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Abstract—Today’s speech recognition systems are based on
hidden Markov models (HMMs) with Gaussian mixture models
whose parameters are estimated using a discriminative training
criterion such as Maximum Mutual Information (MMI) or Min-
imum Phone Error (MPE). Currently, the optimization is almost
always done with (empirical variants of) Extended Baum-Welch
(EBW). This type of optimization requires sophisticated update
schemes for the step sizes and a considerable amount of parameter
tuning, and only little is known about its convergence behavior.
In this paper, we derive an EM-style algorithm for discriminative
training of HMMs. Like Expectation-Maximization (EM) for the
generative training of HMMs, the proposed algorithm improves
the training criterion on each iteration, converges to a local
optimum, and is completely parameter-free. We investigate the
feasibility of the proposed EM-style algorithm for discriminative
training of two tasks, namely grapheme-to-phoneme conversion
and spoken digit string recognition.

Index Terms—Expectation-maximization, generalized iterative
scaling, hidden Markov model, discriminative training.

I. INTRODUCTION

T HE acoustic models in state-of-the-art speech recognition
systems are based on hidden Markov models (HMM)

with Gaussian mixture models. HMMs include many free
model parameters that need to be reliably estimated. Tradition-
ally, the parameters have been optimized using the generative
Maximum Likelihood (ML) training criterion [1]. More re-
cently, discriminative training criteria for HMMs have been
established in speech recognition. Several criteria including
Maximum Mutual Information (MMI) [2]–[4], Minimum
Classification Error (MCE) [5], [6], and Minimum Phone Error
(MPE) [7] have been shown to outperform the conventional
ML criterion.
Optimizing discriminative training criteria for HMMs is chal-

lenging in many respects. In the last decade, much effort has
been put in finding more efficient and reliable algorithms [3],
[4], [8]–[11].
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The de-facto standard to optimize discriminative HMMs in
speech recognition is Extended Baum Welch (EBW) [12], [13]
or more precisely empirical variants thereof [7], [10], [14]. The
latter are a highly specialized optimization algorithm that have
been shown to perform well in practice, although little has been
proved concerning their convergence properties. Recently, gen-
eral-purpose optimization algorithms such as Rprop [5], [15],
[16] and L-BFGS [5], [17] have also been successfully used to
train discriminative HMMs. The convergence of Rprop [18] and
L-BFGS [17] was proved for smooth, non-convex functions.
The key ingredient for these proofs is a numerical line search
to satisfy certain conditions, in particular enforcing monotonic
convergence. However, the complexity of the line search can
be high and hard to predict. Newton’s method would be attrac-
tive due to its quadratic convergence rate but is prohibitive for
high-dimensional optimization problems [17].
In this paper, an EM-style algorithm is an iterative opti-

mization algorithm that guarantees to improve the training
criterion on each iteration and to converge to a local optimum.
In particular, no tuning of step sizes (e.g., gradient descent),
no sophisticated update schemes (cf. EBW), no numerical line
search with hardly predictable complexity (cf. L-BFGS), and
prohibitive storage requirement (cf. Newton) are required. In
summary, EM-style optimization stands for a safe, simple and
easy to implement optimization algorithm such as EM for the
generative training of HMMs.
Unlike Expectation-Maximization (EM) [19] for generative

HMMs, there is no similar optimization algorithm known for
discriminative training of HMMs. Generalized Iterative Scaling
(GIS) [20], [21], for example, is an EM-style optimization al-
gorithm for log-linear models. However, GIS does not directly
apply to discriminative HMMs due to the different parameteri-
zation and because it does not allow for hidden variables.
This defines the scope of this paper. In particular, the main

contributions include:
• Step-by-step derivation of a constructive1, EM-style al-
gorithm for discriminative training of Gaussian Mixture
Models (GMMs) in Section V and HiddenMarkovModels
(HMMs) in Section VI. We shall call the proposed algo-
rithm Generalized GIS (G-GIS).

• Experimental evaluation of the proposed algorithm
without heuristics for an optical character recognition
task using discrete-valued features and mixture models
(Section VII-A), a grapheme-to-phoneme task with short
sequences using discrete-valued features and HMMs
(Section VII-B), and spoken digit string recognition with

1Constructive means that all quantities are explicitly known and can be effi-
ciently computed.
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longer sequences using continuous-valued features and
HMMs (Section VII-C).

It was proved that EBW is an EM-style algorithm for suf-
ficiently large iteration constants, see [22] (discrete-valued
features) and [13], [14] (continuous-valued features). Both [13]
and [14] do not make an explicit statement on what “sufficiently
large” means in this context. The empirical iteration constants
used in practice are set to guarantee well-defined Gaussian
mixture models, including non-negative mixture weights and
positive variances [7], [10], [14]. However, these do not imply
an increase of the training criterion in general. Experiments
based on the reverse Jensen inequality [23] were shown in
[24] using many approximations and heuristics. In partic-
ular, all HMM dependency is ignored by approximating the
sentence-level training criterion with a frame-level training cri-
terion. An algorithm similar to ours was proposed for log-linear
models with hidden variables in [25], [26], reporting on exper-
iments for small tagging tasks using discrete-valued features.
The current paper is based on the two previous conference
papers [27], [28] proposing a similar algorithm for log-linear
models and conditional random fields including hidden vari-
ables. There is also some overlap with our publication on the
equivalence of Gaussian and log-linear models [29] although
the derivation for the transition probabilities is different.
The remainder of this paper is organized as follows.

Section II gives a brief review on bounds and EM-style opti-
mization. Section III discusses generative models and the EM
algorithm. Section IV summarizes log-linear models and the
GIS algorithm. Section V and Section VI derive bounds for
discriminative Gaussian mixture models and HMMs, based on
the bounds from the previous sections. Section VII compares
the proposed with existing optimization algorithms on different
tasks. The paper is concluded in Section VIII.

II. CONCEPT OF LOWER BOUNDS

In this section, we briefly review the concept of EM-style
optimization, based on the notion of auxiliary functions
in the strong sense [7] or lower bounds ([30], Chapter 9).
Two well-known examples are Expectation-Maximization
(EM) (Section III) and Generalized Iterative Scaling (GIS)
(Section IV).
Assume a training criterion bounded from above to be

maximized. A lower bound of the training criterion
is a smooth function in that bounds below with contact in

(1)

Fig. 1 depicts an example.
EM-style optimization comprises two steps: find the lower

bound based on the old parameters (E-step) and maximize
this lower bound to obtain the updated parameters (M-step).
The lower bound is used as an approximation to the training
criterion tomake the original, hard optimization tractable. These
two steps (“an iteration”) are repeated until convergence. It can
be shown [31] that this algorithm monotonically increases the
training criterion and converges to a critical point (e.g., local
maximum) of the training criterion.
In practice, lower bounds should be tight and simple, for

example, should decouple the parameters and are analytically

Fig. 1. Illustration of a lower bound for the training criterion at
: the lower bound is in the hypograph of the training criterion with contact in
.

Fig. 2. Illustration of Jensen’s inequality for two points and distribution
.

tractable. This leads to “fast” convergence at low cost per itera-
tion, without the need to tune parameters.
EM [19] (see also Section III for a brief review) probably is

the most prominent example for an algorithm with these prop-
erties. This is why we call this type of optimization EM-style
optimization. Growth transformations [12], [13] generalize this
concept.
The main tool to derive lower bounds for discriminative

GMMs and HMMs will be Jensen’s inequality. In the context
of probability theory, it is generally stated in the following
form: if is a set of variables, a distribution, and
a concave function, then

(2)

([30], p.56). Fig. 2 illustrates this inequality for two points
.

III. GAUSSIAN MIXTURE MODELS (GENERATIVE)

The Gaussian Mixture Model (GMM) is a generative model
which assigns the following likelihood to the feature vector
given the class index

(3)

This is a superposition of Gaussian densities with
weights . The model parameters include the means
, the covariance matrices , and the weights where
denotes the mixture index. These parameters are subject to
the constraints such as the normalization of the conditional
probabilities and the positivity of the variances.
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Traditionally, EM is used for ML training of Gaussian mix-
ture models

(4)

For simplicity, the training criterion is defined per obser-
vation . The training criterion over labeled training data

is obtained by accumulation. The lower bound for
the ML training criterion associated with EM, , reads

(5)

Here, denotes the conditional probability of the mix-
ture index conditioned on the feature vectors and the class
index . This quantity is derived from the joint probability by
Bayes rule, . For GMMs, the lower

bound can be analytically optimized ([30] Chapter 9).
EM is a general-purpose optimization technique for genera-

tive training of generative models. Generalized Iterative Scaling
(GIS) is a similar technique for discriminative training of log-
linear models but not generative models such as GMMs.

IV. LOG-LINEAR MODELS

Log-linear models are discriminative models that directly pa-
rameterize the class-posterior

(6)

Each feature function is weighted by some . The
model parameters are . The normalization constant
is denoted by . Log-linear models are optimized using the
Maximum Conditional Likelihood criterion, which is tradition-
ally known in the speech community as Maximum Mutual In-
formation (MMI)

(7)

GIS was originally introduced by [20]. It applies to log-linear
models that are optimized according to (7). A lower bound for
this configuration is given in [21]

with . For this bound, we assume without loss of
generality2 that the feature functions are non-negative
and sum up to the feature constant

which does not depend on the class index and the observation
. Additive terms that do not depend on , are not
explicitly shown for simplicity.

2These assumptions can always be imposed by a suitable affine feature trans-
form and the introduction of a dummy feature, without changing the model.

For labeled training data , the optimum of the
accumulated bound, , is attained for

Here, the numerator and denominator statistics are defined as

These equations are referred to as update rules.
GIS cannot be directly applied to discriminative GMMs

(Section V) or HMMs (Section VI) because GIS is only for
log-linear models, i.e., for models with a different parameteri-
zation and without hidden variables.

V. GAUSSIAN MIXTURE MODELS (DISCRIMINATIVE)

In this section, we derive a lower bound for GMMs in (3) that
are estimatedwithMMI in (7). The class-posterior is determined
from the joint probability by Bayes rule, including the class-
prior

(8)

This will be accomplished in three steps: 1) EM is applied to
“eliminate” the hidden variables, 2) the GMM is rewritten in the
log-linear parameterization, and 3) GIS is applied to the re-pa-
rameterized model to obtain the final bound. This material is
based on our previous work in [27], [28].

A. Step 1 (EM)

In the first step, the lower bound from Section III is used with
the variables and swapped to give a bound for the class-pos-
teriors ((8)) and not the likelihoods ((3)). The resulting inter-
mediate bound does not have any hidden variables. The
difference of the training criterion (see (1)) is re-arranged and
bounded from below as follows:

(9)

Additive terms that do not depend on are not explicitly shown
to highlight the relationship of this bound with the training
criterion in (7). This bound is an example for Generalized EM
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([30], Chapter 9.4), [32]. In general, it implies a non-trivial
optimization problem that requires numerical optimization
(what we want to avoid in our EM-style optimization al-
gorithm). This bound holds true independent of the model
and also for non-negative, unnormalized quantities such as

[19], see the next step.

B. Step 2 (Log-Linear Parameterization)

Next, the parameterization of the posterior of Gaussians in
(8) is changed to the log-linear, see (6) in Section IV

(10)

The first line describes a log-linear model with general feature
functions . The second line uses polynomial features
of the type (from vari-

ances), (from means), and

(from priors). In this example,
the index stands for index tuples, .
Furthermore, most of the feature functions are filtered out by
the Kronecker delta and are discarded. The log-linear parame-
ters can be obtained from the Gaussian
parameters by comparison of terms quadratic, linear, and con-
stant in , see for example [33].
For our purpose, however, representing a GMM as a log-

linear model is not sufficient because this may add flexibility
to the model (for example, positive variances or normalized
priors are no longer guaranteed) such that we no longer optimize
GMMs. It was shown in [29], [34] that (3) and (10) represent
equivalent models and thus, the two parameterizations can be
used interchangeably for the same underlying model. The back
transformation is shown and further discussed in Section V-D.

C. Step 3 (GIS)

The intermediate lower bound from the first step in (9) using
the log-linear parameterization from the second step in (10)
is a superposition of training criteria of the type discussed in
Section IV with non-negative weights. Hence, the lower bound
for GIS applies

(11)

with . Similar to GIS, it is assumed without
loss of generality that the feature functions are non-negative and
sum up to the feature constant, . The
lower bound in (11) is proved by observing that the first line
corresponds with the numerator of the posterior (see (10)) in (9)
and the second line is an upper bound for the denominator of
the posterior, i.e., the normalization constant .

Finally, we plug in the specific feature functions for discrimi-
native GMMs (see Section V-B) into (11). The parameters are
decoupled in the lower bound such that

with, for example,

where . Accumulating over labeled training
data and solving for provides the
update rules, for example,

(12)

These are functions of the numerator and denominator statistics

(13)

(14)

etc., and the feature constant

(15)



2620 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 12, DECEMBER 2013

D. Back Transformation

The back transformation from the log-linear to the Gaussian
parameterization is given by [29], [34]:

(16)

In Step 1, a matrix that does not depend on is added
to make negative-definite and thus, the covariance matrix

positive-definite (see Step 2). This operation leaves the pos-
terior unchanged as it adds the same constant factor in the nu-
merator and denominator of the posterior in (10). In Step 4, the
normalization constant of the Gaussian density is added to .
Another constant factor is added in Step 5 to normalize the mix-
ture weights, which in turn is propagated to Step 6. The normal-
ization constant in Step 6 cancels in the posterior.
It may be an interesting exercise to translate the G-GIS up-

date rules into Gaussian space. This is not necessary due to the
equivalence. Furthermore, it will not be straightforward because
the back transformation is not unique due to in Step 1.
Finally, we extend this result to HMMs and discuss possible

refinements and the limitations.

VI. HIDDEN MARKOV MODELS (DISCRIMINATIVE)

In this section, we present a constructive, lower bound for
discriminative training of HMMs.
Let be a sequence of feature vectors and a

sequence of states . The joint probability
of and of a first-order Markov model is decomposed as
follows

(17)

Discrete conditional distributions are used for the transition
probabilities . For discrete-valued features, discrete con-
ditional distributions can be used for the emission probabilities

as well. For continuous-valued features, the Gaussian
mixture model is the common choice to represent the emission
probabilities, .
The joint probability of a word or sentence is obtained by

marginalization over the state sequences representing

Note that the symbol is interchangeably used to denote
the sentence or the set of state sequences that represent the

sentence. This model is referred to as hidden Markov model
(HMM). The model parameters are the Gaussian means,
covariance matrices, the mixture weights, and the transition
probabilities, . Traditionally,
HMMs are generatively trained using ML in (4) [1]. More
recently, discriminative training (e.g., MMI in (7)) for HMMs
has been established with good success in speech recognition.
The same ideas as in Section V can be used to derive a formal,

lower bound for HMMs, using the substitutions
, and .

A. Step 1 (EM)

The derivation in (9) can be used.

B. Step 2 (Log-Linear Parameterization)

Equivalence of the posteriors of HMMs in (17) and a log-
linear model of the type

(18)
was proved in [29], [34] and thus, the two parameterizations of
the HMM can be interchangeably used. Section VI-D shows the
back transformation for further discussion.
The decoding is affected by the parameterization only

through the feature scorer, i.e., how the emission probabilities,
, are computed. In case of the log-linear parameteriza-

tion, the feature scorer returns the value of the exponential
function in (18).

C. Step 3 (GIS)

Applying GIS results in update rules similar to those in
Section V, for example,

(19)

Again, these are based on the sufficient statistics

(20)

(21)

and the feature constant

(22)

The symbols and stand for the HMM state and the -th
component of the feature vector , respectively. The statistics
are the features weighted by the probability of state at frame
conditioned on the feature vectors , and the sentence in
case of the numerator statistics, . These posteriors can
be efficiently computed using the forward/backward algorithm
[3], [9].
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Fig. 3. Network representing a transition model with loop and forward transi-
tions, the arc labels denote the HMM state and the
(unnormalized) transition weight, respectively. and imple-
ment the entry and exit transitions.

The update rules are based on the same sufficient statistics
as used for other, gradient-based optimization algorithms such
as EBW, L-BFGS, and Rprop. The overall training complexity
per iteration is dominated by computing (linear to the number of
arcs and the number of states in the network) and accumulating
(linear to the number of training observations and the number of
active features per observation) the sufficient statistics. Hence,
the overall complexity per iteration is basically the same for
G-GIS, EBW, Rprop, and L-BFGS (ignoring the line searches).
The consumed wall clock time, however, can be different due
to the different convergence speed (i.e., the number of itera-
tions to converge). The storage requirement for G-GIS, EBW,
Rprop is comparable, whereas L-BFGS requires considerably
more storage for the previous gradients used to approximate the
Hessian information.
This provides a constructive, EM-style algorithm with finite

step sizes for sequences of finite length. However, the feature
constant in (22) scales with the length of the sentence. Thus, the
actual steps are inversely proportional to the sentence length and
approach zero in the limit of infinitely long sentences. The van-
ishing step sizes seem to be an artifact of GIS and not a funda-
mental problem with HMMs. Armijo’s approach [27], [35], for
example, is probably the most naive EM-style algorithm whose
step sizes are given by the inverse Lipschitz constant of the gra-
dient, i.e., the maximum possible eigenvalue of the Hessian ma-
trix. It can be shown that under some assumptions, the Hessian
matrix never diverges, also not in the limit of infinite long se-
quences. This is similar to the fact that a one-dimensional Ising
model cannot have any phase transitions [36].

D. Back Transformation

The back transformation is performed step-by-step, similar to
the mixture models above [29], [34]. First, the emission proba-
bility, in (17), is processed using the first five steps from
(16). The normalization constant from Step 5 is passed to the re-
spective transition parameter in (18). A transition model of
the type shown in Fig. 3 is assumed. Here, we explicitly con-
struct analytical expressions for the conditional probabilities,
avoiding solving an eigenvalue problem as for the approach in
[29], [34]. Without loss of generality (adding a constant to all
transition parameters does not change the posterior), we assume
that all exponentiated transition parameters are smaller than 1,

. Then, the transition probabilities,

in (17), are obtained by marginalization and Bayes rule
([34], Chapter 4.6.3)

(23)

where denotes the backward probability of node in the
transition network. In general, these quantities can be efficiently
computed by recursion. For the sparse transition network in
Fig. 3, an analytical solution for the backward probabilities
exist, see Appendix. The remaining normalization constant of
the transition network, , cancels in the posterior.
Again, it may be tempting to translate the G-GIS update rules

into Gaussian space. We refrain from doing it because it is not
necessary, and the back transformation is ambiguous and hardly
analytically tractable (beside the loop and forward transitions,
skip transitions can also be allowed, for example).

E. Extensions

This result can be extended to training criteria in the rational
form

(24)

where denote non-negative weights. The proof is a simple
extension of the proof above for MMI. This generalized
training criterion gives us the flexibility to represent many of
the common training criteria investigated in speech recognition,
including
• MMI: ,
• Minimum Phone Error (MPE) [7]:
where is the phone accuracy between and the correct
hypothesis 3, , and

• margin-based training as introduced in [34]:

with some scaling factor,
i.e., the weights are multiplied with the margin term in
addition.

In this case, the sufficient statistics for the update rules in (19)
are of the form

The feature count is the same as in (22). These statistics can be
efficiently computed using the forward/backward algorithm in
combination with the expectation semiring [16], [37], [38].

VII. EXPERIMENTAL RESULTS

The proposed algorithm in (12)–(15) for GMMs and
(19)–(22) for HMMs, G-GIS for short, is applied to three tasks
from optical character recognition, grapheme-to-phoneme
conversion, and spoken digit string recognition. Discriminative

3We can always add a sufficiently large constant to the training criterion to
make all accuracies non-negative.
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Fig. 4. Comparison of different optimization algorithms (G-GIS, Rprop, L-BFGS) for mixture models using MMI on USPS task. Left: evolution of on training
corpus. Right: evolution of character error rate (CER) on test corpus.

GMMs are used for the first task while for the latter two tasks,
discriminative HMMs are used. G-GIS is compared to Rprop
[15], L-BFGS [17], and EBW [10] if applicable.
Since all these optimization algorithms make use of exactly

the same sufficient statistics of the data, the computing time
per iteration is comparable, see Section VI-C. L-BFGS can and
does recompute the gradient during the line search. This effect,
however, is negligible in our experiments. Thus, a comparable
number of iterations implies a comparable wall clock time.

A. Optical Character Recognition

The well-known USPS handwritten digit database consists of
isolated and normalized images of handwritten digits taken from
US mail envelopes scaled to 16 16 pixels. The database con-
tains a separate training and test set, with 7,291 and 2,007 im-
ages, respectively4. The US Postal Service task is still one of the
most widely used reference data sets for handwritten character
recognition and allows fast experiments due to its small size.
The test set contains a large amount of image variability and is
considered to be a “hard” recognition task. Good error rates are
in the range of 2–3% and use advanced modeling techniques,
e.g. deformation models [39].
Here, we use GMMs with 16 components for each digit

in combination with the gray-scale features augmented with
Sobel-based derivatives, amounting to a total of 512 features.
The model is optimized using MMI with -regularization.
Comparative results are shown in Fig. 4 for different optimiza-
tion algorithms (G-GIS, Rprop, L-BFGS). MMI training is
initialized with the ML estimate.
The convergence speed (and thus the computation time) for

G-GIS, Rprop, and L-BFGS is comparable, although G-GIS
tends to be slower than Rprop and L-BFGS. This is not sur-
prising because G-GIS is derived for the worst case scenario.
Furthermore, G-GIS achieves the same test error rates as Rprop
whereas L-BFGS seems to get stuck in a sub-optimal local max-
imum, see Table I.

4Data available from ftp://ftp.kyb.tuebingen.mpg.de/pub/bs.

TABLE I
ERROR RATES (ER) ON USPS TEST CORPUS FOR

DIFFERENT OPTIMIZATION ALGORITHMS

Fig. 5. Example of a word/pronunciation alignment.

B. Grapheme-to-Phoneme Conversion

Grapheme-to-phoneme conversion is an important task to
build state-of-the-art speech recognition systems. It is used to
enrich the pronunciation lexicon by words where the lexical
representation is known, but not the phonetic representation. In
this example, the letters are the (discrete-valued) features
and the phoneme string representing a word from the lexicon
corresponds with , see Section VI. In general, multiple
letters are consumed to describe one phoneme. To align the two
strings, we adopt the so-called Begin-Inside-Out scheme [40].
An example of a possible alignment for a word/pronunciation
pair using this scheme is depicted in Fig. 5.
For the reported experiments, the English NETtalk 15 k

corpus has been chosen. It consists of 26 different graphemes
and 50 phonemes. The data set is partitioned into roughly 14 k
training words (Train), 1 k words for development and tuning
of the system (Dev), and 5 k testing words (Eva). As a common
trick, we represent the letters in a symmetric window of size
nine around the current letter as vectors, which are used as the
features. A bigram model is used on the output side. All model
parameters are updated with MMI.
Fig. 6 shows the evolution of the training criterion and the

phoneme error rate over the training iterations. In this example,
the training criterion increases monotonically for all three op-
timization algorithms. This is guaranteed for G-GIS. L-BFGS
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Fig. 6. Comparison of different optimization algorithms (G-GIS, Rprop,
L-BFGS) for NETtalk. Top: evolution of training criterion on training data.
Bottom: evolution of Phoneme Error Rate (PER) on dev data (left) and eval
data (right).

spends some additional iterations in the first few iterations on
the line search to make sure that the training criterion increases.
For Rprop, this just happens to be true for this example. The
algorithms seem to converge to different but comparable local
optima. Both L-BFGS and Rprop converge within a few hun-
dred iterations. In contrast, G-GIS takes about ten times more
iterations to converge.
What is the reason for the relatively slow convergence of

G-GIS compared to L-BFGS? The update rules for G-GIS are
constructed such as to always improve the training criterion,
also in the worst case. In contrast, L-BFGS implements a “trial-
and-error” approach: start with a reasonable step size and reduce
it until the current iteration improves over the last iteration. In
general, this can be costly (up to ten trials in the given example,
i.e., the actual step size is 210 times smaller than the initial). In
practice, however, this only occurs rarely such that the overall
training time is hardly affected. This analysis suggests that the
convergence rate for G-GIS is reasonable for a global step size
parameter such as the feature count .

C. Spoken Digit String Recognition

This example is used to test G-GIS for continuous-valued fea-
tures. We use the SieTill task which consists of spoken digit
strings [41]. The recognition system is based on whole-word
HMMs with 215 distinct states in total. The vocabulary consists
of the German digits, including a pronunciation variant. The fea-
ture vectors consist of twelve cepstral features without temporal
derivatives. The linear discriminant analysis (LDA) is applied
to five consecutive frames and projects the concatenated fea-
tures to a 25-dimensional vector. The training and the test corpus
consist of approximately 2.5 h audio data/10 k spoken digits
each. The ML baseline system uses single Gaussians with glob-
ally pooled variances to keep the complexity low. As usual in
speech recognition, the transition probabilities are not updated
in MMI training. To be precise, this leads to some slight incon-
sistency of the Gaussian and log-linear parameterization. This
is not considered critical in this context because the focus is on

the convergence behavior rather than the error rate. In addition,
control experiments on this task suggest that updating the tran-
sition model does not make a significant difference.
Fig. 7 shows the evolution of the training criterion and the

word error rate over the training iterations. A few comments
are due.
The progress of conventionalMMI training using the de-facto

standard EBW [10] is shown in Fig. 7 for comparison. This is
the typical performance of EBW we observe for HMMs with
Gaussian models using globally pooled variances [16]: rela-
tively slow convergence compared to systems using untied vari-
ances [10] and the training criterion is not monotonically in-
creasing. This is because the empirical iteration constants are set
such as to make the Gaussian models and the HMMs well-de-
fined [7], [10], [14] which, however, is not sufficient to improve
the training criterion in general. This is only guaranteed for “suf-
ficiently large” iteration constants [13], [14]. Even worse, the
convergence behavior of empirical EBW has not been studied
in the literature, including convergence to a critical point or if it
converges at all.
In this example, L-BFGS converges quickly and more reli-

ably. The training criterion increases on each iteration by con-
struction. Repeating the iteration with a smaller step size typ-
ically only happens in the first few iterations. Thus, the line
search has only a small impact on the overall training time.
The refined optimization around the optimum, however, does
not pay off in terms of the word error rate.
After a few iterations to adapt the step sizes, Rprop con-

verges quickly. Although not guaranteed, the training criterion
improves on each iteration in this example.
As proved, G-GIS improves the training criterion in each it-

eration and converges smoothly to the same word error rate as
the other optimization algorithms, see Table II. However, this
appears to be at the expense of a considerably slower conver-
gence: the computing time of G-GIS is 1,000 times larger than
for the other three optimization algorithms.

D. Scalability & Practicability

This section addresses the question of the application of the
proposed algorithm in practice and for large-vocabulary contin-
uous speech recognition.
Inspection of the feature constant ((15) and (22)) suggests

that the convergence speed of G-GIS generally depends on
the length of the longest training sequence and the type of
features (for example, bounded/unbounded or sparse/dense).
Also, the amount of training data will affect the convergence
speed of G-GIS. This is because the maximum in the feature
constant ((15) and (22)) is sensitive to “outliers”, which are
more likely for larger amounts of data. These properties of
the feature constant make it hard to scale the current version
of G-GIS beyond the examples given in this paper. However,
this is most likely not a fundamental problem with bounds for
HMMs but rather an artifact of the G-GIS bound not taking
into account the Markov assumption. The observation that a
one-dimensional Ising model cannot have phase transitions
[36] suggests that a feature constant for a tight HMM bound is
only over a few frames and not the complete utterance, see also
end of Section VI-C.
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Fig. 7. Comparison of different optimization algorithms (G-GIS, Rprop, L-BFGS, EBW) for male portion of SieTill. Upper row: linear -axis. Lower row:
logarithmic -axis. Left column: evolution of training criterion on training corpus. Right column: evolution of word error rate (WER) on test corpus.

TABLE II
WORD ERROR RATES (WER) ON SIETILL TEST CORPUS FOR DIFFERENT

OPTIMIZATION ALGORITHMS. WER IS GIVEN FOR THE BEST AND THE “LAST”
ITERATION AS A ROUGH MEASURE OF VARIABILITY, FOR EXAMPLE, EBW

TRAINING CRITERION VARIES A LOT TOWARDS THE END WHICH IS REFLECTED
BY THE HUGE DIFFERENCE BETWEEN THE BEST AND THE LAST ITERATION

The experimental results in this section support this scaling
issue. The convergence speed decreases from single observa-
tions (Section VII-A) to string observations (Sections VII-B,
and VII-C). Compared to the grapheme-to-phoneme task
(Section VII-B), the digit string recognition task (Section VII-C)
is expected to converge more slowly because the sequences
include several hundred frames (compared to 10–20 letters), the
MFCC features are basically unbounded (compared to binary
features), and the training data consists of one million training
frames (compared to 100,000 training letters).
Besides setting the feature constant to a reasonable empirical

value, similar to [42] (Chapter 3.4.3, pp. 60) (GIS) or [7], [10],
[14] (EBW), there are a several possibilities that may speed up

G-GIS and will be investigated in more detail in the future. For
example, replacing the unbounded MFCC features with sparse,
bounded features such as posterior-based features will over-
come some of the limitations. Optimal pre-processing and nor-
malization of the features may help as well [43]. G-GIS may
only be used for “fine-tuning”, i.e., used to converge to a local
optimum from a close initialization point. Also, a stochastic ver-
sion of G-GIS with a better convergence rate may be derived.
Last but not least, a bound that is aware of the Markov assump-
tion will give considerably faster convergence.
In practice, gradient-based approaches combined with a few

heuristics for setting the learning rate and tuning the free opti-
mization parameters for a specific type of problem often gives
satisfactory results at good convergence speed [7], [10], [14],
[44]. That line of work is important and has its merits but should
not be confused with the investigative work in this paper.

VIII. CONCLUSION

A constructive, EM-style optimization algorithm for dis-
criminative HMMs was derived in this paper. It applies to the
common discriminative training criteria such as Maximum
Mutual Information (MMI) and Minimum Phone Error (MPE)
for Gaussian mixture models. The theoretical properties and
the feasibility of the proposed algorithm were checked for a
grapheme-to-phoneme and a spoken digit string recognition
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task. As predicted, the training criterion improves monotoni-
cally, at a fixed computing time per iteration, and converges
to a local optimum with competitive error rates. Unlike for
most other optimization algorithms, no tuning of step sizes or
heuristics are required. In general, these advantages will come
at the expense of the convergence speed. The reason for this is
that the proposed algorithm assumes the worst case scenario to
determine the global step size parameter.

APPENDIX

We sketch in this Appendix how analytical expressions for
the backward probabilities in Section VI can be derived. In par-
ticular, this proves the existence of a solution. From Fig. 3,
the following conditions on the backward probabilities can be
formulated.

This represents a system of linear equations that can be solved
by standard approaches. To explicitly solve it, the loops are re-
solved, i.e., the same symbols appearing on both sides of the
equations are contracted.

Combining these results, leads to the equation for

Plugging these expressions into the formula in (23) gives the
normalized transition probabilities.

As a simple check, we can assume that and verify that
the left-hand and right-hand sides are identical.
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