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Abstract—One of the uses of sensor arrays is for spatial filter-
ing or beamforming. Current digital signal processing methods
facilitate complex-weighted beamforming, providing flexibility in
array design. Previous studies proposed the use of real-valued
beamforming weights, which although reduce flexibility in design,
may provide a range of benefits, e.g. simplified beamformer
implementation or efficient beamforming algorithms. This paper
presents a new method for the design of arrays with real-valued
weights, that achieve maximum directivity, providing closed-form
solution to array weights. The method is studied for linear and
spherical arrays, where it is shown that rigid spherical arrays are
particularly suitable for real-weight designs as they do not suffer
from grating lobes, a dominant feature in linear arrays with real
weights. A simulation study is presented for linear and spherical
arrays, along with an experimental investigation, validating the
theoretical developments.

Index Terms—Beamforming, microphone arrays, linear arrays,
spherical arrays, array signal processing.
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I. INTRODUCTION

S
IGNAL processing for microphone arrays of various

configurations, including linear, planar and spherical, is

widely studied and reported in the literature [1]–[5]. One

of the primary goals of microphone arrays is beamforming,

or spatial filtering [6]. It is one of the simplest methods

for discriminating between different signals based on the

physical location, distance, or direction of the sources. An

effective way to achieve spatial filtering is using arrays of

discrete sensors. When wired with independent conditioning

electronics, discrete array sensors are flexible and are therefore

very useful in time varying environments.

A variety of beamforming techniques is available, includ-

ing data-independent, statistically optimal and adaptive ap-

proaches. Well studied examples are least squares beampattern

synthesis [1], MVDR or general LCMV beamformers [6]

and the sidelobe canceller techniques [7]. Although these

beamformers are flexible and facilitate the design of arrays

with desired spatial and frequency characteristics, they require

complex array weights, i.e. with magnitude and phase specified

at each frequency.

In order to achieve high spatial resolution, there is a need

for a large number of channels resulting in very complicated

beamformer structures. Usually, it is possible to simplify the
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structure by finding a compromise between performance and

complexity [8], [9]. In this paper, we analyze the possibility to

perform the processing using real-valued beamformer weights

without the need for phase adjustments [10]. This approach

appears in the adaptive antenna array processing literature.

See for example the SOAC [11]–[13], RAMONA [14]–[16]

and additional methods [17]–[19]. The main advantage of

this approach is that, although complex weights offer greater

control over the array response, using real weights requires

only real arithmetic operations for the beamforming procedure.

Therefore, the computational complexity can be considerably

reduced. In [11] a method for suppressing jammers by con-

trolling the current amplitude only for a linear antenna array

is described. It is shown that, although the total number of

jammers is doubled with complex weights, using real weights

results in a much faster computing speed and considerable

hardware savings.

In addition to efficient realization, real weights can also

improve some aspects of array processing. With real weights,

an improvement of the Gram-Schmidt orthogonal projection

nulling algorithm [20] is achieved in [14], where it is shown

that the algorithm proposed there performs four times faster

than the original one. Another paper by Choi [17] presents an

adaptive beamforming technique with real estimated weights.

In this paper a statistical measurement model is assumed,

which includes the desired signal, noise, and several in-

terference sources. It is shown that the imaginary part of

the measurements’ covariance matrix is sufficient to span

the interferer subspace. Thus, by using orthogonal subspace

projection, a real-weighted beamformer can be calculated. In

[19], a data-independent real-weighted beamforming technique

for a rectangular sensor array is described. A computationally

efficient design algorithm is presented where the real array

weights are obtained by constraining the beampattern to a

desired response at several symmetrically-chosen points in

frequency-angle space.

In addition, the optimal real-weighted beamforming tech-

niques can be utilized for designing beamformers implemented

with continuous sensors like Electro-Mechanical Film (EMFI)

[21]–[24], which have potential advantages over the traditional

electret microphones, e.g. large aperture with a single sensor,

although such a directional sensor may not be electronically

steerable.

Although the above-mentioned publications presented real-

valued beamforming techniques, there is a lack of system

performance analysis based on common data-independent per-

formance measures like directivity or sensitivity. Also, no
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beamforming technique has been described that achieves opti-

mality with respect to these measures. Furthermore, although

it was evident from [19] that real weights impose an undesired

beampattern symmetry, yielding an additional parasitic main

lobe and thus limiting the use of real-weighted beamformers

in practice, this issue has not been systematically addressed in

previous publications.

This paper presents novel formulation and analysis of real-

weighted beamforming, offering the following contributions:

1) Mathematical formulations are developed for optimal

beamformers in terms of maximum beampattern di-

rectivity and minimum beamformer sensitivity subject

to the constraint of using real weights. A closed-form

solution for the optimal real weights is derived for

general array geometry.

2) The problem of beampattern symmetry induced by real

weights is formulated, showing clearly the existence of

an additional parasitic main lobe when used with open

array geometries. This symmetry clearly degrades the

flexibility and, in fact, the overall performance of open

arrays with real weights.

3) In order to overcome the symmetry imposed by real

weights, it is shown that the undesired parasitic main

lobe does not exist for rigid spherical arrays, making

these arrays ideal for real-weighted beamforming. The

narrowband performance of spherical arrays that use real

weights is shown to be comparable to the performance

of spherical arrays that use complex-valued weights.

It is also shown that the proposed method facilitates

the design of spherical arrays with electronic steering

capabilities.

The optimal array processing problem described in this

paper for the spherical array geometry can be regarded as a

special case of the FIR based realization [25] where only single

weight filters are considered. This implies that the analytic

solutions derived are comparable to the numerical solutions in

the single-weight FIR realization.

The paper starts with a brief review of general beamforming

and common performance measures. Next, the optimization

problem is formulated for a general array geometry and the

maximum directivity solution for real weights is derived.

Simulation examples for linear and spherical arrays are then

presented and the resulting beampattern properties are dis-

cussed. The results of directional sound field analysis [26]

using the proposed optimal beampatterns, are presented for

experimental data measured with spherical microphone array.

Conclusions and future work follow.

II. BEAMFORMING

A. Array Beampattern

Consider an array consisting of M sensors with an arbitrary

geometry. Assuming a free field, the q’th sensor’s output

yq (ω,Ω, t) at a time t as a response to a unit amplitude plane

wave having frequency ω and arriving at direction Ω = (θ, φ),
is given by:

yq (ω,Ω, t) = vq (ω,Ω) e
iωt, (1)

where, vq(ω,Ω) is the gain and phase shift associated with

location of the q’th sensor. The overall array output is given

by:

y (ω,Ω, t) =

M
∑

q=1

wq (ω) yq (ω,Ω, t)

=
M
∑

q=1

wq (ω) vq (ω,Ω) e
iωt, (2)

where, wq (ω) is the weight applied by the beamformer to the

q’th sensor at frequency ω. The dependence on frequency will

be omitted for notation simplicity. Now, by dropping the time

dependence (as we are interested only in the response) and

rewriting (2) in matrix form, we get the beampattern of the

array:

B(Ω) = wTv(Ω), (3)

where w = [w1 w2 ... wM ]
T

is the weights vector and

v(Ω) = [v1 (Ω) v2 (Ω) ... vM (Ω)]T is the manifold or steering

vector of the array. In general, the weights vector of an array

incorporates its beamformer characteristics, while the manifold

vector describes its geometry.

Beamforming using real weights does not require phase shift

implementation. Thus, from the mathematical point of view,

we will simply assume that the weights vector is real-valued.

Later in this text we will discuss linear and spherical array

geometries as examples of optimization techniques presented

in Section III.

B. Performance Measures

There are a number of performance measures for assessing

the capabilities of a sensor array defined in the literature [1].

The performance measures considered in this paper are: (i)

Directivity, (ii) Sensitivity.

Directivity is defined as the ratio between the power of the

output in the look direction to the average output power:

D =
|B(Ωl)|

2

1
4π

π
∫

0

2π
∫

0

|B(Ω)|
2
sin θdφdθ

=
wTbb

H
w∗

wT

(

1
4π

π
∫

0

2π
∫

0

v(Ω)vH (Ω) sin θdφdθ

)

w∗

, (4)

where b = v(Ωl) is the manifold vector in the look direction

Ωl. We define C as the following Hermitian matrix:

C ,
1

4π

π
∫

0

2π
∫

0

v(Ω)vH (Ω) sin θdφdθ. (5)

Finally, directivity can be written as:

D =
wTbb

H
w∗

wTCw∗
. (6)

For the case when the weights vector is real-valued we have:

D =
wTbb

H
w

wTCw
. (7)
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The second array performance measure discussed here is

sensitivity, which is a measure of array robustness to processor

gain errors, sensor mismatch, and imprecise positioning of the

sensors. The sensitivity is proportional to the square of the

weights vector norm [1]:

Tse = ‖w‖
2
= wHw. (8)

Once again, for the real-valued weights vector we simply

obtain:

Tse = ‖w‖
2
= wTw. (9)

Needless to say, that it is always highly desirable to con-

struct an array with the highest possible directivity and lowest

possible sensitivity to errors. In the next section, we present

the maximum directivity optimization problem and derive

the maximum directivity real-valued beamformer subject to

distortionless response constraint. We also discuss a lower

bound on the sensitivity resulting from the distortionless

response constraint and present a technique for finding an

optimal directivity beamformer subjected to a constraint on

the maximum sensitivity value.

III. OPTIMAL BEAMFORMERS

A. Complex-valued maximum directivity beamformer

In this subsection, we present the formulation of the general

optimization problem for the maximum directivity beamformer

and its well known complex-valued solution. In the next

subsection we will derive the real-valued solution for the

maximum directivity optimization problem.

In order to maximize the directivity given by (6) subject

to the distortionless constraint, i.e. wTbb
H
w∗ = 1, it is

sufficient to minimize wTCw
∗. Note, that the distortionless

response constraint used here is applied only to the absolute

value of the response, leaving a degree of freedom in choosing

the phase. The optimization problem can be stated as follows:

wc = argmin
w

(

wTCw∗
)

s.t. wTbb
H
w∗ = 1 (10)

The solution to this problem is known in the literature [1],

[27], and is widely used to derive optimum beamformers such

as MVDR or MPDR:

wc =

(

C−1b

bHC−1b

)∗

. (11)

However, this solution, in general, yields complex weights. A

derivation of a real-valued solution, not available in literature,

is presented in the following subsection.

B. Real-valued maximum directivity beamformer

In this section, the real-valued solution to the maximum

directivity beamformer optimization problem is derived. As-

suming w is a real-valued vector and C is a Hermitian matrix,

the problem can be formulated as follows:

wr = argmin
w

(

wTCw
)

s.t. wTbb
H
w = 1 (12)

Using the Lagrange multipliers method, the Lagrangian is

given by:

J(w, λ) = wTCw + λ
(

wTbb
H
w − 1

)

, (13)

where λ is the Lagrange multiplier. Taking the gradient with

respect to w (assuming it is strictly a real-valued vector) and

setting it to zero in order to find the minimum, we get:

wTRe {C}+ λwTRe
{

bb
H
}

= 0. (14)

We denote C̃ = Re {C}. By right-multiplication of (14) with

C̃−1b, one obtains:

wTb+ λwTRe
{

bb
H
}

C̃−1b = 0. (15)

Now the constraint is used to evaluate λ. According to the

constraint wTb = ejϕ, where ϕ is an arbitrary real-valued

phase. Thus (15) can be rewritten as:

ejϕ + λRe
{

bHejϕ
}

C̃−1b = 0. (16)

Now, λ can be evaluated as

λ = −
1

Re {be−jϕ}T C̃−1be−jϕ
. (17)

By substituting (17) into (14) and simplifying, we get:

wopt =
C̃−1Re

{

be−jϕ
}

(be−jϕ)
T
C̃−1Re {be−jϕ}

(18)

Finally, ϕ can be found by forcing the imaginary part of (18)

to zero. Since the numerator is real-valued, it is sufficient to

set the imaginary part of the denominator to zero:
[

bT e−jϕ −
(

bT e−jϕ
)∗
]

C̃−1Re
{

be−jϕ
}

= 0. (19)

By expanding and simplifying (19), one obtains:

bT C̃−1be−j2ϕ = bHC̃−1b∗ej2ϕ. (20)

Solving (20) for ϕ, we get:

ϕ =
1

2
∠

(

bT C̃−1b
)

. (21)

Let c , Re
{

be−jϕ
}

. Then optimal beamformer is given by:

wr =
C̃−1c

cT C̃−1c
. (22)

It should be emphasized here that the matrix C defined in

(5) includes the sin θ factor. This factor can be treated as

the cost function of the optimization problem. As we show

later, other cost functions can be used as well, resulting

in beneficial beampattern characteristics at the expense of

degraded directivity.

C. Real-valued maximum directivity beamformer with

bounded sensitivity

In order to overcome possible errors and instabilities, a

more robust beamforming technique is presented here. The

following beamforming technique, which is based on the max-

imum directivity beamformer presented above, aims to find an

optimal weights vector w that maximizes the directivity of a

given array subject to bounded sensitivity, i.e. Tse ≤ T0. If

the solution in (22) satisfies this constraint, it should be used

directly. Otherwise, it is assumed that the constraint is active
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and is therefore satisfied with an equality, and the optimization

problem with bounded sensitivity is formulated as follows:

wopt = argmin
w

(

wTCw
)

s.t.

{

wTbb
H
w = 1

wTw = T0
(23)

Using the Lagrange multipliers method, we write the La-

grangian as

J(w, λ) = wTCw + λ
(

wTbb
H
w− 1

)

+ β
(

wTw − T0
)

. (24)

By denoting Cd = C+βI, where I is the identity matrix, the

Lagrangian can be written as:

J(w, λ) = wTCdw+ λ
(

wTbb
H
w − 1

)

− βT0, (25)

Now, assuming β is real-valued, one can proceed as in Section

III-B. The optimal beamformer is given by:

wopt =
C̃−1
d c

cT C̃−1
d c

, (26)

where, C̃d = Re {C+ βI} and c = Re
{

be−
j

2
∠(bT

C̃db)
}

.

The real-valued parameter β can be found numerically by

imposing the constraint wTw = T0.

It can be seen that the solution here is very similar to

the maximum directivity beamformer. The only difference is

the diagonal loading that appears in the matrix C̃d which is

expected to improve the robustness of the solution.

D. Lower bounds on sensitivity

It is known that distortionless response constraint introduces

a lower bound on the array’s sensitivity [1]. In the general case

of complex-valued weights, the problem of minimum array

sensitivity is mathematically identical to the problem in (10)

with the matrix C replaced by the identity matrix. Thus, the

minimum sensitivity beamformer is given by:

wc
MS =

b∗

bHb
, (27)

where the superscript (·)c denotes the general case of complex-

valued weights. Moreover, the minimum achievable sensitivity

with complex weights is:

T cmin = wc
MS

H
wc
MS =

1

bHb
. (28)

This is a well known result that reduces to T cmin = 1
M

for open

arrays, i.e. arrays with steering vectors consisting of phase

shifting exponentials only.

Note that the lower bound here depends strictly on bHb,

which is the only non-zero eigenvalue of the matrix bb
H . We

are going to exploit this observation later in order to establish

a relationship between the lower bounds on sensitivity in

complex and real-valued cases.

When the weights are constrained to be real-valued, the

minimum sensitivity beamformer problem is, again, identical

to (12) with C replaced by the identity matrix. The solution

to this problem is given by (22):

wr
MS =

c

cT c
, (29)

where c = Re{be−
j

2
∠b

T
b}. Thus, the lower bound is given

by:

T rmin = wr
MS

T
wr
MS =

1

cT c
. (30)

In order to get a more informative expression for T rmin,

we solve the minimum sensitivity problem directly, without

using the solution in (22). Consider the following minimization

problem:

min
w

(

wTw
)

s.t. wTbb
H
w = 1, (31)

where Tse = wTw is the sensitivity which we wish to

minimize subject to the distortionless response constraint. The

Lagrangian will be:

J(w, β) = wTw − β
(

wTbb
H
w − 1

)

. (32)

By taking the derivative with respect to w, setting it to zero

and rearranging, we get:

Re{bbH}w =
1

β
w. (33)

Equation (33) holds for any pair of the scalar 1
β

and the vector

w, which are an eigenvalue and eigenvector pair of the matrix

Re{bbH}.

Note that w is a real-valued vector, hence it can be inserted

inside the Re{·} operator. By multiplying both sides of (33)

from the left by wT , and using the constraint in (31), we get:

wTw =
1

γi
, (34)

where γi is the ith eigenvalue of Re{bbH}. Equation (34)

implies that for each w, which is a solution of (33), there

exists an appropriate eigenvalue of Re{bbH} such that (34)

holds. It should be noted that the matrix bb
H has only one non

zero eigenvalue, but by taking the real part, one can double

the number of linearly independent rows. Thus, the minimum

sensitivity is given by:

T rmin = min
w

{

wTw
}

=
1

γmax
, (35)

where, γmax is the largest eigenvalue of matrix Re{bbH}.

Note that the bound is achievable by the corresponding eigen-

vector of Re{bbH}, which in fact, is given by (29).

In order to compare between T cmin given in (28) and T rmin,

we realize that:
∑

i

γi = tr
(

Re{bbH}
)

= tr(bbH)

= bHb = µ, (36)

where µ is the non-zero eigenvalue of bb
H . Hence, γmax =

max
i

{γi} ≤ µ and

T rmin ≥ T cmin, (37)

meaning that for a given array geometry and look direction,

the real-valued beamformer can be at most as robust as the

complex-valued one.
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IV. LINEAR ARRAYS

Here we demonstrate the maximum directivity beampattern

that results from the theory developed above for a linear array

with uniformly spaced sensors. In this case, the manifold

vector is given by:

v(ψ) =
[

1 ejψ ej2ψ . . . ej(M−1)ψ
]T

, (38)

where M is the number of sensors and ψ = 2πd
λ

cos θ
incorporates the spatial dependence indicating the phase dif-

ference between the signals in adjacent sensors as a function

of plane wave arrival direction θ. The angle θ is measured

from the endfire side, and the origin of the coordinate system

is positioned at the edge of the array. In addition, λ is the

wavelength of the impinging plane wave and d is the spacing

between the sensors.

The beampattern is given by:

B(ψ) = wTv(ψ) =
M−1
∑

n=0

wn · eiψn. (39)

This form resembles the discrete-time Fourier transform

(DTFT) implying that for real-valued weights vector w, the

beampattern will be symmetric in ψ and thus in θ. As a result,

in addition to the main lobe at the desired look direction θl,

the beampattern will have a parasitic main lobe at π− θl. The

same is evident from the analysis performed in [19], although

it is not stated explicitly.

The beampattern of general three-dimensional array with

real-valued weights is symmetric at least under the reversal of

propagation direction. In order to see this consider an array

consisting of M microphones located at {rq}
M
q=1, where rq

is the position vector of qth microphone relative to a chosen

coordinate system. For an open array, i.e. an array for which

only the phase information is available, the response of qth

sensor to a plane wave with the vawevector k0 is given by

e−jk
T
0
rq . Hence, the beampattern is given by:

B(k0) =

M
∑

q=1

wqe
−jkT

0
rq , (40)

where {wq} are the real-valued weights. For the reversed

propagation direction, i.e. −k0, we have:

B(−k0) =

M
∑

q=1

wqe
jkT

0
rq

=

(

M
∑

q=1

wqe
−jkT

0
rq

)∗

= B∗(k0). (41)

Note, that for arrays with certain geometries, additional sym-

metries can arise as was shown above for the linear array.

Fig. 1 compares two maximum directivity beampatterns: the

beampattern with real-valued weights derived above and the

general beampattern with complex-valued weights [1]. The

beampatterns are presented at frequency f = 1715 Hz for

a uniform linear array consisting of 25 sensors spaced at 10
cm intervals (resulting in total array aperture of 2.4 m). The

frequency is chosen such that λ = 2d considering an acoustic

medium with sound speed of 343 m/s.

The array is steered to θ = π
4 resulting in expected

symmetry and a parasitic main lobe in the reciprocal direction

θ = 3π
4 for the beamformer with real-valued weights. Ignoring

Fig. 1. Comparison between two maximum directivity beampatterns - the
real-weighted and the general complex-weighted, for a linear array with
parameters: d = 10 cm, M = 25, at f = 1715 Hz.

the parasitic main lobe, there is a sidelobe with −13 dB level

achieved for both beampatterns in this particular example.

The resulting sensitivity of the beamformer with real-valued

weights is Tse = wT
r wr = 0.076, which is the same as the

lower bound given by (35): T rmin = 0.076. This result is not

surprising. To see this, recall the matrix C defined in (5). For

the linear geometry case the expression reduces to:

C =
1

2

π
∫

0

v(θ)vH (θ) sin θdθ, (42)

whose nmth element is given by:

[C]nm =
1

2

π
∫

0

ej
2πd
λ

(n−m) cos θ sin θdθ

= sinc

(

2d(n−m)

λ

)

, (43)

where sinc(x) = sinπx
πx

. Thus, for the standard linear array,

i.e. for λ = 2d, as chosen above, C is the identity matrix.

Hence, the problem of maximum directivity, formulated in

(12), reduces to the minimum sensitivity problem and the

solution is optimal in both senses.

Generally, for the linear array geometry the matrix C will

be close to the identity matrix for frequencies close to spatial

Nyquist frequency of the array (i.e. λ = 2d), meaning that the

maximum directivity beamformer will be also nearly optimal

in the sensitivity sense in this frequency range. However, for

lower frequencies, there will be a strong deviation between
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the two optimal beamformers. These relationships will be

demonstrated further for the spherical array geometry.

V. SPHERICAL ARRAYS

In this section, we apply the optimal beamformer derived

above to spherical microphone arrays. These arrays are known

for their advantages in processing three-dimensional sound

fields due to their rotational symmetry. The spherical geom-

etry enables the processing to be performed in the spherical

harmonics domain [3] also known as phase-mode processing

[28].

A. Phase-mode processing framework

Here we will be concerned with sound fields which are

scalar fields represented by a complex amplitude at each

position in space. Consider the complex amplitude of the

sound pressure p(k, r,Ω) on the surface of a rigid sphere

of radius r at angles Ω = (θ, φ), where k = ω
c

, with ω

representing the angular frequency of the harmonic sound field

and c is the speed of sound. Spherical microphone arrays

sample the surrounding acoustic field at positions {Ωi}
M
i=1,

where M is the total number of microphones. The output of

the array is given by:

y(k, r) =

M
∑

i=1

αip(k, r,Ωi)w
∗(k,Ωi), (44)

where w∗ is the weighting function of the array. The coeffi-

cients αi are chosen in accordance with the specific sampling

scheme [4], allowing the expression of array output in terms

of the spherical Fourier transform coefficients of the order-

limited acoustic pressure and the weighting function:

y(k, r) =

N
∑

n=0

n
∑

m=−n

pnm(k, r)w∗
nm(k). (45)

The nearly-uniform sampling scheme will be used in the

subsequent discussion, for which the coefficients are constant

and given by αi =
4π
M

[4].

Consider a unit amplitude plane wave ei(ωt+k
T
r) impinging

on a rigid sphere, where r = (r,Ω) and k = (k,Ω0), with Ω0

indicating the arrival direction. The spherical Fourier transform

coefficients of the resulting pressure on the sphere surface are

given by:

pnm(k, r,Ω0) = bn(kr)Y
m
n

∗(Ω0), (46)

where Y mn are the spherical harmonics. The mode strength

coefficients bn for a plane wave impinging on a rigid sphere

are given by [29]:

bn(kr) = 4πin
(

jn(kr) −
j′n(kr)

h′n(kr)
hn(kr)

)

, (47)

where jn and j′n are the spherical Bessel functions of the first

kind and their derivatives, respectively, and hn and h′n are

the spherical Hankel functions of the second kind and their

derivatives, respectively.

The spherical Fourier transform of a plane wave given in

(46) is not order limited. But, in practice, the coefficients

bn(kr) for n > kr are negligible as compared to lower orders.

Hence, spherical Fourier transform of a plane wave with a

wavenumber k < N
r

can be represented by its lower order

coefficients: 0 ≤ n ≤ N , with good accuracy.

Now, by substituting (46) for 0 ≤ n ≤ N into (45) we get

the array response to a plane wave arriving from the direction

Ω0:

y(k, r,Ω0) =

N
∑

n=0

n
∑

m=−n

bn(kr)Y
m
n

∗(Ω0)w
∗
nm(k), (48)

which is recognized as the beampattern of the array. In the

following, we will drop the frequency dependence for notation

simplicity.

Here, we limit the discussion to weighting functions of the

form:

w∗
nm = dnY

m
n (Ωl), (49)

where Ωl is the desired look direction. This particular form is

highly useful resulting in an axisymmetric weighting function

[4] with Ωl indicating the axis of symmetry:

w(Θ) =

N
∑

n=0

dn
2n+ 1

4π
Pn(cosΘ), (50)

where Θ is the angle between any direction Ω and the array

look direction Ωl. The functions {Pn(·)} denote the Legendre

polynomials which are real for real arguments. It can be seen

that in order to have a real-valued weighting function it is

sufficient that dn will be real.

By substituting (49) into (48) we arrive at the desired

expression for the beampattern of a spherical microphone

array:

B(Θ) =

N
∑

n=0

dnbn
2n+ 1

4π
Pn(cosΘ). (51)

It can be seen that the design parameters are the coefficients

dn, which can be chosen in an appropriate manner. After

obtaining the coefficients, the actual microphone weights can

be calculated by choosing the desired look direction and using

(49) and (50).

An important observation is that the phase-mode weights

dn are designed independently from the look direction Ωl.
As a consequence, electronic steering of the beampattern can

be accomplished by simple substitution of the desired look

direction when the actual weights wnm are being calculated

(see (49)).

We rewrite the expression in (51) using vector notation:

B(Θ) =

N
∑

n=0

dnvn(Θ) = dTv(Θ), (52)

where d = [d0 d1 . . . dN ]T and v = [v0 v1 . . . vN ]T , with

vn = bn
2n+1
4π Pn(cosΘ).

It can be seen that the form of equation (52) is exactly the

same as (3). The vector d can be considered as the weights

vector in the spherical harmonics domain and v(Θ) is again

the manifold vector of the array.

Note that in the spherical case there is no undesired sym-

metry property similar to the symmetry apparent in linear
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arrays, because the functions vn(Θ) in (52) are not symmetric

in Θ. This implies that the beampattern does not have a

parasitic main lobe as in the case of linear and planar arrays

where the symmetry is imposed by the conjugate symmetry

of exponentials (see (39)).

B. Optimal phase-mode beamforming with real-valued

weights

Consider the phase-mode expression for the spherical array

beampattern given in (52). It is clear that by using the defini-

tion of directivity given in (4), one obtains the expression in (6)

with w replaced by d. Furthermore, the matrix C defined in

(5) will be real-valued and diagonal as a straightforward result

of the orthogonality property of the Legendre polynomials:

C =

(

1

4π

)2

diag
(

|b0|
2, 3|b1|

2, ...(2N + 1)|bN |
2
)

. (53)

Thus, one can directly apply the result in (22) in order to

obtain the real-valued maximum directivity beamformer for

the phase-mode processing of a spherical microphone array.

Spherical array sensitivity can be expressed using the phase-

mode weights by starting from the expression for sensitivity

in the spatial domain (see (8) and [1]):

Tse =

M
∑

i=1

|αiw(k,Ωi)|
2

=
4π

M

N
∑

n=0

n
∑

m=−n

|wnm|2

=
4π

M

N
∑

n=0

|dn|
2

n
∑

m=−n

Y mn (Ωl)Y
m
n

∗(Ωl)

=
1

M

N
∑

n=0

|dn|
2(2n+ 1)

= dHUd, (54)

where U = 1
M
diag(1, 3, 5, ..., 2N + 1). Note that the same

expression, up to a normalization constant is used in [30],

where the coefficients αi are not considered as part of the

array weighting vector.

The maximum directivity real-valued phase-mode beam-

former with bounded sensitivity can be now obtained using

the solution in (26), with matrix C̃d = C + βU. The Re{·}
operator is omitted because both matrices C and U are real-

valued for the spherical geometry case.

The lower bound on sensitivity and the minimum sensitivity

beamformer will be given, again, by the solution of the opti-

mization problem formulated in (12) with matrix C replaced

by U.

VI. SIMULATION STUDY

A. Complex-valued vs. real-valued optimal beamformers

Recently, several publications focused on phase-mode

beamforming methods with complex-valued weights for spher-

ical microphone arrays [27], [29]–[33]. The purpose of the

current section is to compare the techniques with real-valued

Fig. 2. Comparison of the performance measures of complex-valued and real-
valued optimal beamformers: (a) - directivity index, (b) - sensitivity.

weights developed in this paper to their corresponding tech-

niques with complex-valued weights [27]. The comparison is

performed for spherical microphone array of order N = 10.

Fig. 2 presents the performance measures of maximum direc-

tivity and minimum sensitivity beamformers as the function

of the product kr. It should be noted that the minimum

sensitivity beamformers were obtained using the solutions of

the optimization problems in (10) and (12) for the complex-

valued and the real-valued cases, respectively, with matrix C

replaced by U (see (54)).

Recall that the real-valued solutions are sub-optimal in the

sense that they result from the optimization over the space

of real numbers which is a subspace of the complex numbers.

Thus, real-valued beamformers are expected to perform poorer

than the more general complex-valued beamformers. Never-

theless, it can be seen that the performance is not degraded

significantly. The directivity indexes of the real-valued beam-

formers are lower than the directivity indexes of the complex-

valued ones only by 3 dB for the entire frequency range in this

particular example. The difference in the sensitivities between

the maximum directivity beamformers is about 5 dB for lower

frequencies, decreasing to 3 dB for higher frequencies.

In addition, note that in both cases (real and complex), the

maximum directivity beamformers tend to be optimal also

in the sensitivity sense at high kr ranges. This behavior is

similar to the one observed for the linear array geometry as

discussed at the end of Section IV. This is due to the fact that

the absolute value of the mode strength coefficients bn(kr)
when kr approaches N are nearly independent of the order n,

i.e. |bn(kr)| ≈ |b0(kr)|. This implies that C ≈ M|b0(kr)|
2

(4π)2 U.

Hence, the maximum directivity and the minimum sensitivity
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problems tend to be the same for higher frequencies.

B. Sidelobe performance

Here we use (22) and (52) in order to calculate the beampat-

tern of the real-valued maximum directivity beamformer. Fig.

3 illustrates the simulated maximum directivity beampatterns

at kr = 10 for the spherical microphone array of order

N = 10.

Fig. 3. Maximum directivity beampatterns with real-valued weights for a
spherical array of order N = 10, at kr = 10.

The array is steered to Θ = 0. It can be seen that there is

indeed a main lobe in the desired direction with a sidelobe

level of about −8 dB. As can be seen, the relatively poor

sidelobe-level performance is due to a side lobe at Θ = π.

In order to find the reason for the appearance of the sidelobe

at Θ = π we return to the definition of directivity in Section

II-B. It was seen that matrix C defined in (5) includes the

sinΘ function (when the look direction Ωl coincides with the

positive z axis, we get Θ = θ), which, as mentioned above,

plays the role of a cost function. This implies that the solution

to the optimization problem defined by (12) will tend to pull

the energy towards sinΘ = 0, minimizing the response at the

center where the cost is high.

With this in mind, one can try different cost functions

in order to affect the sidelobe level or the gain distribution

along Θ. Although cost functions other than sinΘ will cause

degradation in directivity, they can be beneficial in decreasing

the sidelobe level, while at the same time affecting the main

lobe width, as will be demonstrated shortly.

Several alternative beampatterns were calculated using lin-

ear, uniform and unit step cost functions. The results are

summarized in Fig. 4 and Table I. It can be observed that

the linear cost function (Fig. 4(a)) imposes higher cost at

Θ = π and the high-level sidelobe at Θ = π is avoided. In

addition, using the unit step cost function (Fig. 4(c)) and the

uniform cost function (Fig. 4(b)), results in a more uniform

spread of side-lobe energy. However, the three beampatterns

in Fig. 4 have wider main lobes as compared to the maximum

directivity beampattern (Fig. 3) as well as lower directivity.

Fig. 4. Spherical array beam patterns using various cost functions: (a)-linear,
(b)-uniform, (c)-step function.

Note that the array sensitivities using different cost func-

tions are only slightly above the sensitivity of the maximum

directivity beamformer (see Table I). Thus, at least for the pa-

rameters of the simulation presented here, the use of different

cost functions did not impact on the array sensitivity.
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TABLE I
COMPARISON OF BEAMPATTERN PARAMETERS USING VARIOUS COST

FUNCTIONS FOR SPHERICAL ARRAY WITH LOWER SENSITIVITY BOUND OF

Tmin = −22.4 [DB].

Cost func. Sidelobe [dB] DI [dB] Sens. [dB]

sin -7.9 18.5 -22.3

linear -18.1 17.3 -20.6

uniform -13.6 17.9 -21.8

step function -18.5 17.9 -21.3

VII. EXPERIMENTAL STUDY

Spherical microphone arrays can be utilized for sound field

analysis. Examples of plane wave decomposition (PWD) of

the sound field using maximum directivity complex-valued

beamformer can be found in the literature [34]. However, the

real-valued maximum directivity beamformer derived in this

paper is suboptimal in the sense that the weights vector is

constrained to be real-valued.

Here, we compare the performance of maximum directivity

beamformers, the optimal complex-valued beamformer and

the suboptimal real-valued beamformer, by using experimental

data.

The large-version of the Eigenmike® spherical microphone

array [35], consisting of 32 microphones mounted on a rigid

sphere of radius r = 9 cm was employed. Note that the

array order is N = 4, meaning that its maximum operat-

ing frequency is about 2400 Hz. The measurements were

performed in an anechoic chamber (anechoic from 300 Hz)

chamber with dimensions of 2 × 2 × 2 m. A B&K Om-

niSource 4295 loudspeaker was used. It was positioned such

that the direction of propagation relative to the array was

(θ, φ) = (100◦, 160◦). By selecting the response from the

loudspeaker to the microphone array at a desired frequency, the

vector p containing complex pressure amplitudes at different

microphones is obtained. Then, the spherical Fourier transform

coefficient pnm of the pressure on the sphere are calculated

in the least squares sense using the pseudo-inverse of the

transform matrix [36].

The spherical Fourier transform coefficients of the weight-

ing function of the complex-valued maximum directivity

beamformer are given by [4]:

w∗
nm =

Y mn (Ωl)

bn
, (55)

meaning that dn = 1
bn

, which is equivalent to the result in

(10) up to a normalization constant 4π
(N+1)2 . Thus, the output

of the beamformer when steered to Ωl is given by:

y(Ωl) =

N
∑

n=0

n
∑

m=−n

pnm

bn
Y mn (Ωl). (56)

Thus, PWD is performed by dividing the measured pressure

coefficients by bn and transforming back into the spatial

domain. Similarly, when using the optimal real-valued beam-

former d = [d0 d1 . . . dN ]T the pressure coefficients pnm are

multiplied by dn and transformed into the spatial domain. The

results of spatial sound-field analysis using PWD are presented

in Fig. 5. It can be seen that as expected, all three results

have a maximum in the proximity of the loudspeaker direction.

However, the analysis performed using real-valued maximum

directivity beamformer (Fig. 5.(b)) has an extra peak in the

reciprocal direction. This is the straightforward consequence

of the high sidelobe at Θ = π as discussed in Section VI. It

can be seen that, by using the real-valued beamformer with a

linear cost function as proposed in section VI, the undesired

peak is completely eliminated. However, the resolution of the

analysis is degraded as a consequence of the wider main lobe

and lower directivity.

VIII. CONCLUSION

Beamforming techniques with real-valued weights have the

potential to significantly simplify beamformer structure. Two

optimal beamforming techniques using real weights were

presented in this paper. It was shown that these techniques can

be used with any desired array geometry. In particular, when

used with spherical array geometry, the techniques result in

electronically steerable beampatterns. A degree of flexibility

was introduced by using various cost functions. The results of

numerical simulations and the experimental study show that, as

expected, the performance of optimal beamformers with real-

valued weights is lower than that of the optimal beamformers

with complex-valued weights, but not considerably so in light

of the potential hardware savings.
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