplacians. This seems to delay the convergence

of the algorithm. Instead, the MDLD requires the training

of one EM algorithm for the mixture and even though is

more complicated, it seems to converge faster compared to the

MoWL. The second observation is that there is an important

difference between the processing time of the MDLD approach

and the “GaussSep” algorithm. As previously mentioned, the

“GaussSep” algorithm is more complicated in structure thus

justifying its long running time. Nevertheless, the proposed

MDLD approach offers a very fast underdetermined source

separation alternative with high SIR performance that can be

used in environments where processing time is important.

The third observation is that the processing time for the

“GaussSep” algorithm scales significantly with the duration

of the signals and the number of sources, i.e. the “Groove”,

“Latino1”, “Latino2” (44.1KHz - 4 sources) require more

time than the Dev2Male3 and Dev2Female3 sets (16KHz

- 4 sources) and the Dev2WDrums and Dev1WDrums sets

(16KHz - 3 sources). Instead, the MDLD’s running time seems

to be closer to the avarage in most cases, maybe slightly

deteriorating with the complexity of the source separation

problem.

2) Underdetermined source separation examples with more

than two mixtures: In this section, we employ the described

generalised DLD approach to perform separation of 3 × L
and 4 × L mixtures. The 2-mixtures setup, that dominates

the literature, may also arise from the fact that most audio

recordings and CD masters are available as stereo recordings

(2 channels is equivalent to 2 mixtures), where we need to

separate the instruments that are present. Nowadays, the music

industry is moving towards multichannel formats, including

the 5.1 and the 7.1 surround sound formats, which implies

more than 2 channels will be available for processing. In

this section, we will attempt to perform separation of the

Dev3Female3 set from SiSEC2011 [41] and a 3×5 (3 mixtures

- 5 sources) and a 4×8 (4 mixtures - 8 sources) scenario using

the male and female voices from Dev3. Our MDLD approach

will be compared to the “GaussSep” algorithm that is able to

work with multi-channel data. We used the same frame length

and time-frequency neighbourhood sizes for both algorithms

as previously. The MDLD was initialised as described in the

previous section. After fitting the model, we employed the

soft-thresholding scheme, as it was described in [14]. Since it

is not straightforward to calculate the intersection surfaces be-

tween the individual p-dimensional DLDs, we employ a soft-

thresholding scheme, as described earlier. For our experiments,

we used a value of q = 0.8.

For the 3 × 5 example, we centred the 5 speech sources

around the angles θ1 = [0o,−87o,−60o, 0o, 45o] and

θ2 = [85o, 0o,−60o, 0o, 45o]. The sources were mixed using

the mixing matrix A = [cos θ2 cos θ1; cos θ2 sin θ1; sin θ2]. For

the 4× 8 example, we centred eight audio sources around the

angles: θ1 = [−75o,−30o, 0o, 50o, 10o, 80o,−45o, 0o],
θ2 = [70o, 30o,−20o, 50o,−70o, 0o, 15o,−70o] and

θ3 = [80o, 20o, 10o,−50o, 0o,−10o,−25o,−35o].
The sources were mixed using the mixing matrix

A = [cos θ3 cos θ2 cos θ1; cos θ3 cos θ2 sin θ1; cos θ3 sin θ2;
sin θ3].

The separation results for the three experiments in terms of

SDR, SIR and SAR can be summarised in Table V. The reader

can listen to the audio results from the following url (See

Footnote 4). In the case of K = 3 mixtures, both algorithms

managed to perform separation in either case. Similarly to the

K = 2 case, the “GaussSep” featured higher SDR and SAR

performances, whereas the proposed MDLD featured higher

SIR performance. The image is completely different in the case

of K = 4 mixtures, where the MDLD manages to separate all

8 sources in contrast to the “GaussSep” that fails to perform

separation. This might be due to fact that the sparsest ML

solution in the optimisation of [24] is restricted to vectors

with K ≤ 3 entries, i.e. 3 sources present at each point. In

contrast, the proposed MDLD algorithm is designed to operate

for any arbitrary number of sensors K , without any constraint.

In Table IV, we can see the processing times for the two

algorithms for the three experiments. The MDLD processing

time has increased slightly but still remains relatively fast,

requiring an average of 7.66 secs to perform separation. This

implies that the computational complexity of the proposed

MDLD algorithm does not scale considerably with the number

of sources L and sensors K . In contrast, the “GaussSep”

algorithm’s processing has increased considerably with K . The

processing time seems to scale up dramatically with increasing

K and number of estimated sources L. For K = 3, it required

an average of 1310 sec and for K = 4, it required 2359 sec

which is almost the double processing time for K = 3. Thus,

it appears that the proposed MDLD algorithm is capable of

offering a faster and more stable multichannel solution to the

underdetermined source separation problem, featuring higher

SIR rates, compared to a state-of-the-art approach.

The main aspiration for future work behind these experi-

ments is to combine the speed and stability of the MDLD

approach with the low-artifact separation quality, proposed

by Vincent et al [24]. It might be possible to import this

time-frequency localised source separation framework, where

the source clusters can be modeled by mixtures of MDLDs.
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TABLE V
THE PROPOSED MDLD APPROACH IS COMPARED FOR SOURCE ESTIMATION PERFORMANCE (K = 3, 4) IN TERMS OF SDR (DB), SIR (DB) AND

SAR(DB) WITH THE GAUSSSEP APPROACH. THE MEASUREMENTS ARE AVERAGED FOR ALL SOURCES OF EACH EXPERIMENT.

SDR (dB) SIR (dB) SAR (dB)

MDLD GaussSep MDLD GaussSep MDLD GaussSep

Dev3Female3 6.02 16.93 23.84 22.43 6.17 18.40

Example 3× 5 3.91 9.94 17.92 15.21 4.17 11.68

Example 4× 8 2.24 -18.63 16.4 -17.58 2.52 9.39

A more intelligent fuzzy clustering algorithm may combine

the information from the MDLD priors to attribute points to

multiple sources, overcoming the artifacts that arise from the

partitioning of the time-frequency space.

V. CONCLUSION

In this paper, the problem of modelling multidimensional

Directional Sparse data is addressed. This work is building

on previous work on directional Gaussian models (i.e. the

von-Mises and the vonMises-Fisher densities) to propose a

novel generalised Directional Laplacian model for modelling

multidimensional directional sparse data. Maximum Likeli-

hood estimates of the densities’ parameters were proposed

along with an EM-algorithm that handles the training of DLD

mixtures . The proposed algorithms were tested with randomly

generated synthetic data where the algorithms demonstrated

good performance in modelling the directionality of the data.

The proposed algorithm can also offer a solution for the gen-

eral multichannel underdetermined source separation problem

(K ≥ 2), offering fast and stable performance and high SIR

compared to state-of-the-art methods [24].

For future work, the authors will look for methods to

incorporate the time-frequency localised source separation

framework [23], [24], in order to reduce the amount of

audible artifacts in the separated sources. Another future

direction is to adapt this technique for a convolutive-mixture

scenario, where using the Short-Time Fourier Transform, we

can transform the convolutive mixtures into multiple complex

instantaneous mixtures. Source separation-clustering for each

frequency bin can be performed using a modified version

of the proposed algorithm and permutation alignment can be

performed using Time-Frequency Envelopes or Direction-of-

Arrival methods [42]–[44]. The speed of the proposed MDLD

algorithm can be very useful, since frequency-domain con-

volutive methods need to solve many complex instantaneous

source separation problems simultaneously.
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APPENDIX

A. Calculation of the normalisation parameter for the Gener-

alised DLD

To estimate the normalisation coefficient cp(k) of (5), we

need to solve the following equation:
∫

x∈Sp−1

cp(k)e
−k
√

1−(mTx)2dx = 1

Following equation (B.8) and in a similar manner to the

analysis in Appendix B.2 in [4], we can rewrite the above

equation as follows:

cp(k)

∫ π

0

dθp−1

∫ π

0

e−k
√

1−cos2 θ1 sinp−2 θ1dθ1×

×
p−1
∏

j=3

∫ π

0

sinp−j θj−1dθj−1 = 1

Following a similar methodology to Appendix B.2 in [4], the

above yields:

cp(k)π

∫ π

0

e−k sin θ1 sinp−2 θ1dθ1
π

p−3

2

Γ(p−1
2 )

= 1

Using the definition of Ip(k), we can write

cp(k)Ip−2(k)
π

p+1

2

Γ(p−1
2 )

= 1⇒ cp(k) =
Γ(p−1

2 )

π
p+1

2 Ip−2(k)

B. Gradient updates for m and k for the MDDLD

The first order derivative of the log-likelihood in (6) for the

estimation of m are calculated below:

∂J(X,m, k)

∂m
= −k

N
∑

n−1

−2mT
xn

2
√

1− (mTxn)2
xn

= k
N
∑

n=1

m
T
xn

√

1− (mTxn)2
xn (19)

Before we estimate k from the log-likelihood (6), we derive

the following property:

∂

∂k
I0(k) = −

1

π

∫ π

0

e−k sin θ sin θdθ = −I1(k)

The above property can be generalised as follows:

∂p

∂kp
I0(k) = (−1)p 1

π

∫ π

0

sinp θe−k sin θdθ = (−1)pIp(k)

The first order derivative of the log-likelihood in (6) for the

estimation of k are then calculated below:

∂J(X,m, k)

∂k
= N

Ip−1(k)

Ip−2(k)
−

N
∑

n=1

√

1− (mTxn)2 (20)
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C. A Directional K-Means algorithm

Assume that K is the number of clusters, Ci, i = 1, . . . ,K
are the clusters, mi are the cluster centres and X =
{x1, . . . ,xn, . . . ,xN} is a p-dimensional angular dataset ly-

ing on the half-unit p-D sphere. The original K-means [45]

minimises the following non-directional error function:

Q =
N
∑

n=1

K
∑

i=1

||xn −mi||2 (21)

where || · || represents the Euclidean distance. Instead of

using the square Euclidean distance for the p-dimensional

Directional K-Means, we introduce the following distance

function:

Dl(xn,mi) =
√

1− (mT
i xn)2 (22)

The novel function Dl is similarly monotonic as the original

distance but emphasizes more the contribution of points closer

to the cluster centre. In addition, Dl is periodic with period π.

The p-dimensional Directional K-Means can thus be described

as follows:

1) Randomly initialise K cluster centres mi, where

||mi|| = 1
2) Calculate the distance of all points xn to the cluster

centres mi, using Dl.

3) The points with minimum distance to the centres mi

form the new clusters Ci.
4) The clusters Ci vote for their new centres m

+
i . To

avoid averaging mistakes with directional data, vector

averaging is employed to ensure the validity of the

addition. The resulting average is normalised to the half-

unit p-dimensional sphere:

m
+
i =

1

Ci

∑

xn∈Ci

xn (23)

m
+
i ←m

+
i /||m+

i || (24)

5) Repeat steps 2), 3), 4) until the means mi have con-

verged.
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