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Abstract—In many ways, the lexicon remains the Achilles heel of
modern automatic speech recognizers. Unlike stochastic acoustic
and language models that learn the values of their parameters
from training data, the baseform pronunciations of words in a
recognizer’s lexicon are typically specified manually, and do not
change, unless they are edited by an expert. Our work presents
a novel generative framework that uses speech data to learn sto-
chastic lexicons, thereby taking a step towards alleviating the need
for manual intervention and automatically learning high-quality
pronunciations for words. We test our model on continuous speech
in a weather information domain. In our experiments, we see
significant improvements over a manually specified “expert-pro-
nunciation” lexicon. We then analyze variations of the parameter
settings used to achieve these gains.

Index Terms—Baseform generation, dictionary training with
acoustics via EM, pronunciation learning, stochastic lexicon.

I. INTRODUCTION

W ITHOUT question, automatic speech recognition is a
data-driven technology. It is disconcerting, then, that

the list of word-pronunciations found in the lexicon, a central
component of almost any speech recognizer, is typically static
and manually updated rather than learned probabilistically. For
large vocabulary speech recognition, the research community
often relegates the modeling of phonological variation to con-
text-dependent acoustic models. By contrast, this work explores
the loosening of phonetic constraints at the lexical level with the
help of a straightfoward application of Expectation-Maximiza-
tion (EM) to learning a stochastic lexicon. Central to this for-
mulation is a shift in perspective regarding the objective of the
lexicon itself. Rather than providing a mapping between each
word and one, or perhaps a few, canonical pronunciations, the
stochastic lexicons trained in this work theoretically model a
weighted mixture of all possible phonetic realizations of a word.
This leads us to refer to these stochastic lexicons as pronuncia-
tion mixture models (PMMs).
The work presented here is an extension of our previous ex-

ploration of the PMM framework [1] and [2]. These papers ex-
plore a maximum likelihood training procedure for the PMM
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that incorporates information from spoken examples of a word,
in addition to its spelling, into automatically learned pronun-
ciation weights. In [1], we simulate missing pronunciations on
an isolated word corpus, and use the PMM to recover expert-
quality pronunciations. In [2], we extend this framework to con-
tinuous speech and show that, even with well-matched acoustic
models, the PMM improves recognition performance. In both
cases, we make heavy use of a state-of-the-art letter-to-sound
(L2S) system based on joint-sequence modeling [3].
L2S systems are often used when hand-crafted pronuncia-

tions fail to cover the vocabulary of a particular domain. Often
the parameters of these models are trained only using existing
lexicons. The pronunciation mixture model provides a princi-
pled approach of incorporating acoustic information into L2S
pronunciation generation. Moreover, rather than limiting the
pronunciation generation to out-of-vocabulary words, the PMM
can effectively be applied to training the entire lexicon. Like the
acoustic and language models, the data used to learn pronuncia-
tions would ideally match the test domain as closely as possible.
Indeed, the experiments of this work use the very same training
data. Since this data is readily available at no extra cost for most
recognizers, we hope these results encourage the adoption of
lexicon learning as a standard phase in training an automatic
speech recognition (ASR) system.
More broadly, we view this work as a small step towards

being able to train a speech recognizer entirely from an or-
thographically transcribed corpus. Ideally, the lexical pronun-
ciations and perhaps even the basic phonetic units of a lan-
guage themselves could be determined automatically from a
large amount of transcribed speech data. Were such problems
solved, the process of training a speech recognizer might be re-
duced to a black-box procedure for which even a non-expert
could input the necessary training data, and from which would
emerge a speech recognizer of the appropriate language. For
some languages, this vision is already close at hand, while for
others there are significant problems yet to be solved. English,
in particular, presents difficulties due to the irregular mapping
between letters and sounds.
This motivates us to concentrate this work on the issue of

pronunciation generation while, for the moment, leaving the
existing linguistically inspired phonetic units largely intact. In
Section II, background information is presented which reformu-
lates the basic equations governing modern speech recognition
technology with an additional term for the stochastic lexicon.
Section III then details how the recognizer search space is im-
plemented using a weighted finite state tranducer (FST) land-
mark-based recognizer. Sections IV and V provide a review of
the literature related to this work followed by a more detailed
overview of the L2S framework used in the majority of our ex-
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periments. We then review a general formulation for the PMM
in Section VI, and discuss issues that arise when implementing
the PMM in practice in Section VII. Section VIII then extends
the experiments of [2] on a weather query corpus with additional
analysis. Finally, we briefly discuss the phonological character-
istics of the learned stochastic lexicons in Section IX, before
concluding with a brief summary in Section X.

II. BACKGROUND

The problem of ASR is typically formulated as the search
for a series of words through a distribution of hypotheses mod-
eled statistically. Conceptually, the search space is layered. In-
dividual words are composed of phonetic units, which are in
turn modeled using states in probabilistic machinery such as a
finite state transducer (FST). Across each layer, constraints are
introduced. A language model captures the likelihood of word
sequences, perhaps using a variation of the standard -gram
approach. At a lower level, a context-dependent acoustic model
bundles together the phonetic units. In this work, we are con-
cerned mainly with the relation between two layers: the words
and the phone sequences that constitute their pronunciations.
For example, the word colonel might be mapped to a pronun-
ciation by an expert, and end up in the lexicon in an Arpabet
representation as colonel: k er n ax l.
Automatic speech recognition is often motivated with a few

short equations. In particular, the goal of ASR is to find the most
likely sequence of words given an utterance
. To do this, we define a distribution to be our search space,
and model the probability of a word sequence given the acoustic
signal as follows:

(1)

(2)

We let represent the language model and repre-
sent the probability of the acoustics given a particular transcript.
Assuming a deterministic lexicon, in which a word is paired
with a single pronunciation, the uncertainty in (2) is entirely
relegated to the language and acoustic models, and the lexicon
serves to couple the two with tight constraints. It is more infor-
mative and less restrictive, however, to explicitly view the lex-
icon as its own statistical component. The following equations
describe how one might treat the pronunciations underlying a
word sequence as a hidden variable:

(3)

(4)

In this work, we denote the set of all possible sequences of
phonological units using , and where word-boundary delim-
iters are included we use . Thus, a particular pronunciation
sequence is specified by , where
each . Factoring the equation above further we have,

(5)

where we make the conditional independence assumption that
the acoustics are independent of the words given their pronunci-
ations, . With our new we see
that:

(6)

To ensure that the computation required for decoding is
tractable, the Viterbi approximation is used, in which the
summation over all possible pronunciations is replaced by a
maximization.

(7)

Modulo a possible penalty for word boundaries we let
represent the way a

lexicon contributes to the score of a given hypothesis. This de-
composition makes the assumption, common to most lexicons,
that a pronunciation of a word is independent of surrounding
pronunciations given the word itself. Of course, in typical
speech recognizers, lexicons are unweighted, effectively set-
ting for all pronunciations. For words with
multiple pronunciations, this does not model a proper proba-
bility distribution.
In this work, we argue that it is beneficial to make full use

of a lexicon’s potential stochasticity. In particular, we will pa-
rameterize and use Expectation-Maximization (EM)
[4] to find the maximum likelihood parameter estimates given
a set of training data. In this way, the lexicon fits nicely into
the probabilistic framework other components of an automatic
speech recognizer already enjoy [5], and its training is well-mo-
tivated through its incorporation into the fundamental equations
of recognition described above.

III. THE SUMMIT LANDMARK-BASED SPEECH RECOGNIZER

This work makes use of the SUMMIT speech recognizer [6].
Perhaps the largest difference between SUMMIT and a typical
speech recognizer is in its observation space. Rather than
computing a sequence of observations at a fixed frame-rate,
SUMMIT has been designed to look for places of significant
spectral change to identify possible acoustic-phonetic events.
These hypothesized boundary points form the bases of the
recognizer’s search space during decoding. Acoustic models
are trained on observations from boundaries in the following
manner. MFCC averages are taken over varying durations
around the landmarks to generate large feature vectors, which
are whitened and have their dimensionality reduced through
principal components analysis (PCA). Gaussian mixture
models are trained for the set of diphone boundary labels found
in the training corpus.
Each component of SUMMIT is represented using MIT’s

open-source finite state transducer (FST) toolkit [7]. Weighted
FSTs have the flexibility to represent the variety of the con-
stituent probability distributions of an automatic speech rec-
ognizer (e.g. those in (7)). Furthermore, well understood al-
gorithms can be implemented for operations such as compo-
sition, denoted with , which corresponds roughly to taking a
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product of two distributions represented by FSTs. When left un-
weighted, FSTs can also describe deterministic manipulations of
the search space, such as converting between context indepen-
dent phonetic units and the context dependent boundary units
described above.
Another component found in some recognizers that can be

efficiently represented using FSTs is a set of phonological rules
[8]. Instead of mapping words directly to phone sequences,
these rewrite rules are one way that researchers have attempted
to account for phonological variation. For example, the phrase
“nearest tornado” might be represented at the phoneme level as
(1) in the table below, but with the application of phonological
rules the phone pronunciation might read as either (2) or (3).

Notice the difference in consonant closures and even vowel
substitutions. These manually crafted phonological rules ac-
count for acoustic-phonetic mismatches between the underlying
phonemic baseforms and the surface-level phonetic units, and
have been shown to outperform relying on context-dependent
acoustic models to implicitly model phonetic variation [9].
Their utility, however, must be re-evaluated in light of sto-
chastic lexicons.
In summary, the SUMMIT FST search space has four pri-

mary hierarchical components: the language model , the
phoneme lexicon , the phonological rules that expand
the phoneme pronunciations to their phone variations, and the
mapping from phone sequences to context-dependent model la-
bels . The full network can be represented as a composition
of these components: . In this work, we will
be replacing the hand-crafted and with lexicons learned au-
tomatically. While we do not entirely remove the dependency
on these hand-crafted components, their role is reduced to pro-
viding an initialization for a principled training procedure.

IV. RELATED WORK

Research focusing on the speech recognizer’s lexicon is often
categorized as either addressing pronunciation variation or ad-
dressing a version of the out-of-vocabulary (OOV) problem.
An early overview of directly modeling phonological variation
at the lexical level can be found in [10]. This section summa-
rizes some of this research, as well as more recent endeavors
in pronunciation modeling. The particular instantiation of the
OOV problem most relevant to this work is the one in which
the spelling of the word is known, however, the sequences of
phonetic units that comprise its pronunciations are not. To solve
this problem, a number of strategies have been devised to con-
struct or train L2S models. In some sense, the PMM connects
these two areas of research by combining L2S models with the
phonological variation present in acoustic training data. For this
reason, we pay particular attention to related work that fits into
this middle-space.
We begin, however, by discussing pronunciation generation

from the perspective of the OOV problem. Almost all speech

recognizers have a finite vocabulary. If the recognizer encoun-
ters an out of vocabulary (OOV) term, a word that is not in
the lexicon, it cannot produce a transcript that contains it. This
complication is compounded in many ASR applications, since
a misrecognized OOV word can easily cause the surrounding
words to be misrecognized [11]. While one cannot completely
eliminate OOVs in an open domain recognition task, techniques
have been devised to mitigate the issue, including using con-
fidence scoring to detect OOVs [12], as well as filler models
to hypothesize the pronunciation of an OOV word [13]. A par-
ticularly common approach to the OOV problem, however, is
simply to increase the vocabulary size, whether manually or
automatically.
For these reasons, generating pronunciations for new words

is the subject of a large body of research [3], [14]–[20]. Al-
though for some languages mapping a spelling to a pronun-
ciation is relatively straightforward, English has shown itself
to be rather challenging. Initial work in grapheme-to-phoneme
conversion often consisted of rule-based methods [15], how-
ever, these quickly ran into issues of scalability and were soon
replaced by data-driven methods. A hybrid approach that uti-
lizes linguistic knowledge in a statistical framework is exem-
plified in [16]. As a first step, a hand-written grammar parses
words into a set of linguistically motivated sub-word “spell-
neme” units. Then, after parsing a large lexicon into these seg-
mented words, an -gram model is trained and used later for
decoding. Alternative L2S approaches include local classifica-
tion, pronunciation by analogy, and even statistical machine
translation [19]. The local classification approach processes a
word spelling sequentially from left-to-right and a decision is
made for each input character by looking at the letter’s context
using decision trees [21] or neural networks [22]. Pronuncia-
tion by analogy, on the other hand, scans the training lexicon
for words or part-of-words that are in some sense similar to the
word for which a pronunciation is needed [17], [18]. The output
pronunciation is then chosen to be analogous to the existing ex-
amples. Finally, the joint-multigram framework of [3] and [23]
learns a language model over graphone units, which contain
both graphemes and phones. This approach has been shown to
produce state-of-the-art results for many L2S tasks. Some have
gone on to explore discriminative training in a joint-sequence
setting [20].
As evidenced by evaluation metrics, such phoneme error rate,

which often assume a canonical baseform, pronunciation gen-
eration for OOVs is rarely characterized as an attempt to model
pronunciation variation. Still, this variation has been identified
as a major cause of errors for a variety of ASR tasks [24], and
has therefore received attention from a number of research en-
deavors grouped into the rather nebulous topic of pronuncia-
tion modeling. Of particular interest to this work, are instances
in which spoken examples are used to refine pronunciations
[25]–[29]. The work of [27], for example, deduces a pronun-
ciation given a word or grapheme sequence and an ut-
terance of the spoken word . This research uses a decision
tree to model which was later shown to produce poor
results when compared to graphone models on L2S tasks. The
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work of [29] uses the forced alignment of a phonetic decoder to
generate a list of possible pronunciations for words, and then as-
signs weights using a Minimum-Classification-Error criterion.
They then test on a business name query corpus. Perhaps the
work most similar to our own is that of [28], which makes use
of Expectation-Maximization (EM) to adapt graphone language
model parameters using acoustic data. Li et al. train an initial
set of graphone parameters and then adapt them using spoken
examples of proper names. They also experiment with discrim-
inative training and show that it produces slightly better results
thanmaximum likelihood estimation (MLE). In our work, rather
than adapt the graphone parameters we learn the weights of a
stochastic lexicon directly using a similar MLE approach. We
then experiment with the PMM on continuous speech data.

V. JOINT-SEQUENCE MODELS (GRAPHONES)

This section reviews the joint-multigram modeling technique
of [3], which will later be used to initialize the pronuncia-
tion mixture model. We begin with a characterization of the
letter-to-sound problem in terms of a joint distribution over
grapheme and phone sequences. We let denote a particular
grapheme sequence in the set of all possible grapheme se-
quences and denote a phone sequence drawn from the set
of all possible phoneme sequences, . We then construct the
distribution to represent the probability of the co-oc-
currence of a particular spelling and pronunciation. The L2S
operation that is applied to this joint distribution to recover the
optimal pronunciation for a particular word is the following:

(8)

To model , Bisani and Ney capture the relationship
between graphemes and phones in a language model over
shared units called joint-multigrams. In this work, one or more
graphemes are paired with one or more phones to create a new
joint-unit called a graphone. In previous work, we had also
explored the use of graphonemes which map graphemes to
phonemes; however, here we concentrate mostly on the former.
A graphone, , is a sub-word unit that
maps a grapheme subsequence, , to a phone subsequence,
. In previous work, we restricted our attention to singular
graphones, in which a mapping was made between at most one
grapheme and at most one phonetic unit. In general, however,
two parameters and can be specified, which limit the
number of graphemes that appear on the left-hand-side and
the number of phones that appear on the right-hand-side of
a graphone. While the empty subsequence, , is allowed, the
mapping from to is omitted.
Taken together, a sequence of graphones, , inherently speci-

fies a unique sequence of graphemes and phones ; however,
the reverse is not the case. There may be multiple ways to align
the pair into various graphone sequences .
The following table shows two possible graphone segmenta-
tions of the word “couple”. In this case, and .

Given this ambiguity, employing graphonemes in our joint
model requires us to marginalize over all possible segmenta-
tions. Fortunately, the standard Viterbi approximation has been
shown to incur only minor degradation in performance [3].

(9)

The final, albeit rather involved, step is to model
using standard language modeling techniques. The difficulty in
training a standard -gram is that we do not have the necessary
training data in the form of graphone sequences. Instead, we
are forced to use Expectation-Maximization to generate a set
of expected alignments. Our work makes use of an open source
implementation of this training procedure, the details of which
are described in [3].

VI. THE PRONUNCIATION MIXTURE MODEL

In Section II, we provided a mathematical foundation of
speech recognition that explicitly models the lexicon stochas-
tically. Equation (7) succinctly describes the manner in which
such a lexicon contributes to the score of a path during de-
coding. We now turn our attention to learning the underlying
weights of each pronunciation using a pronunciation mixture
model. Although initially explored for the isolated word case
[1], we subsequently confirmed the PMM’s utility on contin-
uous speech data [2]. Here, we present the model for continuous
speech, and show that applying it to isolated words is merely
a special case.
In stark contrast with models that search for the single most

probable pronunciation, the PMM is designed to cope with
words that have multiple pronunciations, such as “either”.
It probably does not make sense, for example, to have one
utterance pronounced iy dh er and a second pronounced ay
dh er both vying for a single canonical pronunciation spot.
Instead, in our model, both utterances are effectively allowed
to distribute soft votes to a mixture of possible pronunciations.
Note also that this is an extreme example since the variation
occurs at the phoneme level, but as we will show the PMM is
able to capture more subtle variation at the phone level as well.
The training data we use to learn the lexicon’s weights can

be identical to the data used for language and acoustic model
training. Suppose, for instance, that it is comprised of utter-
ances and their transcriptions where is a
continuous speech signal and but the word
boundary locations within the audio are unknown. We can pa-
rameterize the log-likelihood of this data as follows:

(10)

(11)

The joint distribution in the previous equation has already
been decomposed into the basic components of a speech rec-
ognizer in (7). We now incorporate our probabilistic lexicon,
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making the assumption that a pronunciation in an arbitrary
pronunciation sequence is context independent:

(12)

(13)

Clearly only the terms associated with the lexicon need be
dependent upon its parameters. We now make their use explicit
with . The goal now, is to maximize the
likelihood of the data with respect to these parameters. Note that
the language model term vanishes since it does not affect the
maximization.

(14)

(15)

A local maximum of with respect to can be ob-
tained using EM. The expectation step computes the expected
number of times an alignment between a word and pronunci-
ation occurs within the data. The maximization step then finds
the optimal parameter values given these expected counts. This
continues iteratively until convergence to a local maximum.

(16)

(17)

where is
the number of times word appears in aligned with the
pronunciation . Conceptually, each path of pronunciations
contributes a soft-vote towards each of its constituent pronunci-
ations according to its posterior probability. To ease the notation
we have not explicitly required the number of pronunciations to
be equal to the number of words, however, this is easy to enforce
in practice. Once converged, can be used during decoding as
the weights of our new stochastic lexicon.
In the continuous case above, the log-likelihood is not nec-

essarily concave and we therefore cannot guarantee that the pa-
rameters reach a global optimum. The situation is different re-
garding isolated words. The isolated word case is also instruc-
tive with respect to understanding the model, and is thus pre-
sented here for completeness. Suppose we have a data set of

example utterances of isolated words, . The op-
timization of the log-likelihood in (14), would then reduce to
the following:

(18)
Now that there is no dependency between words in the same

utterance, the product of parameters is gone and it is simple to
show that the log-likelihood in (18) along with the normaliza-
tion constraints is concave. Amongst other techniques, EM can
be used to optimize the log-likelihood. Furthermore, the update
equations may be slightly easier to interpret than for the more
general case.

(19)

(20)

In the expectation step of the isolated word case, the generative
nature of the pronunciation mixture model becomes clear. With
the help of Bayes’ rule, we compute the posterior probability
that pronunciation generates an acoustic signal given that
it contains the word . In the maximization step, the param-
eter representing the probability of a pronunciation given is
found by normalizing the sum of the posteriors for that pronun-
ciation for each word. A simple interpretation of these equations
for a given word is that each utterance is allowed a soft-vote of

to distribute among a set of candidate pronunciations,
where is the number of utterances in the training data that
contain the isolated word .

VII. PRACTICAL APPLICATION OF THE PMM

Even in the isolated word case, there are many aspects to im-
plementing the pronunciation mixture model that we have so
far left unspecified. What does one use to initialize ? How can
we train a graphone language model given a phoneme-based
lexicon? Can we implement the equations of Section VI in a
tractable way given that they suggest summing over an infini-
tude of possible pronunciations? What optimizations can one
make for efficiency? This section provides insight into how we
have answered these questions for the experiments described in
the remainder of this paper, as well as how one might explore
other variations of the PMM framework.
Many of the questions posed above are related, at least to

some degree, to the initialization of the parameter values. Note
that only the non-zero values can remain non-zero throughout
the EM training procedure. The pronunciations corresponding
to the non-zero values form the support of a stochastic lex-
icon. It is vital, therefore, to choose the support so that it both
contains the pronunciations most likely to receive high weights
during training and remains small enough that the computation
is tractable.
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One way to achieve these goals is to allow experts to specify
a set of pronunciations, but leave the weighting of these pro-
nunciations to the PMM. Conventional wisdom suggests that
weighting pronunciations does not achieve significant gains.
This may be due, in part, to the fact that hand-crafted lexi-
cons have relatively few pronunciations per word. One way
to alleviate this sparsity is to make use of phonological rules,
such as those described in Section III. With such rules, it is
straight-forward to expand phonemic baseforms provided by
experts to a set of pronunciations at the phone-level. We can
initially give each word’s pronunciations uniform probabilities,
and iteratively re-weight them using the PMM.
Ultimately, though, our hope is to apply the PMM technique

to words unseen by expert eyes and unheard by expert ears. To
do this, we elicit the help of a letter-to-sound system to provide
the initial support for the PMM. In theory, a PMM could be ap-
plied to pronunciations generated from any L2S system, so long
as the L2S system was able to hypothesize more than one pro-
nunciation per word. In this work, we use the state-of-the-art
joint-sequence models described in Section V. As described in
Section II, however, a typical configuration of our recognizer
employs a lexicon represented in terms of phonemes rather than
phones, made possible by the use of manually crafted phonolog-
ical rules that expand sequences of phonemes to all their pos-
sible phone realizations. Ideally, we would like to bypass these
phonological rules altogether. The FST implementation of the
recognizer would then be simplified to where
is now a lexicon FST that maps phone sequences to words. To
accomplish this, however, we must first train a joint-sequence
model at the phone level, i.e. a graphone model.
To generate graphone models certain manipulations must be

made in order to coerce the baseline expert lexicon into a form
suitable for the training of a phone-based L2S model. First,
we employ direct expansion of the phoneme lexicon using
phonological rules. This may not, however, adequately account
for phonotactics across word boundaries in continuous speech.
For example, the co-articulation that occurs at the boundary in
the phrase gas shortage often results in the palatalization of the
alveolar fricative that ends the word gas. Part of the purpose of
phonological rules is to account for these types of cross-word
phenomena. One can therefore also expand the transcripts of
a training set with these same phonological rules, maintaining
word boundary markers. It is then possible to accumulate
the resulting phone-level pronunciations for inclusion in our
training corpus. Pronunciations generated in this fashion will
have phonological rules applied across word boundaries, and
thus exhibit phones sequences consistent with their context in
the continuous speech.
With a graphone language model in hand we can initialize

the PMM by setting to be the graphone language model’s
of (9). It may, at first, be of some concern that this

model is not in the conditional form is meant to represent. For-
tunately, the normalization of that induces the appro-
priate conditional distribution merely requires a constant with
respect to the maximization of and can therefore be ignored.
This means that in practice, with a sufficiently small graphone
language model, we can compute the posteriors needed during
EM in the following manner. Let us first examine the isolated

word case. For a particular word we can create an FST
that represents the graphone language model restricted to the
spelling of . The probabilities in (19) are then
simply recovered through a recognition task in which the search
space is constructed as , where is simply a
mapping from phones to graphones. The recognition scores and
the -best list of pronunciations are then normalized to yield
the posteriors. In subsequent iterations, the graphone language
model is no longer used; instead, only the pronunciations repre-
sented in the -best lists are considered.
For large graphone language models, directly manipulating

FSTs can become unwieldy. This becomes especially apparent
in the case of continuous speech, where word boundaries
must also be considered. In this case, it is often simpler to
generate the support for the lexicon directly by choosing the
most likely paths, and thus pronunciations, from the graphone
language model. These -best lists can be converted into
FSTs as substitutes for , allowing for direct control over
the size of the lexicon’s support. In the continuous word case,
the recognition search space, , can be constructed for a
particular transcript by concatenating each word’s
pronunciations with word delimiters, and then performing the
necessary compositions to ensure that context-dependent input
labels are mapped to graphone output labels for the transcript
. Normalizing the log-probabilities across the entries of the
-best list found during recognition yields the necessary pos-

terior, , of (16). Again, in subsequent iterations
the dependency on the L2S model is dropped and only the
pronunciations found in the -best list are considered.
A number of approximations can be made for efficiency.

While technically, recognition should be performed at each
iteration to generate a new set of paths and posteriors for the
expectation-step, in practice, we have found it more efficient
to generate a large -best list on the first iteration, and simply
re-score the paths during subsequent iterations. This requires
that the recognizer output the acoustic and language model
scores separately, so that the acoustic scores can be multiplied
with appropriate terms from the stochastic lexicon at each iter-
ation. A final strategy, not explored in this work, is to perform
coordinate ascent on the log likelihood. We might, for instance,
fix the parameters of every word except for one, . Utterances
that contain would effectively be force-aligned with respect
to the surrounding words, and the full pronunciation space of

would be explored using the PMM. This could continue
for all words in the training set.
Once training is complete, it may be unrealistic to include

every pronunciation with a non-zero in the final lexicon.
There are a number of appealing ways one might filter pronunci-
ations based on these learned weights. In our previous work, we
chose to remove all pronunciations with weights below a certain
threshold, with the caveat that all words must have at least one
pronunciation. Here, we adopt the same approach, ensuring that
all pronunciations are retained in the lexicon. The
weights are then renormalized after thresholding.

VIII. EXPERIMENTAL RESULTS

In our previous work, we experimented with both isolated
word and continuous speech data. Since data in the latter form is
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more readily available, we believe there is greater utility in ex-
ploring the continuous case more thoroughly. For this reason,
the experiments in this work will expand upon those performed
in [2] on the weather query corpus [30]. Whereas previously
we fixed the L2S parameters used in the pronunciation mixture
model, in this work we explore a variety of initializations. We
further explore the flexibility of PMM initialization in an ex-
periment that makes use of the expert lexicon to provide initial
candidate pronunciations.
All of our experiments make use of the landmark-based

speech recognizer described in Section III. The configuration
used here takes MFCC averages over varying durations around
the hypothesized landmarks to generate 112-dimensional
feature vectors. These feature vectors are then whitened via
a PCA rotation. The first 50 principal components are kept
as the feature space over which diphone acoustic models are
built. Each model is a diagonal Gaussian mixture with up to
75 mixture components trained on the weather query corpus
training set, which consists of telephone speech.
The weather query corpus is composed of relatively short

sentences, with an average of six words per utterance. After
pruning the original training and test sets of all utterances con-
taining non-speech artifacts, we end up with a 87,351 utterance
training set amounting to 76.68 hours of speech. We divide the
remaining utterances into a 3,497 utterance test set containing
3.18 hours of speech and a 1,179 utterance development set con-
taining 0.84 hours of speech. The context-dependent acoustic
models used with this corpus were trained using the expert lex-
icon in a speaker-independent fashion on a large data set of tele-
phone speech of which this corpus is a subset.
The training set contains a vocabulary of 1,805 words, which

comprise the lexical items used in constructing both the lexicon
and language model. There are 71 words that occur exactly once
in the training set, implying that a PMM only has one acoustic
example of each of these words with which to generate a set of
pronunciations. The most frequent word, in, on the other hand,
occurs 33,967 times. For testing, a trigram language model is
built using only the training set transcripts, and therefore con-
tains exactly these 1,805 words. For efficiency reasons, how-
ever, a bigram trained in a similar fashion builds the initial lat-
tice during decoding, and the trigram is then used in a subse-
quent re-scoring pass.
The expert-crafted lexicon used in these experiments is orig-

inally based on the publicly available PronLex dictionary [31].
The dictionary contains roughly 150,000 pronunciations speci-
fied at the phoneme level. As such, these pronunciations must be
expandedwith a set of phonological rules to bemade compatible
with the aforementioned diphone-based acoustic models. This
can be performed during the composition of the recognizer’s
search space. Doing so, and decoding with this baseline setup
on the test set yields the word error rate of 9.5% as reported in
[2]. As described in the previous section, we can also expand the
expert lexicon to a set of phone pronunciations and learn a set
of weights using the PMM framework. While the initial expert
lexicon had an average of 1.2 pronunciations per word (PPW),
its expansion leads to a phone-based lexicon with a PPW of 4.0.
Using these pronunciations in a PMM and pruning the result

TABLE I
EVALUATION OF LEXICONS BUILT ON GRAPHONE LANGUAGE MODELS OF
VARYING SIZES . FOR EACH LEXICON, WE USE A CUTOFF TO

THRESHOLD THE FINAL PRONUNCIATIONS INCLUDED DURING DECODING ON
THE TEST SET. WE REPORT THE AVERAGE NUMBER OF PRONUNCIATIONS
PER WORD (PPW) AS WELL AS RECOGNITION PERFORMANCE ON

THE DEVELOPMENT AND TEST SETS. IN THE CASE, MANY
WORDS DO NOT HAVE PRONUNCIATIONS WITH WEIGHTS , AND

A LARGE NUMBER OF PRONUNCIATIONS ARE PRUNED AWAY

with yields an “expert-PMM” with a PPW of 2.1. De-
coding with this lexicon brings the WER down to 9.2%.
In previous work, the joint-sequence models we explored

did not vary with respect to their training parameters. We
reported results regarding a 5-gram language model over both
graphones and graphonemes, a configuration that had been
shown to produce good results during recognition [23]. We
showed that, for instance, using the graphone model to initialize
the PMM yielded recognition results as good or better than
its phoneme-based counterpart. Moreover the size of the final
phone-based lexicon was significantly smaller, likely due to
increased precision that can be employed during pruning based
on pronunciation weights. In this work, therefore, we focus our
attention on phone-based lexicons, effectively cutting out the
need for phonemic baseforms and phonological rules during
decoding. The lexicon used for graphone training in this work
was expanded as described in the previous section and contains
almost 425,000 phone pronunciations.
We perform the joint-multigram training algorithm described

in [3] with a variety of parameter settings. Recall from Section V
that we must choose the maximum number of graphemes, ,
and phones, , that appear in a graphone. We also must de-
cide on the size of the -gram we choose to train over the
learned alignments. Following the lead of Bisani and Ney, we
generate joint-sequence models with the -to-1 and -to- gra-
phone constraints, where . We also vary language
model size by training -grams, where . In pre-
vious work, we had restricted our attention to the ,
case. Tables I and II delineate characteristics of trained models
for other parameter settings. We show, for instance, the memory
footprint of the FST representing graphone language models of
each type. Naturally, the higher-order -grams produce larger
FSTs.
We experimented with values of and using our devel-

opment set. Ideally, the length of the -best list would con-
tain as much of the probability mass represented in the lattice
as possible. In our case, setting was found to be
more than sufficient. The number of initial pronunciations
is somewhat more difficult to experiment with, since it involves
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TABLE II
EVALUATION OF LEXICONS BUILT ON JOINT-SEQUENCE MODELS WITH
VARIOUS GRAPHONE SIZES ( -TO- ) AND A FIXED LANGUAGE MODEL
SIZE OF . A THRESHOLD OF IS USED TO PRUNE THE

PRONUNCIATIONS USED FOR DECODING. WE REPORT THE AVERAGE NUMBER
OF PRONUNCIATIONS PER WORD (PPW) ALONG WITH WER RATES ON THE
DEVELOPMENT AND TEST SETS. ALSO SHOWN IN THIS TABLE ARE THE

RELATIVE SIZES OF THE GRAPHONE LANGUAGE MODEL USED TO GENERATE
PRONUNCIATIONS OR INITIALIZE THE PMM

reconstructing the FST used for decoding during training. As
described in the previous section, when taken to the limit can
actually vary for each word and be set to the number of pro-
nunciations represented in a graphone language model. In our
isolated word experiments [1], this was the approach we took.
In this domain, we have found that initializing with the top

pronunciations from a graphone -gram is more
manageable from a computational perspective, and does not im-
pact performance. For this work, we initialized the weights of
our PMM with the normalized scores of the graphone language
model.
Table I reports performance achieved on the weather corpus

test set using lexicons based on singular graphone language
models of varying size . We begin by employing lexicons
directly generated from joint-sequence models. To construct a
lexicon for this task given a particular graphone language model
FST, we over-generate an -best list of pronunciations and their
scores. We keep only those pronunciations that are consistent
with our acoustic models, normalize their scores and then prune
all pronunciations below . The remaining pronuncia-
tions, and their weights, are transformed into an FST and used
during decoding. The general trend is consistent with the work
of [14], which found that singular graphones tend to perform
well in conjunction with higher order language models. It is also
interesting to note how the average number of pronunciations
per word varies with . Here, the higher entropy of the lower
order -grams becomes apparent in the pronunciations that are
generated. While appears to be an exception, this is only
due to our pronunciation pruning criteria of .
Table I also depicts the use of these singular graphone based

lexicons to initialize a pronunciation mixture model. To ini-
tialize the PMM, we once again over-generate a set of pronun-
ciations and their scores from the L2S model. These pronun-
ciations are used to decode the training set, providing -best
lists necessary to perform the expectation maximization in the
manner described in the previous section. Once EM has con-
verged, the pronunciations and their scores are thresholded with

and compiled into an FST for decoding. We found that

TABLE III
A SUMMARY OF THE MAIN RESULTS ON THE WEATHER QUERY CORPUS

EM typically converged in three or four iterations on our devel-
opment set, but decided to let it run out to the sixth iteration be-
fore compiling the lexicons for testing. Somewhat surprisingly,
these results suggest that the higher-order -grams become less
critical when acoustic information is added into the equation.
Indeed, we are able to achieve the best performance on this test
set with .
We now turn to varying the size of the graphone units them-

selves. Once again, we break our analysis down into lexicons
that are based solely on graphones, and those that incorporate
acoustic information via the PMM. Table II provides PPW and
WER statistics for lexicons built using various values of and
while keeping fixed at 5. Once again, the performance of

graphone L2S models alone cannot compete with the analogous
models that incorporate acoustic information through the PMM.
Performance is roughly uniform across the different graphone
sizes, suggesting that the convenience of working with the
smaller, singular graphone language model is not detrimental to
performance. These results are once again consistent with the
work of [14]. Of course, it must be said that these experiments
were performed on English, and that the parameters ideal for
another language may be different.
Table III summarizes a few key results presented in this paper.

In particular, we have found that while a hand-crafted dictio-
nary can out-perform a state-of-the-art L2S model used in iso-
lation, the story changes when acoustic information is incorpo-
rated into a lexicon’s training procedure. As Table III shows,
the L2S model supplemented with acoustic information outper-
forms the expert pronunciations, even when these pronuncia-
tions are trained in a similar fashion. Except for the small gain
achieved by weighting the expert lexicon, the differences shown
in this table are all found to be statistically significant using both
Matched-Pair Sentence-Segment Word Error (MAPSSWE) and
sentence-level McNemar tests [32], with .

IX. PHONETIC ANALYSIS

We now turn to analyzing the pronunciations generated in
our stochastic lexicon. In this section, we use the pronuncia-
tions learned with the PMM initialized via a graphone language
model with , , and . We first attempt to
measure the degree to which the expert pronunciations are rep-
resented in the PMM. When expanded using the phonological
rules, the 1,805 words in the weather corpus vocabulary were
found to have a total of 7,324 pronunciations. Using the PMM
to weight the expert lexicon and then pruning with
yields 3,863 pronunciations and slightly better performance. In-
terestingly, the graphone PMM with a similar threshold con-
tains 5,495 phone-level pronunciations. Given its superior per-
formance, this would suggest that the PMM is pruning super-
fluous, possibly incorrect pronunciations relative to the expert
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TABLE IV
A PHONETIC COMPARISON BETWEEN THE EXPERT AND GRAPHONE PMMS

lexicon, but also is proposing new, beneficial pronunciations
that do not appear in the expert PMM. These assertions are bol-
stered by the fact that of the 3,863 phone pronunciations found
in the expert PMM, almost all of them (3,658) are still repre-
sented within the graphone PMM. On the other hand, of the
5,495 pronunciations in the graphone PMM, only 3,715 were
found among the 7,324 original pronunciations in the expanded
expert lexicon.
It is also interesting to note that the PMM-approach settled

on pronunciations with fewer phones on average than were
in the original expert lexicon. These shorter pronunciations
are consistent with the fact that, while WER improves for the
PMM, the number of insertions (460) actually increases over
the number of insertions that occur when decoding with the
PMM-weighted expert lexicon (192). Similar to our previous
work [1], we found that phone substitutions often involved
vowels, many of which were shortened to a schwa. These
are, perhaps, indications that the PMM learns pronunciations
compatible with continuous speech.
A more detailed analysis reveals that the expert and gra-

phone PMMs are similar in many respects. In fact, 91.5% of
the highest weighted pronunciations were the same in both
lexicons. Table IV lists a few examples from each lexicon to
supplement this quantitative comparison. Some of the differ-
ences found were vowel substitutions such as those seen in the
word bangalore. Quite often, however, we found the graphone
PMM shifting weights to cover pronunciation variations, such
as in the case of the word general and istanbul. In the latter
example, there is arguably a lexicon correction as well, where
the expert lexicon posited /uw/, while the PMMmuch preferred
/el/. With respect to the weights, it is interesting to note, that
the graphone PMM contains examples that both sharpen the
distribution over pronunciations, such as general, and spread
out the probability mass to reasonable pronunciations not
found in the expanded expert lexicon, as in ottawa. Finally,
in both cases, the PMM can learn weights over heteronyms.
This weather corpus contains sentences such as “Where is a
nice sunny place in the caribbean?” and also “Is it rainy in
Nice, France today?” We found that the learned pronunciations
for the word nice correlated well with the frequency of each
meaning of the word in context.

X. SUMMARY AND FUTURE WORK

This work has introduced a maximum likelihood, generative
approach to incorporating acoustic examples in the pronunci-

ation generation process. We have shown that a pronunciation
mixture model can be used to weight an existing set of hand-
crafted pronunciations, and perhaps more importantly, may be
used to reliably generate better-than-expert pronunciations for
continuous speech. We believe that wrapping the lexicon into
a statistical framework is a constructive step that presents ex-
citing new avenues of exploration. We have also shown that
the PMM can be trained on the same data as the acoustic and
language models, and hence requires no additional resources.
These properties make pronunciation training a cheap and ef-
fective additional tool for building an ASR system.
In previous work, we have shown that these findings extend

to corpora with a variety of characteristics including those
with noisy acoustics. We have demonstrated, for example, that
crowd-sourcing platforms such as Amazon Mechanical Turk
can be employed to collect pronunciations which, although
noisy, can be used to generate pronunciations that improve
recognition performance on clean speech. Such platforms
are sometimes outfitted with APIs that allow developers to
incorporate automated crowdsourcing into their algorithms. We
have used one such API to enable a spoken language system to
collect speech and improve pronunciations on-the-fly with the
PMM [33].
We believe the possibility of learning better-than-expert base-

forms in arbitrary domains opens upmany research possibilities.
There are two clear directions with respect to our training pro-
cedure that warrant further exploration in the immediate future.
The first is to examine acoustic model and lexicon co-training
in an iterative fashion, effectively taking a maximum-likelihood
step along a set of coordinates in the probability space repre-
sented by the recognizer. In this context, it is not clear whether
over-fitting would overshadow the potential advantages of such
an approach. A second avenue is to move beyond maximum-
likelihood, and explore discriminative approaches to pronunci-
ation learning.
Finally, it is important to note that our current experiments

still rely on the expert lexicon in order to train the L2S system.
Our ongoing work aims to remove this dependency. An initial
experiment that we have performed along these lines is to use a
simple unweighted phone loop atop our diphone acoustic model
to decode the training set. The resulting phone sequences can
then be associated with grapheme sequences found in the corre-
sponding transcripts. In precisely the way we train a graphone
language model from a lexicon, we are then able to learn a gra-
phone language model from a pseudo-lexicon built from these
transcripts and phonetic decodings. The learned L2S can then
be used to initialize a PMM. On the weather query corpus, the
lexicon resulting from this technique performs surprisingly well
on our test set, with a WER of 8.7%. While this preliminary ex-
periment still makes use of acoustic models trained using the
expert lexicon, we view this as a positive step towards the pos-
sibility making use of unsupervised acoustic units such as those
in the work of Lee and Glass [34].
If it were feasible to simultaneously train the lexicon and dis-

cover an acoustic model, large vocabulary speech recognizers
could be built for many different languages with little to no ex-
pert input. While this research may question the orthodox view
that pronunciations need to be interpretable linguistically, our
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hope is that it may be a positive step towards breaking the lan-
guage barrier of modern speech recognition.
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