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Abstract

There is strong neurophysiological evidence suggesting that processing of speech signals in the 

brain happens along parallel paths which encode complementary information in the signal. These 

parallel streams are organized around a duality of slow vs. fast: Coarse signal dynamics appear to 

be processed separately from rapidly changing modulations both in the spectral and temporal 

dimensions. We adapt such duality in a multistream framework for robust speaker-independent 

phoneme recognition. The scheme presented here centers around a multi-path bandpass 

modulation analysis of speech sounds with each stream covering an entire range of temporal and 

spectral modulations. By performing bandpass operations along the spectral and temporal 

dimensions, the proposed scheme avoids the classic feature explosion problem of previous 

multistream approaches while maintaining the advantage of parallelism and localized feature 

analysis. The proposed architecture results in substantial improvements over standard and state-of-

the-art feature schemes for phoneme recognition, particularly in presence of nonstationary noise, 

reverberation and channel distortions.

Index Terms

Auditory cortex; automatic speech recognition (ASR); modulation; multistream; speech 
parameterization

I. Introduction

AUTOMATIC speech recognition (ASR) systems suffer a significant drop in performance 

when there is a mismatch between field test data and corpora used in system training. 

Mismatches are often caused by ambient background conditions or transmission channel 

distortions; which introduce both additive noise signals (at varying signal-to-noise levels) or 

additional linear or nonlinear distortions. Such distortions often have dramatic effects on the 

performance of ASR systems, even when the levels of mismatches are quite low. The noise 

robustness issue or ability to deal with mismatch train/test acoustic conditions is all the more 

important as the ASR technology is increasingly used for data input in mobile devices, 

where the acoustic input is expected to come from a diverse set of acoustic environments 

and channel conditions.
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Given that humans are quite adept at communicating even at relatively high levels of noise 

[1], numerous noise robustness approaches in the literature focused on bringing biological 

intuition and knowledge into front-end feature extraction (e.g. Mel cepstral analysis, 

perceptual linear prediction, RASTA filtering) [2]. Additional techniques were also proposed 

to address mismatches due to stationary or slow-varying noise/channel; such as spectral 

subtraction (SS)[3], log-DFT mean normalization (LDMN), long-term log spectral 

subtraction (LTLSS), cepstral mean normalization (CMN) [4], and variance normalization 

[5]. Overall, state-of-the-art systems rely on a combination of auditory motivated front-end 

schemes augmented with feature normalization techniques [6]. Such schemes are often 

augmented with speech enhancement front-ends in order to tackle mismatch conditions [7], 

[8]. Nonetheless, current techniques remain quite limited in dealing with various classes of 

distortions, including nonstationary noise sources, reverberant noises and slowly-varying 

channel conditions.

To improve noise robustness, an alternative technique based on multistream combination 

was proposed [9], [10]. In this approach, multiple feature representations of the signal are 

processed in parallel before the information is combined at a later point. The motivation 

behind the multistream approach is that any external distortion does not affect the different 

feature streams in the same way, and by combining the information from multiple sources, 

the recognition performance can be improved. Traditionally, feature representations based on 

short-term analysis are combined with features that integrate information over long time 

windows [9]–[11]. Recently, feature schemes that take advantage of multiscale spectro-

temporal modulations have been proposed; whereby conventional Gabor filters centered at a 

number of specific spectral or temporal modulation frequencies are used [12], [13]. These 

schemes have the drawback of dimensionality explosion of the feature space into several 

thousands of dimensions [14], [15], and typically use the rationale of feature division by 

segmenting the feature space into several tens of feature streams [12], [13], [16]–[18].

In this paper, we present a new framework for multistream feature processing. The proposed 

scheme puts much attention into the careful design of the multiple processing paths, taking 

into account a number of important points: (i) to integrate slow and fast dynamics of speech, 

both spectrally and temporally; (ii) to make each stream by itself noise-robust; (iii) to allow 

each processing stream to cover an expanded range of spectral and temporal dynamics of 

speech. A key component that makes this approach feasible is the use of bandpass 

modulation filters; unlike the conventional Gabor filters that are localized around a specific 

spectral or temporal modulation frequency. As such, the proposed scheme avoids the 

drawbacks of previous attempts at multistream processing. We evaluate the benefits of this 

framework, on a variety of mismatch train and test conditions, in a speaker-independent 

phoneme recognition task. Preliminary results of this model were presented in [19].

The following section presents motivation and details of the multistream feature 

parameterization. The ASR system setup and the extensive set of recognition experiments 

involving a multitude of mismatch conditions are described in Section III. In Section IV, we 

contrast the recognition performance of the multistream system with standard baseline ASR 

features, Mel-Frequency Cepstral Coefficients (MFCC), and two state-of-the-art noise robust 

feature schemes namely Mean-Variance ARMA (MVA) processing [6] and Advanced-ETSI 
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noise-robust speech recognition front-end [7]. An elaborate discussion on the proposed 

multistream parameterization, along with individual feature stream performances, is 

presented in Section V. We finally conclude with a brief summary and potential 

improvements towards achieving further robustness to noise distortions in Section VI.

II. Multistream Parameterization

The parameterization of speech sounds is achieved through a multistage auditory analysis 

that captures processing taking place at various stages along the auditory pathway from the 

periphery all the way to the primary auditory cortex (A1). We first describe the peripheral 

analysis used to obtain the ‘auditory spectrogram’ representation, followed by a detailed 

description of the cortical analysis for multistream parameterization of the speech input.

A. Peripheral Analysis

The acoustic input undergoes a series of transformations in the auditory periphery and is 

converted from a one-dimensional time waveform to a two-dimensional pattern of time-

varying neuronal responses distributed along the tonotopic frequency axis. The two-

dimensional representation referred to as the auditory spectrogram is obtained using an 

auditory-inspired model of cochlear and midbrain processing [20]. The acoustic input s(t) is 

first processed through a pre-emphasis stage, implemented as a first-order highpass filter 

with pre-emphasis coefficient 0.97. An affine wavelet transform of the acoustic signal s(t) 
models the spectral analysis observed at the cochlear stage. The cochlear frequency analysis 

is modeled by a bank of highly-asymmetric and overlapping constant-Q (Q = 4) bandpass 

filters (h(t;f)) with center frequencies that are uniformly distributed along a logarithmic 

frequency axis (x) ((1a), where ⊗t denotes convolution with respect to time). This stage 

employs 128 filters over a 5.3 octave range (24 filters/octave), and results in a 

spatiotemporal pattern of displacements ycoch(t;f) along the basilar membrane. The 

following stage simulates the function of a lateral inhibitory network (LIN) which detects 

discontinuities in the responses across the tonotopic axis of the auditory nerve array, 

inducing a sharpening of the filterbank frequency selectivity as observed in the cochlear 

nucleus [20]. The LIN is approximated by a first derivative with respect to the tonotopic 

axis, followed by a half-wave rectifier (1b) and a short-term integrator (1c). The temporal 

integration window is implemented by the function μ(t; τ) = e−t /τμ(t) with time constant τ = 

10 ms mimicking the further loss of phase-locking observed in the midbrain. This stage 

effectively sharpens the bandwidths of the cochlear filters from Q ≃ 4 to 12. The final stage 

consists of a nonlinear cubic root compression of the spectrogram (1d), followed by 

downsampling the number of frequency channels by a factor 4, resulting in 32 frequency 

channels with a resolution of 6 channels/octave over 5.3 octaves.

ycoch(t, f ) = s(t) ⊗t h(t; f ) (1a)

ylin(t, f ) = max(∂ f ycoch(t, f ), 0) (1b)
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ymid(t, f ) = ylin(t, f ) ⊗t μ(t; τ) (1c)

y(t, f ) = (ymid(t, f ))
1
3 (1d)

B. Cortical Analysis

The spectrogram representation of a typical speech utterance is rich in temporal and 

frequency patterns, with fluctuations of energy across both time and frequency. These energy 

fluctuations, referred to as modulations, characterize several important cues and features 

associated with different sound percepts. Slow temporal modulations (<10 Hz) are 

commensurate with the syllable rate in speech, while intermediate and fast modulation rates 

(>10 Hz) capture segmental transitions like onsets and offsets. Similarly, slow/broad spectral 

modulations (<1 cycles/octave) capture primarily the overall spectral profile and formants, 

while fast/narrow modulation scales (>1 cycles/octave) reflect spectral details such as 

harmonics and subharmonic structure of the spectrum. Higher central auditory stages, 

especially the primary auditory cortex (A1), analyze the auditory spectrogram into more 

elaborate representations that highlight the spectro-temporal modulations present in the 

signal. Physiological data indicates that individual neurons in the central auditory pathway 

are tuned not only to frequencies but also selective to different ranges of spectral 

modulations (also referred to as scales) and temporal modulations (also referred to as rates) 

[21]. Furthermore, neural processing in the temporal lobe is functionally organized along 

parallel pathway, with dual streams attuned to either slow or fast dynamics of the sound 

signal [22], [23]. We mimic this cortical processing, and propose a multistream feature 

framework that integrates slow and fast dynamics of speech, both spectrally and temporally.

Each individual feature stream is obtained by filtering the auditory y(t,f) spectrogram to 

capture different ranges of spectral and temporal modulations. The filtering process is 

performed in the Fourier domain on the modulation amplitudes using a set of bandpass 

spectral and temporal modulation filters. First, the Fourier transform of each spectral (or 

temporal) slice in the spectrogram is taken, then is multiplied by a bandpass modulation 

filter HS(w;[wl,wu]) (or HR(w;[wl,wu])) capturing modulation content within the specified 

range [wl,wu] (wl < wu). The bandpass modulation filters HS(w;[wl,wu]) and HR(w;[wl,wu]) 

are defined as follows:

HS(w; [wl, wh]) = (αw)8e[4 − (2αw)2],

HR(w; [wl, wh]) = (αw)2e[1 − (αw)2],

(2)

Nemala et al. Page 4

IEEE Trans Audio Speech Lang Process. Author manuscript; available in PMC 2018 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



α =

1
wl

, 0 ≤ w < wl

1
w , wl ≤ w ≤ wh

1
wh

, wh < w ≤ wmax,

(3)

where wl, wu are the lower and upper frequency cutoffs for a given bandpass modulation 

frequency range and wmax is the modulation frequency resolution. With 10 ms frame rate 

and 6 frequency channels per octave used in the auditory spectrogram computation, wmax is 

50 Hz for temporal modulations and 3 cycles/octave for spectral modulations. Note that the 

modulation filters capture a range of modulations, and can be bandpass, lowpass (for wl = 0) 

or highpass (depending on the value of wh and the filter roll-off). Also note that the filter 

shape is carefully designed to have a long roll off on the high-frequency end.

The auditory spectrogram computation and the subsequent modulation filtering for 

multistream feature computation are done utterance by utterance (which vary in length 

between 1–5 seconds). The inverse Fourier transform then yields the bandpass modulation 

filtered version of the auditory spectrogram, and the resulting 32 dimensional spectral 

representation for every 10 ms time frame are taken as the stream-specific base features. The 

modulation filtering is performed in the real domain with no alterations to the phase 

information. In our implementation, spectral filtering is performed first, followed by 

temporal filtering.1

A summary of the parametrization procedure is as follows:

• Map the acoustic waveform s(t) into a time-frequency representation y(t,f)

• For each stream i, perform a sequential filtering operation (along spectral slices 

then temporal slices of the spectrogram); where the Fourier transform of each 

slice is bandpass-filtered (in the real domain) using filters HS(w;[wl,wu]) (or 

HR(w;[wl,wu]). The net effect of this sequence of filtering operations is a new 

representation of the spectrogram viewed through the lens of the specific spectral 

and temporal bandpass filter (Fig. 2).

C. Stream Definitions

We parameterize speech with three feature streams that are carefully defined based on the 

spectro-temporal modulation profile of speech. Each feature stream encodes a range of 

spectral and temporal modulations capturing slow and/or fast dynamics of speech along each 

dimension. The stream index and the modulation ranges are shown in Table I. The streams 

are designed considering the following three important principles:

1Switching the order of the filtering operation or performing 2-dimensional filtering over the spectro-temporal profile did not yield 
noticeable differences in the system performance. Perceptual data suggests that one can view the spectrotemporal modulation domain 
as a separable product of a purely temporal and purely spectral function [24]–[26].
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I. Information encoding: Each feature stream by itself needs to carry sufficient 
information about the underlying speech signal. In the spectro-temporal 

modulation space, this requirement translates to each stream capturing a 

reasonable percentage of the total modulation energy. The correspondence 

between modulations in speech signals and the phonetic identity of the sound is 

based on behavioral studies that tie the fidelity of spectrotemporal modulations 

its accurate perception by human listeners, especially in presence of noise [27]–

[30]. Fig. 1 shows the average Modulation Power Spectrum (MPS) computed 

from the training set of the TIMIT database [31]. The speech MPS is obtained by 

averaging the power of each speech utterance’s 2-D Fourier transform of the 

auditory spectrogram. The regions covered by the feature streams 1–3 are shown. 

In our definition of feature streams, each stream captures on average ~60% of the 

total modulation energy and importantly all three feature streams encode 

approximately equal amounts of signal energy.

II. Complimentary information: There is complimentary information between 

different streams in terms of signal encoding. This requirement indirectly 

translates to each stream capturing slightly different (even if overlapping) 

information about the underlying signal. In this work, the three feature streams 

are defined to capture different regions in the spectro-temporal modulation space. 

Note that aspects (I) and (II) are crucial when combining information from 

different feature streams. We show in the results section that a simple 

combination of evidence from the three feature streams results in a significant 

improvement over any of the individual streams. Fig. 2 shows the three different 

feature streams for an example speech utterance.

III. Noise robustness: Each feature stream by itself is noise-robust. We achieve this 

by constraining modulation bandpass cutoffs to ranges shown to be crucial for 

speech comprehension and highly robust to noise [30]. Each stream encodes high 

energy modulation components, which are inherently noise-robust, in the 

spectro-temporal modulation space.

III. Experiments

A. ASR System

An extensive set of speaker independent phoneme recognition experiments are conducted on 

TIMIT database using the hybrid Hidden Markov Model/Multilayer perceptron (HMM/

MLP) framework [32]. The ‘sa’ dialect sentences are excluded from the experiments, as they 

might bias certain phoneme contexts and result in artificially high recognition scores [33]. 

The remaining training data of 3696 utterances is divided into sets of 3400 utterances from 

375 speakers and 296 utterances from 87 speakers, and used for training and cross-validation 

respectively. The test data consists of an independent set of 1344 utterances from 168 

speakers. For the purpose of training and decoding, 61 hand-labeled symbols of the TIMIT 

training transcription are mapped to a standard set of 39 phonemes along with an additional 

garbage class [33]. Note that the hybrid HMM/MLP framework overcomes some of the 

limitations of the standard HMM/GMM systems [32] and achieves better phoneme 

Nemala et al. Page 6

IEEE Trans Audio Speech Lang Process. Author manuscript; available in PMC 2018 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recognition performance [34] in addition to having advantages in dealing with noisy test data 

[35].

For each processing stream, a three layer MLP with a single hidden layer is discriminatively 

trained to estimate the posterior probabilities of phonemes (probability of phonemes 

conditioned on the input acoustic feature vector). The MLP weights are estimated using the 

training dataset by minimizing the cross entropy between the predicted posteriors and the 

corresponding phoneme target classes [36]. The cross-validation set is used to monitor 

learning progress and adjust the learning rate of the MLP using the standard back 

propagation algorithm. The posterior probability estimates are refined by training a second 

MLP, in a hierarchical fashion [37], which operates on a longer temporal context of 23 

frames of posterior probabilities estimated by the first MLP. The contextual input (11 frames 

of left context, current frame, 11 frames of right context) allows the second MLP to use 

information about the correlations between successive feature vectors and improves the 

posterior estimates. Both MLPs have a single hidden layer with sigmoid nonlinearity (1500 

hidden nodes) and an output layer with softmax nonlinearity (40 output nodes). In the 

proposed multistream feature parameterization, phoneme posteriors for the three streams are 

estimated independently in parallel and finally combined using a simple product rule [11].

The final posterior probability estimates are converted to scaled likelihoods by dividing them 

with the corresponding prior probabilities of phonemes that are estimated from the relative 

frequencies of class labels in the training data. An HMM with 3 states, with equal self and 

transition probabilities associated with each state, is used for modeling each phoneme. The 

scaled likelihoods are used as the emission probabilities for the HMM during decoding. The 

standard Viterbi algorithm is applied for decoding the phoneme sequence. The recognition 

results on the test data are computed in terms of phoneme recognition rate by comparing 

(and aligning to compute insertions, deletions, and substitutions) the decoded phoneme 

sequence to the reference sequence of phonemes.

B. Mismatch Conditions

Two sets of recognition models are trained on clean TIMIT dataset; one on the original 16 

kHz data and another on the downsampled 8 kHz data in order to match sampling in 

different noise corpora (as explained later). To evaluate the noise robustness aspect of the 

different feature representations, several noisy versions of the test set are created to simulate 

a number of real-world application scenarios. The following extensive set of noise types are 

evaluated in the experiments:

i. Additive noise: Twenty versions of the test set (each 1344 utterances) are created 

by adding five different types of noise to the clean test data at Signal-to-Noise-

Ratio (SNR) levels of 20 – 5 dB (in steps of 5 dB) using the setup described in 

[38]. The noise types chosen are, Factory floor noise (Factory1), Speech babble 

noise (Babble), Volvo car interior noise (Volvo), F16 cockpit noise (F16), and 

Leopard military tank noise (Tank), all taken from NOISEX-92 database [39], 

and added using the standard FaNT tool [40].

ii. Reverberant noise: Reverberation conditions are simulated by convolving the 

original clean test set with Gaussian white noise with exponentially decaying 

Nemala et al. Page 7

IEEE Trans Audio Speech Lang Process. Author manuscript; available in PMC 2018 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



envelope. Five versions of the test set (each 1344 utterances, labeled SR100 to 

SR500) are created with simulated reverberation time (RT60) ranging from 100–

500 ms (in steps of 100 ms). Two additional versions of test set (labeled RR100 

and RR500) are created by convolving the test set with real room responses taken 

from [41] with reverberation time ~100 ms and ~500 ms.

iii. Channel mismatch: Speech data from nine different telephone channels in the 

handset TIMIT (HTIMIT) [42] are used. The nine test sets contain 842 

utterances each (with intersection to the original clean TIMIT test set, subset of 

the original 1344 utterances). The nine versions of the test are labeled with the 

original HTIMIT telephone channel labels (CB1, CB2, CB3, CB4, EL1, EL2, 

EL3, EL4, and PT1).

IV. Results

In all the recognition experiments, the models are trained only on the original clean training 

set and tested on the clean as well as noisy versions of test set representing mismatch train 

and test cases. For the evaluation of additive and reverberant test noise conditions, 

recognition system trained on 16 kHz is used. For evaluating mismatch conditions involving 

telephone channel, recognition setup trained on 8 kHz data is used.

The phoneme recognition performance for the proposed multistream feature framework is 

compared against the performance obtained with a standard baseline features and two state-

of-the-art noise robust feature schemes. The baseline features evaluated are standard Mel-

Frequency Cepstral Coefficients (MFCC) [43]. MFCC features are obtained by stacking a 

set of 9 frames of standard 13 MFCCs along with their first, second, and third order 

temporal derivatives (dimensionality is 9 × 13 × 14 = 468). Note that this modified version 

of the baseline features improves over the standard 39 dimensional MFCC features in the 

hybrid HMM/MLP recognition framework [19]. For the multistream parameterization, a 3-

frame temporal context is taken on the base features along with their first, second, and third 

order dynamic features, resulting in an input feature dimensionality of 384 (3 × 32 × 4) for 

each stream.

The first noise robust feature scheme compared against is Mean-Variance ARMA (MVA) 

processing applied on MFCC features [6]. This system combines the advantages of multiple 

noise robustness schemes: cepstral mean subtraction, variance normalization, and temporal 

filtering techniques like RASTA [44]. The second robust feature scheme compared against is 

the Advanced-ETSI distributed speech recognition front-end [7]. A 9-frame temporal 

context is taken on the ETSI features along with their first, second, and third order dynamic 

features, resulting in an input feature dimensionality of 468. For both ETSI and MFCC, the 

9 frame context window and the 468 dimensional feature representations achieved the best 

ASR performance. Both MFCC+MVA and ETSI have been shown to provide excellent 

robustness for a variety of noise distortions, and form the state-of-the-art in noise robust 

feature schemes.2

2The ETSI and MFCC+MVA features, on a comparable phoneme recognition task, have shown to be comparable or better than several 
other noise robust feature schemes namely modulation spectrum based features, relative spectral (RASTA) filtering and multi-
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An overview of the recognition performance for the different speech parameterizations is 

shown in Table II. A detailed analysis of the performance of the different feature schemes on 

speech corrupted with additive noise, reverberant speech, and telephone channel are shown 

in Tables III, IV, and V respectively.

Note that the baseline MFCC features, though perform better than MFCC+MVA and ETSI 

on clean speech, are the most affected on all noise conditions. The multistream 

parameterization performs significantly better than all the other feature schemes on clean as 

well as on all the mismatch train and test conditions. ETSI features perform significantly 

better than MFCC+MVA on additive noise conditions, while MFCC+MVA features perform 

better than ETSI on reverberant and telephone speech.

On speech corrupted with additive noise reflecting a variety of real acoustic background 

conditions, the multistream parameterization performs significantly better than the MFCC

+MVA and the ETSI features; an average relative improvement of 23.1%, and 10.9%, 

respectively (averaged over the five noise types and 4 SNR conditions). The multistream 

parameterization gives an average relative improvement of 18.2% and 21% over MFCC

+MVA and ETSI features on reverberant speech (averaged over the seven reverberation 

conditions), and an average relative improvement of 3.5% and 7% over MFCC+MVA and 

ETSI features on the telephone speech (averaged over the nine HTIMIT channel conditions). 

Note that, of the feature schemes evaluated, ETSI features have an additional advantage of 

using voice/speech activity detectors (VAD) to identify noise-only frames and use the 

information to enhance the signal representation.

V. Analysis

A. Individual Stream Performance

The average recognition performance of the three feature streams, as a percentage of the 

multistream combination performance, for different noise conditions is shown in Fig. 3. The 

complete set of stream-specific recognition results for all the noise conditions is given in the 

Appendix. It can be readily seen that all the streams contribute at least more than 80%, and 

~90% on an average, to the combination performance. This is consistent with the 

approximately equal information encoding capacity (w.r.t. the speech signal representation 

in the spectro-temporal modulation space) of the feature streams. Stream 1 which encodes 

slow spectral and temporal modulations gives the best performance, amongst the three 

feature streams, on majority of the noise conditions (17 out of 21). The superior 

performance of stream 1 is not surprising and can be attributed to the importance of the slow 

modulations for speech comprehension [30]. In fact, stream 1 alone performs better than the 

MFCC+MVA and ETSI noise-robust feature schemes on majority of the noise conditions 

(15 out of 21).

Though extended to include faster temporal modulations, streams 2 and 3 do still cover 

crucial parts of the lower modulation range due to the carefully chosen roll-off definitions of 

resolution RASTA (MRASTA), gammatone frequency cepstral coefficients (GFCC), log-DFT mean normalization (LDMN), and long-
term log spectral subtraction (LTLSS) [45].
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the modulation filters. Both streams give slightly lower but comparable noise-robustness 

performances, since the faster modulations encoded in the streams are still constrained to the 

ranges that are crucial to speech comprehension. Note that it is not entirely straight-forward 

to relate the ranges of modulations encoded in each feature stream to noise robustness (on 

average or even for certain noise conditions). While slow modulations may be advantageous 

in terms of robustness, they may still result in lower recognition performance since the 

encoding of only the slow dynamics may compromise phoneme discriminability. Similarly, 

including fast modulations (upto a certain extent) may result in a higher recognition 

performance because of the superior phoneme discriminability even though the robustness 

aspect may be compromised to some extent. The issue of phoneme discriminability is 

addressed next.

B. Broad Phoneme Class Recognition

We first highlight the observed effects of different noise types on broad class phoneme 

recognition. A subset of 39 phonemes are grouped into four broad phoneme classes: vowels, 

stops, fricatives, and nasals. To highlight the effect of different noise types, the percentage 

drop (from clean) in recognition performance of each of the phoneme classes is shown in 

Fig. 4. All the noise conditions significantly affect stops, while the vowels are the least 

affected. On average, fricatives and nasals are affected to the same degree; with nasals being 

more disrupted by reverberant speech and vice-versa with telephone speech. With stops 

accounting for more than 35% of the error relative to the other broad classes, increasing 

noise robustness for stops in particular would certainly benefit the overall robustness of any 

feature scheme. Such observation remains an open research direction.

We next highlight an interesting phenomenon in which parallel information across streams 

helps complement the contribution of each processing path in the entire scheme. Fig. 5 

provides an example of such complementarity. The figure shows average broad class 

phoneme recognition performance of the three feature streams on clean speech and speech 

corrupted with additive noise. Notice that for stop consonants, on clean speech, the 

performance of all the feature streams is comparable with stream 1 having a slight 

advantage. However, on speech corrupted with additive noise, stream 2 gives a significantly 

higher performance as compared to stream 1 for the stop consonants. Psychophysical 

evidence suggests that one of the advantages that normal subjects have over hearing-

impaired listeners is improved local target-to-masker ratios; especially in presence of non-

stationary backgrounds [46]. The notion of listening in the spectral and temporal “dips” of 

the noisy signal is made possible for normal hearing listeners because of superior spectral 

selectivity and increased temporal resolution. This concept relates to the specific example of 

the improved recognition performance of stream 2, which encodes higher spectral and 

temporal resolutions, for stop consonants in the non-stationary additive noise conditions. 

However note that, due to the complex interaction of different noise types with speech signal 

space and their interaction together with back-end statistical models, it is not trivial in 

general to relate the performance of different feature schemes w.r.t. noise conditions.
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C. Combination of Evidence

Perceptual studies have shown that concurrent streams of speech information along the 

proposed slow vs. fast divide add up supra-linearly, leading to improved intelligibility 

relative to each stream by itself [47]. In this work, we combined the three feature streams at 

the phoneme posterior level using a simple product rule [11]; the motivation being all the 

feature streams contribute to the signal encoding, due to the overlap regions in the ranges of 

modulations captured by the proposed bandpass modulation filters. The multistream 

combination results in an average (over all the noise conditions) relative improvement of 

9.6% over the average individual stream recognition performance; highlighting the 

overlapping yet complimentary information captured by the three feature streams. The 

combination improvement is also significant considering that the noise robustness 

performance of each stream by itself is good. We also evaluated inverse entropy weighting 

and Demster-Shafer combination rules [11], with both giving comparable results to the 

product rule. Note that further gains in performance can be achieved by employing the “full 

combination (FC)” strategy [14], in which all possible combinations of feature streams are 

used by defining a set of exhaustive and mutually exclusive experts. The combination 

strategies that make use of the noise characteristic estimates [48] can also significantly 

improve the noise robustness performance.

D. Are More Feature Streams Better?

We empirically show how a further sub-division of spectro-temporal modulation space into 

many feature streams does not necessarily result in an improved performance. We show this 

with an example by sub-dividing the modulation ranges captured by stream1 into two; with 

first sub-division labeled as Stream1_1 encoding 0–0.7 cycles/octave spectral and 0.5–8 Hz 

temporal modulations, and second sub-division labeled as Stream1_2 encoding 0.3–1.2 

cycles/octave spectral and 4–12 Hz temporal modulations. The recognition performance of 

stream1, and its two sub-divisions and their combination, for three example noise conditions 

is given in Table VI. Notice that the performance of the two sub-stream combination is still 

inferior to the original stream. This might be due to the fact that each sub-stream by itself is 

not able to encode ‘sufficient’ information about the underlying speech signal, which is one 

of the key requirements in multistream feature design. The choice of these design principles 

is chiefly driven by the specific shape of our spectral and temporal filters; in terms of 

overlap between passbands, energy passed through stopband tails as well as roll-off factors. 

These parameters interact closely with our fusion rule across the three streams which does 

require them to provide sufficient encoding power. That being said, we have not 

exhaustively spanned all possibilities with filter shape, overlap and number of streams. It is 

also worth noting that improvements with further sub-division of the modulation space 

might be possible for certain artificial background conditions like localized ripple noise. The 

advances in combination techniques would also play a key role in multistream 

parameterizations.

VI. Summary and Conclusion

Current understanding of speech processing in the brain suggests dual streams of processing 

of temporal and spectral information, whereby slow vs. fast modulations are analyzed along 
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parallel paths that encode various scales of information in speech signals. In this paper, we 

propose a novel multistream feature framework that integrates these slow and fast dynamics 

of speech. In the proposed scheme, three feature streams are carefully designed based on 

three design principles; (i) each feature stream by itself needs to carry sufficient information 

about the underlying speech signal (ii) there is complimentary information between different 

streams in terms of signal encoding (iii) each feature stream by itself is noise-robust.

We evaluate the benefits of the proposed framework on an extensive set of mismatch train 

and test conditions, and showed significant advantages as compared to state-of-the-art Mean-

Variance normalization and ARMA filtering (MVA) and Advanced ETSI front-end noise 

robust feature schemes; an average relative improvement of the order of 15%. We further 

show that even a single stream (stream1) outperforms the state-of-the-art robust features on 

majority of the noise conditions (15 out of 21). However, if only a single feature stream was 

to be used, we would suggest a bandpass modulation filtering with ranges 0–2 cycles/octave 

for spectral modulations and 0.5–12 Hz for temporal modulations [49].

It is worth noting that the noise robustness improvements are obtained without any explicit 

feature normalization and/or signal enhancement techniques. Further improvements in 

robustness could be achieved by applying the multistream scheme on enhanced signal 

representations obtained from speech enhancement techniques [8] and/or applying various 

normalization techniques to minimize the effect of interference/noise in feature domain. The 

parameterization could also be combined with existing feature schemes to take advantage of 

any complimentary information between the representations. Such benefits can be readily 

observed when combining the multistream model proposed here with the MFCC+MVA or 

ETSI schemes (see Appendix, Table X). Fusing posterior estimates from these different 

schemes does in fact show evidence for improved robustness relative to each system by 

itself, and hence preliminary evidence of some degree of complimentarily between the 

different features. Alternative, more targeted, fusion methodologies could undoubtedly 

provide additional improvements.

A key component that makes the proposed multistream framework feasible and cover the 

entire spectro-temporal modulation space (‘significant’ energy region) with just three feature 

streams is the use of bandpass modulation filters which can span an entire range of either 

slow or fast spectral and temporal modulations. This also ensures no dimensionality 

expansion in the feature extraction stage, unlike the previous approaches encoding 

multiscale spectro-temporal modulations (that typically compute several thousands of 

feature dimensions), thereby making the proposed multistream parameterization also highly 

computationally efficient. The computational aspect is especially relevant in the context of 

mobile devices where the ASR technology is increasingly being used for data input. Note 

that even though the recognition in some cases is done on cloud, the feature extraction is still 

best done on the mobile device to avoid distortions introduced by channel used to transmit 

the signal (acoustic input).

The results presented in this work from the multistream parameterization on a hybrid 

HMM/MLP system could be extended to large scale speech recognition tasks in the 

TANDEM framework [50]. The parameterization could also be used to improve noise 
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robustness in other automatic speech processing tasks. For example, speaker and language 

recognition, where it is common to use multiple feature representations and/or systems 

(back-end), can directly benefit this work; we have preliminary results that show great 

promise for speaker recognition.
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Appendix

TABLE VII

Noise Type SNR (in dB)
Stream Number

Stream 1 Stream 2 Stream 3 Combination

Clean(16kHz) – 70.4 68.5 68.5 73.1

Babble

20 64.5 63.6 63.1 68.0

15 58.4 57.7 57.0 62.7

10 49.2 47.9 46.2 53.0

5 36.7 33.7 32.6 38.4

Average 52.2 50.7 49.7 55.5

F16

20 63.3 61.8 62.1 66.5

15 57.1 56.0 55.9 60.6

10 47.8 47.2 46.7 51.2

5 36.7 36.0 36.2 40.1

Average 51.2 50.2 50.2 54.6

Volvo

20 70.1 68.5 68.4 73.0

15 69.9 68.3 68.3 72.8

10 69.1 68.1 67.8 72.4

5 67.9 67.4 66.6 71.6

Average 69.2 68.1 67.8 72.5

Factory 1

20 62.3 61.8 61.2 66.1

15 55.6 55.6 54.7 59.5

10 46.0 46.3 45.4 50.3

5 35.1 34.4 34.6 38.7

Average 49.7 49.5 49.0 53.6

Tank

20 67.5 67.2 66.8 71.6

15 65.3 66.0 64.7 70.1

10 61.2 63.5 61.1 66.8
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Noise Type SNR (in dB)
Stream Number

Stream 1 Stream 2 Stream 3 Combination

5 55.6 59.1 55.9 62.1

Average 62.4 63.9 62.1 67.7

TABLE VIII

TIMIT ASR Results in Terms of Phoneme Recognition Rate (PRR, in Percentage) on 

Reverberant Speech for the Different Processing Streams

Noise Type
Stream Number

Stream1 Stream2 Stream3 Combination

Clean(16kHz) 70.4 68.5 68.5 73.1

SR100 53.9 50.9 50.6 56.8

RR100 54.0 51.4 51.9 57.3

SR200 40.3 39.2 37.1 43.4

SR300 33.7 33.3 31.0 36.4

SR400 30.5 30.0 27.6 32.8

SR500 27.9 27.3 25.5 30.1

RR500 27.2 26.2 26.5 29.4

Average 38.2 36.9 35.7 40.9

Table IX

TIMIT ASR Results in Terms of Phoneme Recognition Rate (PRR, in Percentage) on 

Different Telephone Channel Speech (HTIMIT) for the Different Processing Streams

Noise Type
Stream Number

Stream1 Stream2 Stream3 Combination

Clean(8kHz) 68.1 66.6 66.0 71.3

CB1 59.6 57.9 57.2 62.7

CB2 62.9 61.4 59.9 66.1

CB3 35.2 37.7 33.2 38.4

CB4 43.1 44.0 41.1 47.0

ELI 61.7 60.4 59.6 65.2

EL2 54.0 52.1 51.7 57.2

EL3 54.0 52.0 52.7 57.4

EL4 54.8 52.8 52.0 58.0

PT1 51.4 53.4 48.6 55.8

Average 52.9 52.4 50.7 56.4
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Table X

TIMIT ASR Results in Terms of Phoneme Recognition Rate (PRR, in Percentage) on Clean 

Speech (16 kHz Data and 8 kHz Downsampled Data), Speech Corrupted With Additive 

Noise (Average Performance for Five Noise Types at 20 – 5 dB SNRs), Reverberant Speech 

(Average Performance for 7Impulse Responses With RT60 Ranging From 100-500 ms), and 

Telephone Channel Speech (Average Performance for Nine HTIMIT Channel Conditions). 

Multistream Feature Parameterization and Its Combination With State-of-the-Art Feature 

Schemes are Compared Here. Combination of Evidence From Different Feature 

Parameterizations are Done Using the Product Rule [11]

Noise Type
Speech Parameterizations

Multistream Multistream + MFCC+MVA Multistream + ETSI

Clean (16kHz) 73.1 74.6 74.6

Clean (8kHz) 71.3 73.1 73.2

Additive 60.8 61.8 62.0

Reverberant 40.9 42.2 41.1

Telephone Channel 56.4 59.6 53.1
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Fig. 1. 
The spectro-temporal average modulation power spectrum (MPS) of clean speech computed 

over the TIMIT corpus. The filter bandpass ranges for streams 1, 2 and 3 are overlayed over 

the speech MPS. Note that each rectangle does not reflect the entire range of the 

corresponding stream; since both spectral and temporal filters have long tails. As an example 

of filter shapes, the top panel shows the shape of the temporal modulation filter used for 

stream3 and leftmost panel shows the shape of the spectral modulation filter used for 

stream2.
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Fig. 2. 
Illustration of the three different feature streams for the utterance “Come home right away.” 

taken from TIMIT speech database. The panel (A) shows the time domain waveform along 

with the underlying phoneme label sequence. Panels (B)–(D) show streams 1–3 in the same 

order.
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Fig. 3. 
Performance of the three feature streams, as a percentage of the combination performance, 

on speech with additive noise (top panel, each noise type performance is averaged over the 

SNRs 20, 15, 10, and 5 dB), reverberant speech (middle panel), telephone speech (bottom 

panel). Within each group, the bars from left to right are stream1, stream2, and stream3 

respectively. The performance of the three streams in clean is 70.4%, 68.5% and 68.5% for 

streams 1, 2 and 3 respectively.)
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Fig. 4. 
Percentage drop (from clean) in recognition performance of broad phoneme classes due to 

additive noise, reverberation, and telephone channel; calculated from the average broad class 

phoneme recognition performace on the three noise types. Within each group, the bars from 

left to right are vowels, stops, fricatives, and nasals, respectively.
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Fig. 5. 
The broad class phoneme recognition accuracies of the three feature streams, as a percentage 

of the combination performance, on clean speech (top panel) and speech with additive noise 

(bottom panel, averaged over all five noise types and four SNRs). Within each group, the 

bars from left to right are stream1, stream2, and stream3, respectively.
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TABLE I

Range of Spectral and Temporal Modulations Captured by Each of the Three Feature Streams

Stream No. Spectral Modulations
(cycles/octave)

Temporal Modulations
(Hz)

1 0 to 1.2 0.5 to 12

2 0.4 to 2.2 0.5 to 16

3 0 to 1.5 6 to 22
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TABLE II

TIMIT ASR Results in Terms of Phoneme Recognition Rate (PRR, in Percentage) on Clean Speech (16 kHz 

Data and 8 kHz Downsampled Data), Speech Corrupted With Additive Noise (Average Performance for Five 

Noise Types at 20 – 5 dB SNRs), Reverberant Speech (Average Performance for 7 Impulse Responses With 

RT60 Ranging From 100–500 ms), and Telephone Channel Speech (Average Performance for Nine HTIMIT 

Channel Conditions). Multistream Feature Parameterization is Compared Against the Standard and State-of-

the-Art Feature Schemes

Noise Type
Speech Parameterizations

MFCC MFCC+MVA ETSI Multistream

Clean (16kHz) 71.4 68.2 70.6 73.1

Clean (8kHz) 70.5 67.5 69.3 71.3

Additive 39.2 49.4 54.8 60.8

Reverberant 31.6 34.6 33.8 40.9

Telephone Channel 36.4 54.5 52.7 56.4

IEEE Trans Audio Speech Lang Process. Author manuscript; available in PMC 2018 June 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nemala et al. Page 26

TA
B

L
E

 II
I

T
IM

IT
 A

SR
 R

es
ul

ts
 in

 T
er

m
s 

of
 P

ho
ne

m
e 

R
ec

og
ni

tio
n 

R
at

e 
(P

R
R

, i
n 

Pe
rc

en
ta

ge
) 

on
 S

pe
ec

h 
C

or
ru

pt
ed

 W
ith

 a
 V

ar
ie

ty
 o

f 
A

dd
iti

ve
 N

oi
se

 T
yp

es
. 

M
ul

tis
tr

ea
m

 F
ea

tu
re

 P
ar

am
et

er
iz

at
io

n 
is

 C
om

pa
re

d 
A

ga
in

st
 C

on
ve

nt
io

na
l a

nd
 S

ta
te

-o
f-

th
e-

A
rt

 N
oi

se
-R

ob
us

t F
ea

tu
re

 S
ch

em
es

N
oi

se
 T

yp
e

SN
R

 (
in

 d
B

)
Sp

ee
ch

 P
ar

am
et

er
iz

at
io

ns

M
F

C
C

M
F

C
C

+M
V

A
E

T
SI

M
ul

ti
st

re
am

B
ab

bl
e

20
48

.1
56

.5
62

.1
68

.0

15
37

.3
49

.5
55

.6
62

.7

10
27

.6
40

.7
46

.1
53

.0

5
19

.5
29

.7
34

.0
38

.4

A
ve

ra
ge

33
.1

44
.1

49
.5

55
.5

F1
6

20
48

.5
57

.1
63

.3
66

.5

15
37

.8
50

.8
57

.9
60

.6

10
27

.0
43

.2
49

.4
51

.2

5
18

.2
34

.6
38

.5
40

.1

A
ve

ra
ge

32
.9

46
.4

52
.3

54
.6

V
ol

vo

20
60

.8
63

.5
68

.1
73

.0

15
55

.7
62

.0
66

.7
72

.8

10
49

.9
60

.2
64

.8
72

.4

5
42

.9
58

.1
61

.7
71

.6

A
ve

ra
ge

52
.3

61
.0

65
.3

72
.5

Fa
ct

or
y 

1

20
48

.2
55

.7
61

.5
66

.1

15
38

.1
48

.4
54

.9
59

.5

10
28

.3
39

.4
45

.1
50

.3

5
19

.6
30

.2
34

.5
38

.7

A
ve

ra
ge

33
.6

43
.4

49
.0

53
.6

Ta
nk

20
54

.3
57

.8
62

.8
71

.6

15
47

.9
54

.5
59

.7
70

.1

IEEE Trans Audio Speech Lang Process. Author manuscript; available in PMC 2018 June 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nemala et al. Page 27

N
oi

se
 T

yp
e

SN
R

 (
in

 d
B

)
Sp

ee
ch

 P
ar

am
et

er
iz

at
io

ns

M
F

C
C

M
F

C
C

+M
V

A
E

T
SI

M
ul

ti
st

re
am

10
40

.4
50

.7
56

.9
66

.8

5
32

.9
46

.4
51

.7
62

.1

A
ve

ra
ge

43
.9

52
.3

57
.8

67
.7

IEEE Trans Audio Speech Lang Process. Author manuscript; available in PMC 2018 June 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nemala et al. Page 28

TABLE IV

TIMIT ASR Results in Terms of Phoneme Recognition Rate (PRR, in Percentage) on Reverberant Speech. 

Multistream Feature Parameterization is Compared Against the Standard and State-of-the-Art Noise-Robust 

Feature Schemes

Noise Type
Speech Parameterizations

MFCC MFCC+MVA ETSI Multistream

SR100 47.7 50.1 48.5 56.8

RR100 36.6 48.4 44.1 57.3

SR200 35.5 37.3 36.4 43.4

SR300 29.6 30.5 30.5 36.4

SR400 26.3 27.1 27.2 32.8

SR500 24.5 24.6 25.1 30.1

RR500 21.1 24.0 24.5 29.4

Average 31.6 34.6 33.8 40.9
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TABLE V

TIMIT ASR Results in Terms of Phoneme Recognition Rate (PRR, in Percentage) on Different Telephone 

Channel Speech (HTIMIT). Multistream Feature Parameterization is Compared Against the Standard and 

State-of-the-Art Noise-Robust Feature Schemes

Noise Type
Speech Parameterizations

MFCC MFCC+MVA ETSI Multistream

CB1 48.9 58.9 59.5 62.7

CB2 42.7 61.6 61.7 66.1

CB3 27.1 43.3 44.4 38.4

CB4 32.4 48.5 45.5 47.0

EL1 49.3 62.0 60.9 65.2

EL2 31.3 55.9 52.8 57.2

EL3 37.1 52.9 50.8 57.4

EL4 30.7 56.7 47.6 58.0

PT1 27.8 50.7 51.4 55.8

Average 36.4 54.5 52.7 56.4
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TABLE VI

TIMIT ASR Results in Terms of Phoneme Recognition Rate (PRR, in Percentage) for Two Sub-Divisions of 

Stream 1

Stream Definition
Noise Condition

Babble, 10dB SR300 EL2

Stream 1 49.2 33.7 54.0

Stream 1_1 45.4 30.2 50.3

Stream 1_2 42.8 29.1 48.6

Combination 47.3 31.8 51.9
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