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Cross-lingual Subspace Gaussian Mixture Models
for Low-resource Speech Recognition

Liang Lu Student Member, IEEE, Arnab Ghoshal Member, IEEE, and Steve Renals Senior Member, IEEE

Abstract—This paper studies cross-lingual acoustic modelling
in the context of subspace Gaussian mixture models (SGMMs).
SGMMs factorize the acoustic model parameters into a set that is
globally shared between all the states of a hidden Markov model
(HMM) and another that is specific to the HMM states. We
demonstrate that the SGMM global parameters are transferable
between languages, particularly when the parameters are trained
multilingually. As a result, acoustic models may be trained using
limited amounts of transcribed audio by borrowing the SGMM
global parameters from one or more source languages, and only
training the state-specific parameters on the target language
audio. Model regularization using `1-norm penalty is shown to
be particularly effective at avoiding overtraining and leading to
lower word error rates. We investigate maximum a posteriori
(MAP) adaptation of subspace parameters in order to reduce the
mismatch between the SGMM global parameters of the source
and target languages. In addition, monolingual and cross-lingual
speaker adaptive training is used to reduce the model variance
introduced by speakers. We have systematically evaluated these
techniques by experiments on the GlobalPhone corpus.

Index Terms—acoustic modelling, subspace Gaussian mixture
model, cross-lingual speech recognition, regularization, adapta-
tion

I. INTRODUCTION

Large vocabulary continuous speech recognition systems
rely on the availability of substantial resources including tran-
scribed speech for acoustic model estimation, in-domain text
for language model estimation, and a pronunciation dictionary.
Building a speech recognition system from scratch for a new
language thus requires considerable investment in gathering
these resources. For a new language with limited resources,
conventional approaches to acoustic modelling normally result
in much lower accuracy. There has been extensive amount
of work to improve the accuracy of speech recognizers in
low-resource conditions, focusing on estimating models from
limited amounts of transcribed audio in the target language
[1]–[5] or when a pronunciation dictionary is not available
[6]–[8]. This paper studies cross-lingual acoustic modelling
with the objective of porting information from one or more
source language systems which are built using larger amounts
of training data, in order to build a system for a target
language for which only limited amounts of transcribed audio
are available. However, owing to differences such as different
sets of subword units, sharing the knowledge among multiple
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languages is not a straightforward task. The main approaches
to cross-lingual acoustic modelling, discussed below, include
the use of global phone sets, cross-lingual phone/acoustic
mapping, cross-lingual tandem features and the use of KL-
divergence HMMs.

Schultz and colleagues [1], [2], [9], [10] investigated the
construction of language-independent speech recognition sys-
tems by pooling together all the phoneme units, as well as
the acoustic training data, from a set of monolingual systems.
The resultant multilingual acoustic model may be used to
perform transcription directly, or may serve as a seed model
to be adapted to the target language [1], [9]. However, an
important problem with this approach is that the number of
phone units grows as the number of languages to be covered
increases. This may lead to inconsistent parameter estimation
and, consequently, degradation in accuracy [11], especially
in case of context-dependent modelling. To overcome this
problem, instead of using a universal phone set, a set of
universal speech attributes may be used which represent
similar sounds across language than phone units [12]. The
fundamental speech attributes which can be viewed as a
clustering of phonetic features, such as voicing, nasality and
frication, can be modelled from a particular source language
and shared across many different target languages. In practice,
a bank of detectors using neural networks [12], for instance,
may be employed to extract the universal attributes.

Rather than constructing a global phone set, the mismatch
of phone units between source and target languages may be
addressed by a direct cross-lingual mapping between phones
or between acoustic models. Both knowledge-based [3], [4]
and data-driven [13], [14] approaches have been investigated.
Given a cross-lingual mapping, either the target acoustic model
is derived from the source acoustic model, or the transcription
of target speech is performed using the mapped source acoustic
model [14].

Tandem features, based on phone posterior probability es-
timates, were originally proposed to improve monolingual
speech recognition [15], but they have also proven effective
in the cross-lingual setting. In this approach, multi-layer
perceptrons (MLPs), trained using source language acoustic
data, are used to generate MLP phone posterior features for the
target language [5], [16]–[20]. In addition, the training data of
the target language may also be used to adapt the MLPs to fit
the target system better [5]. Recent advances in using MLPs
with multiple hidden layers (deep neural networks, DNNs)
[21] have shown great promise for DNN-based cross-lingual
acoustic modelling [22].

KL-divergence HMM based acoustic modelling [23] is a re-
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cently proposed approach which has shown good performance
in low-resource conditions [24], [25]. In this framework,
a global phone set is first obtained by manually mapping
the phones in the different languages to a common phone
set (for example, IPA or X-SAMPA). A multilingual MLP
phoneme classifier is trained using the data from all the
source languages. For the target language system, the phoneme
posterior features are extracted given the MLP. Each HMM
state is parameterised by a multinomial distribution, and the
model is estimated by minimizing the KL-divergence between
the posterior features and HMM state multinomial coefficients.
The benefits of this approach are that the multilingual infor-
mation can be explored by the MLP classifier and the number
of multinomial parameters is much smaller than conventional
GMMs which is particularly suitable for low-resource speech
recognition.

The recently proposed subspace Gaussian mixture model
(SGMM) [26] enjoys a particular advantage in cross-lingual
modelling [27], [28]. In an SGMM, the emission densities
of a hidden Markov model (HMM) are modelled as mixtures
of Gaussians whose parameters are constrained to a globally
shared set of subspaces. In other words, the SGMM factorizes
the acoustic model parameters into a globally-shared set that
does not depend on the HMM states and a state-specific set.
Since the global parameters do not directly depend on the
phone units, they may be shared between languages without
sharing phones. This multilingual model subspace may be used
to estimate models for a new language with limited training
data [27], and in this case, only state-dependent parameters
need to be estimated while the model subspace can be fixed.
This reduces the amount of training data required to train the
recogniser and is especially suitable for speech recognition in
low-resource conditions.

In this paper, we organise our previous findings on cross-
lingual SGMMs for low-resource speech recognition [28], [29]
and extend them with additional experiments and analysis.
In particular, we investigate the speaker subspace for cross-
lingual speaker adaptive training and show that:
• while the accuracy of conventional speech recognizers

degrades significantly in low-resource conditions, a cross-
lingual SGMM acoustic model can achieve a substantial
improvement in accuracy, since a large proportion of the
model parameters can be estimated using the training data
of source languages;

• building systems with limited training data may lead to
numerical problems in the estimation and overfitting, as
we observed in cross-lingual SGMMs. We demonstrate
that `1-norm regularization is an effective way to im-
prove the robustness of model estimation and to achieve
increased recognition accuracy.

• a potential mismatch may exist between the training data
from the source and target languages owing to phoneme
characteristic, corpus recording conditions and speaking
style. This may reduce the improvements in accuracy
obtained by sharing the SGMM subspace parameters in
cross-lingual SGMMs. To address this issue, maximum a
posteriori (MAP) adaptation is investigated to adapt the
subspace parameters towards the target system;

vjk
ΣΣΣjki

µµµjki

wjki i = 1, . . . , I

i = 1, . . . , I

k = 1, . . . , Kj

j = 1, . . . , J

v(s)

Φi

Fig. 1. Model structure of a SGMM acoustic model, with total J HMM states,
and each has Kj sub-states. Each sub-state is modelled by a GMM with I
components, whose parameters are derived from Φi = {Mi,Ni,wi,ΣΣΣi}
and (vjk,v

(s)) using Eq. (2) and (3), and for covariance ΣΣΣjki = ΣΣΣi.

• with limited amounts of training data, the number of
speakers may be too small to estimate the speaker sub-
space directly for speaker adaptive training. However,
the model structure naturally lends itself to cross-lingual
speaker adaptive training, in which the speaker subspace
is estimated from the source language and applied to the
target language.

II. SUBSPACE GAUSSIAN MIXTURE MODELS

In conventional hidden Markov model (HMM) based speech
recognisers, the emitting states are modelled by Gaussian mix-
ture models (GMMs) with parameters estimated directly from
the training data. However, in a subspace Gaussian mixture
model (SGMM), the GMM parameters are inferred using a
set of model subspaces that capture the correlations among the
triphone states and speaker variability. In the SGMM acoustic
model [26], the HMM state is modelled as:

p(yt|j, s) =

Kj∑
k=1

cjk

I∑
i=1

wjkiN (yt|µµµ(s)
jki,ΣΣΣi) (1)

µµµ
(s)
jki = Mivjk + Niv

(s) (2)

wjki =
exp wT

i vjk∑I
i′=1 exp wT

i′ vjk
(3)

where yt denotes the D-dimensional feature vector at time
t, j is the HMM state index, k is a sub-state [26], i is the
Gaussian index, and s denotes the speaker. vjk ∈ RS is the
phone vector (also referred to as the sub-state vector), where
S denotes the phonetic subspace dimension; v(s) ∈ RT is
referred to as the speaker vector, and T denotes the speaker
subspace dimension. The matrices Mi, Ni and the vectors wi

span the model subspaces for Gaussian means and weights
respectively, and ΣΣΣi is the i-th globally shared covariance
matrix. Specifically, the columns of Mi are a set of basis
vectors spanning the phonetic subspace and vjk models the
corresponding Gaussian mean as a point in this space, while
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TABLE I
THE NUMBER OF PARAMETERS OF AN SGMM ACOUSTIC MODEL. Q

DENOTES THE TOTAL NUMBER OF SUB-SATES. A LARGE PORTION OF THE
TOTAL PARAMETERS, E.G. MORE THAN 60% FOR SYSTEMS IN [30], ARE

GLOBALLY SHARED.

Type globally shared state dependent
Mi Ni wi ΣΣΣi vjk cjk

#Parm IDS IDT IS ID(D + 1)/2 QD Q
Total I(D(D + 1)/2 + DS + DT + S) Q(D + 1)

the columns of Ni are a set of bases spanning the speaker
subspaces and v(s) models the contribution from speaker s as
a point in this space. In other words, the model factorizes the
phonetic- and speaker-specific contributions to the Gaussian
means.

Figure 1 shows the structure of an SGMM acoustic model.
We can divide the total set of parameters into two sets, the
globally shared parameters Φi = {Mi,Ni,wi,ΣΣΣi} and the
state-dependent parameters (vjk, cjk). The sub-state weights
cjk are not shown in the figure to reduce clutter. The speaker
vector v(s) is used to adapt the model to speaker s. For
each Gaussian component, the parameters are derived from
both the globally shared and state-dependent parameter sets.
This model is quite different from the conventional GMM
based acoustic model, as a large portion of the parameters
are globally shared between states (Table I). The number of
state-dependent parameters (vjk, cjk) is relatively small if we
use a low dimensional model space. This allows the model to
be trained with less training data, since the number of active
parameters in an SGMM acoustic model can be much smaller
that its GMM based counterpart [26]. In addition, since the
globally shared parameters Φi do not depend on the model
topology, they may be estimated by tying across multiple
systems or by using out-of-domain data, which inspires its ap-
plication in multilingual and cross-lingual speech recognition
[27], [28], discussed in Section III.

A. Maximum likelihood model estimation

Compared to conventional GMM based acoustic modelling,
it is more complex to train an SGMM-based system. The
parameters to be estimated for an SGMM may be split into
the state-independent parameters Φi and the state-dependent
parameters (vjk, cjk), as well as the speaker vector v(s). Since
they depend on each other, no closed form solution is avail-
able for the global optimum. However, using the maximum
likelihood (ML) criterion, they can be updated iteratively by
employing the expectation-maximization (EM) algorithm [26].
For instance, the auxiliary function used in EM for sub-state
vector vjk is

Q(vjk) = −0.5vTjkHjkvjk + vTjkgjk + const, (4)

where Hjk and gjk are an S×S matrix and an S-dimensional
vector capturing the sufficient statistics for the estimation of
vjk, and const denotes the independent constant value. If
the matrix Hjk is invertible, the update formula is readily
available as

vjk = H−1jk gjk. (5)

A more numerically stable algorithm for this estimation is
given in [26] in case Hjk is poorly conditioned. Similarly, the
auxiliary function to update the phonetic subspace Mi is

Q(Mi) = Tr(MT
i ΣΣΣ−1i Yi)− 0.5Tr(ΣΣΣ−1i MiQiM

T
i ) + const

(6)
where Yi and Qi are sufficient statistics defined as{ Yi =

∑
jkt γ̃jki(t)ytv

T
jk

Qi =
∑
jk γjkivjkv

T
jk

, (7)

where γ̃jki(t) denotes the Gaussian component posterior for
acoustic frame yt, and γjki =

∑
t γ̃jki(t). If Qi is invertible,

we can obtain

Mi = YiQ
−1
i . (8)

Again, a more numerical stable algorithm is given in [26], and
also refer it for the estimation of Ni, wi, ΣΣΣi, cjk and v(s).

B. Regularized model estimation

Standard maximum-likelihood (ML) estimation of SGMMs
can result in overfitting when the amount of training data is
small [28]. This problem is most acute for the state-dependent
vectors vjk — unlike the globally shared parameters Φi, they
are only trained on those speech frames which align with
the corresponding sub-state. To overcome this problem, we
proposed a regularized ML estimate for the state vectors [30]
in which penalties based on the `1-norm and `2-norm of the
state vectors, as well as their linear combination (the elastic
net [31]), were investigated. Regularization using the `1-norm
penalty was found to be best suited in cross-lingual settings
where the amount of target training data is very limited [28].
With an `1-norm penalty, the auxiliary function for sub-state
vector estimation becomes:

v̂ = arg max
v
Q(v)− λ||v||`1 , λ > 0, (9)

where λ is the global penalty parameter (we have dropped the
subscripts on v for brevity).

Intuitively, the `1-norm penalty performs an element-wise
shrinkage of v towards zero in the absence of an opposing
data-driven force [31], which enables more robust estimation.
The `1-norm penalty also has the effect of driving some
elements to be zero, thus leading to a form of variable selec-
tion which has been used in sparse representation of speech
features [32], [33], as well as compressed sensing [34]. For
the case of cross-lingual SGMMs, the `1-norm penalty can be
used to select the relevant basis in Mi according to the amount
of available data to estimate vjk while avoiding overtraining.
However, the solution of the auxiliary function is not readily
available for the `1-norm penalty, since the derivative of
the auxiliary function is not continuous. We have previously
applied the gradient projection based optimization approach
[35] to obtain the solution [30]. The idea of regularization can
also be applied to other types of parameters in SGMMs. In
fact, while doing MAP adaptation of Mi using a Gaussian
prior, as described in section IV, if we set the prior mean
to be 0 and the row and column covariances to the identity
matrix I, then the MAP adaptation is equivalent to `2-norm
regularization of Mi.
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Φi

vjk
ΣΣΣjki

µµµjki

wjki

i = 1, . . . , I

i = 1, . . . , I

vjk
ΣΣΣjki

µµµjki

wjki

i = 1, . . . , I

A

B

k = 1, . . . , K
(a)
j

k = 1, . . . , K
(b)
j

J = 1, . . . , J (b)

J = 1, . . . , J (a)

v(s)

v(s)

Fig. 2. An example of multilingual estimation of the globally shared
parameters Φi where we tie them across two source language system A
and B.

III. MULTILINGUAL MODEL ESTIMATION

One of the main barriers preventing acoustic knowledge
being shared across different languages is the mismatch of
phone units between languages. Conventional methods tackle
this problem by using global phone units or through the use
of tandem features. However in an SGMM acoustic model the
globally shared parameters Φi do not depend on the HMM
topology, and hence are independent of the definition of the
phone units. Therefore, when using SGMMs for cross-lingual
acoustic modelling, the phoneme unit mismatch problem is
to some degree bypassed, since we can estimate the globally
shared parameters using multilingual training data by tying
the globally shared parameters across the available source
language systems.

Figure 2 demonstrates an example of the multilingual
SGMM system in which source language systems A and
B may have different phone units and HMM topologies,
provided that the acoustic feature parameterisation and the
dimensionality of model subspace are the same. By training
a multilingual SGMM system in this way the accuracy for
each of the source languages may be improved [27], and the
multilingual globally shared parameters can be ported to a new
target language system with limited training data [27], [28]. In
an SGMM the globally shared parameters typically account for
a large proportion of the total number of parameters (Table I).
The reuse of the globally shared parameters across languages
thus significantly reduces the required amount of acoustic
training data — only the state dependent parameters (vjk, cjk)

need be estimated from target language data.
Using multiple source language systems to estimate the

globally shared parameters Φi involves some modifications in
the SGMM training procedure. However, these modifications
are minor and relatively simple, since given Φi each source
language system is independent — therefore the statistics
for each source language system can be accumulated in the
standard fashion using either the Viterbi alignment or the
Baum-Welch algorithm. In each iteration, the corresponding
statistics are then summed across languages to update the
globally shared parameters. The state dependent parameters
(vjk, cjk) are updated in the standard fashion, for each lan-
guage separately. Consider Mi: for the system of Figure 2,
after obtaining the statistics for each source language system
(Y

(a)
i ,Y

(b)
i ) and (Q

(a)
i ,Q

(b)
i ), the final statistics are obtained

simply by

Yi = Y
(a)
i + Y

(b)
i , Qi = Q

(a)
i + Q

(b)
i . (10)

Then Mi can be updated as usual (8). A similar approach
can be used to update Ni,wi and ΣΣΣi using the multilingual
data. To build a cross-lingual SGMM system, these parameters
are ported into target language system directly, and only the
state dependent parameters vjk and cjk are estimated using the
(limited) in-domain training data. Our previous experimental
results [28] indicate that this approach can significantly reduce
the word error rate (WER) in low-resource conditions.

IV. MAP ADAPTATION OF MODEL SUBSPACE

In a cross-lingual SGMM system for a target language with
limited acoustic training data, the globally shared parameters
are trained using source language data. This may introduce a
mismatch with the target language system because of differ-
ences in phonetic characteristics, corpus recording conditions,
and speaking styles. Since the amount of training data may
not be sufficient to allow the global parameters to be updated
using ML, the mismatch may be alleviated by an adaptation
approach based on the maximum a posteriori (MAP) criterion.
In particular, we have studied the adaptation of Mi using MAP
[29].

In ML estimation of the phonetic subspace [26], the aux-
iliary function for Mi is given by (6). If a prior term is
introduced, then the auxiliary function becomes:

Q̃(Mi) = Q(Mi) + τ logP (Mi), (11)

where P (Mi) denotes the prior distribution of matrix Mi,
and τ is the smoothing parameter which balances the relative
contributions of the likelihood and prior. Although any valid
form of P (Mi) may be used, in practical MAP applications
a conjugate prior distribution is often preferred for reasons of
simplicity. We set P (Mi) to be a Gaussian distribution which
is conjugate to the auxiliary function Q(Mi).

A. Matrix variate Gaussian prior

The Gaussian distribution of random matrices is well
understood [36]. A typical example of its application in
speech recognition is maximum a posteriori linear regression
(MAPLR) [37] for speaker adaptation, in which a matrix
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vjk

Mi

wi

ΣΣΣi

ΣΣΣjki

µµµjki

wjki

i = 1, . . . , Ii = 1, . . . , I

k = 1, . . . , Kj

j = 1, . . . , J

M̄i

ΩΩΩr ΩΩΩc

Fig. 3. MAP adaptation of Mi in SGMM acoustic model. (M̄i,ΩΩΩr,Ωc)
denote the hyper-parameters of the Gaussian prior P (Mi), in which the mean
M̄i is indexed by I while the covariances ΩΩΩr and ΩΩΩc are global.

variate prior is used for the linear regression transformation
matrix. The Gaussian distribution of a D × S matrix M is
defined as:

logP (M) = −1

2

(
DS log(2π) +D log |ΩΩΩr|+ S log |ΩΩΩc|

+ Tr
(
ΩΩΩ−1r (M− M̄)ΩΩΩ−1c (M− M̄)T

))
, (12)

where M̄ is a matrix containing the expectation of each
element of M, and ΩΩΩr and ΩΩΩc are D×D and S ×S positive
definite matrices representing the covariance between the rows
and columns of M, respectively. | · | and Tr(·) denote the
determinant and trace of a square matrix. This matrix density
Gaussian distribution may be written as:

Vec(M) ∼ N (Vec(M̄),ΩΩΩr ⊗ΩΩΩc), (13)

where Vec(·) is the vectorization operation which maps a D×
S matrix into a DS × 1 vector, and ⊗ denotes the Kronecker
product of two matrices. In this formulation, only ΩΩΩr ⊗ΩΩΩc is
uniquely defined, and not the individual covariances ΩΩΩr and
ΩΩΩc, since for any α > 0, (αΩΩΩr,

1
αΩΩΩc) would lead to the same

distribution. This is not of concern in the current application
to MAP adaptation. Figure 3 illustrates the concept of using
the Gaussian prior to adapt the model subspace Mi. In this
case, the auxiliary function for MAP adaptation is:

Q̃(Mi) ∝ Tr
(
MT

i ΣΣΣ−1i Yi + τMT
i ΩΩΩ−1r M̄iΩΩΩ

−1
c

)
− 1

2
Tr
(
ΣΣΣ−1i MiQiM

T
i + τΩΩΩ−1r MiΩΩΩ

−1
c MT

i

)
. (14)

B. Prior distribution estimation

To apply MAP, the prior distribution P (Mi) for each Mi,
should be estimated first. This requires the estimation of the
mean matrices M̄i, and the row and column covariances ΩΩΩr
and ΩΩΩc. Given a set of samples generated by P (Mi), the ML
estimation of the mean, and the row and column covariances,
is described by Dutilleul [38]. This is used with some heuristic
rules for cross-lingual SGMMs [29], in which, the MAP
formulation is based on the assumption that the multilingual

estimate of the global subspace parameters serves a good start-
ing point, which has been empirically verified earlier [28]. To
apply MAP adaptation, we set these multilingual parameters
to be the mean of the prior P (Mi) and update both the state-
specific vjm and the global Mi. With a sufficiently large value
of τ in (11), we can shrink the system back to the cross-lingual
baseline, whereas τ = 0 corresponds to the ML update.

The covariance matrices for each P (Mi) are set to be global
in order to reduce the number of hyper-parameters in the
prior distributions. In [29], we compared different forms of
the two covariance matrices (ΩΩΩr,ΩΩΩc) and the experimental
results indicated that using the identity matrix I for ΩΩΩr and
ΩΩΩc worked well. Using this configuration, MAP adaptation of
Mi is equivalent to applying `2-norm regularization by setting
the multilingual estimate as the model origin. In this case, the
auxiliary function (14) will become

Q̃(Mi) ∝ Tr
(
MT

i ΣΣΣ−1i Yi + τMT
i M̄i

)
− 1

2
Tr
(
ΣΣΣ−1i MiQiM

T
i + τMiM

T
i

)
. (15)

The solution can be obtained in [29], [39]. In this work, this
configuration is adopted in the MAP adaptation experiments.

V. EXPERIMENTS AND RESULTS

We performed cross-lingual speech recognition experiments
using SGMMs on the GlobalPhone corpus [10]. GlobalPhone
contains around 20 languages including Arabic, Chinese and
a number of European languages, with read newspaper speech
from about 100 native speakers per language. Recordings
were made under relatively quiet conditions using close-
talking microphones. Acoustic conditions may vary within a
language and between languages, hence acoustic mismatches
may affect the performance of cross-lingual systems. In these
experiments, German (GE) was used as the target language,
and Spanish (SP), Portuguese (PT), and Swedish (SW) as the
source languages. Table II describes the data for each language
used in the experiments in terms of the number of phonemes
and speakers, and the amount of available audio.

To investigate the effect of limited acoustic training data,
we constructed two randomly selected training subsets of
the target language German data each containing 1 hour (8
speakers) and 5 hours (40 speakers) of data, with 7–8 minutes
of recorded speech for each of the selected speakers. We used
these data subsets, in addition to the full 14.8 hours (referred
to as 15 hours) of German training data, as the three target
language training sets in the following experiments.

A. Baseline monolingual systems

We constructed baseline systems using the three training
sets (1h / 5h / 15h) in a monolingual fashion, using conven-
tional GMM and SGMM acoustic modelling. The systems
were built using the Kaldi speech recognition toolkit [40].
We used 39-dimensional MFCC feature vectors for the ex-
periments. Each feature vector consisted of 13-dimensional
static features with the zeroth cepstral coefficent and their
delta and delta-delta components. Cepstral mean and vari-
ance normalization (CMN/CVN) was then applied on a per
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TABLE II
NUMBERS OF PHONES AND SPEAKERS, AND THE AMOUNT OF TRAINING

DATA (HOURS) FOR EACH OF THE 4 LANGUAGES USED IN THIS PAPER.

Language #Phones #Speakers Train/hours
German (GE) 44 77 14.8
Spanish (SP) 43 97 17.2
Portuguese (PT) 48 101 22.6
Swedish (SW) 52 98 17.4

speaker basis. The GMM and SGMM systems shared the same
decision tree to determine the tied state clustering used for
context-dependent phone modelling; therefore, the differences
in recognition accuracies of the GMM and SGMM systems
are purely due to the different parameterisation of the GMMs.
In the SGMM systems, we set the number of UBM Gaussians
I = 400, and phonetic subspace dimension S = 40 for 15
hour training data case, whereas we use S = 20 when the
training data is limited to 1 hour and 5 hours. Since the
estimation of UBM model does not require the labels, we
estimated it on the whole training dataset and use it for all
German SGMM systems. Table III shows the word error rates
(WERs) of baseline systems. As expected, the WERs for both
the GMM and SGMM systems increase significantly as the
amount of training data is reduced. The monolingual SGMM
system has a significantly lower WER than the monolingual
GMM system for each of the three training conditions.

There is a large difference between the WERs achieved
on the development (dev) and evaluation (eval) sets in Table
III. This is due to the language model that we used. In [28]
we used a trigram language model obtained with an earlier
release of the GlobalPhone corpus, and achieved accuracies
on the development dataset that were comparable to these on
the evaluation dataset. Here, we interpolated that previously
used language model with one estimated on the training
corpus, and we obtained a significant reduction in WER on the
development dataset (e.g. 24.0% in [28] to 13.0% for SGMM
system with 15 hour training data). But the improvements
disappear on the evaluation dataset which indicates that the
text in the training set matches the text of the development set
better than that of the evaluation dataset. In the cross-lingual
acoustic modelling presented in this paper we observe similar
trends on both the development and evaluation sets (as will
be shown in Section V-G), so the linguistic variation between
training, development, and evaluation sets is not a confounding
factor.

B. Cross-lingual system configuration

Each cross-lingual SGMM used the same context dependent
tied state clustering as the corresponding monolingual SGMM
trained on the same data set. Sharing global parameters be-
tween source languages, together with the constraints imposed
by the structure of the SGMM, leads to better parameter
estimates with limited amounts of training data. This also
allows bigger models to be trained, either using more context-
dependent tied states [27], or using a model with the same
state clustering, but with more substates per state. We do the
latter in this paper. In both cases, the combination of improved

TABLE III
WERS OF BASELINE GMM AND SGMM SYSTEMS USING 1 HOUR, 5

HOUR AND 15 HOUR TRAINING DATA

System 1 hour 5 hour 15 hour
dev eval dev eval dev eval

GMM 23.2 34.1 18.5 28.0 15.4 24.8
SGMM 20.4 31.4 14.9 24.9 13.0 22.1
#states 831 1800 2537

parameter estimation and bigger models, is predicted to lead
to lower WER.

The UBM was the same as the one that was used to train the
globally shared parameters Φi on the source language(s). This
is important, since the globally shared parameters correspond
to the segmentation of the acoustic space as determined by
the UBM [26]. First, we train Φi for the source language
systems in either a monolingual or a multilingual fashion. We
then ported the shared parameters to the corresponding cross-
lingual SGMM system. In the baseline SGMM systems, all
the parameters in equations (1–3) were updated: the sub-state
vectors vjm and the globally shared parameters Φi. In a cross-
lingual system, however, only the sub-state vectors vjm were
re-estimated, with the globally shared parameters fixed unless
stated otherwise.

C. Cross-lingual experiments: baseline

The baseline results of the cross-lingual systems are shown
for 1h, 5h, and 15h training data (Figures 4–6). We contrast
the shared parameters Φi obtained from each of the source
language systems, as well as the tied multilingual system.
In these initial experiments, we do not use the speaker sub-
space Ni. The dimension of sub-state vectors is set to be
S = 20. With 1 hour training data, we achieved a relative
WER reduction of up to 17% by reusing the globally shared
parameters from source language systems trained in either a
monolingual or multilingual fashion, demonstrating that out-
of-domain knowledge can be used to improve significantly
the accuracy of a target language system. In addition, we also
observe that the system with multilingually trained subspace
parameters “w/Mul” in Figure 4 results in considerably lower
WERs compared with the other cross-lingual systems derived
from a single source language. This may be because that there
is much larger amount of training data in the multilingual
system, and furthermore, the linguistic differences and corpus
mismatch may be averaged out by the multilingual estima-
tion which alleviates the mismatch between the multilingual
parameters and target language system.

We observed a similar trend in the 5 hour training data
case (Figure 5), although in this case the WER reduction is
smaller (up to 10% relative) which is expected as the amount
of training data increases. In order to evaluate if the cross-
lingual frameworks can achieve improvement when the target
training data is more abundant, we carried out the experiments
using the entire 15 hour training data. Since we can draw the
conclusion from the previous experiments that the multilingual
Φi perform better than their monolingual counterparts, we
only use the multilingual parameters for the cross-lingual
setups. Results are shown in Figure 6 where the dimensions of
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Fig. 4. WER of baseline cross-lingual systems, 1h training data, tested on
the development dataset. Only the lowest WER of SGMM baseline system
by tuning the number of sub-states is given for clarity.
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Fig. 5. WER of baseline cross-lingual systems, 5h training data, tested on
the development dataset. Only the lowest WER of SGMM baseline system
by tuning the number of sub-states is given for clarity.

sub-state vectors were set to be S = 40. In this case, the cross-
lingual SGMM system still reduces the WER by 8% relative
(1% absolute).

D. Cross-lingual experiments: with regularization

With limited amounts of training data, it is often necessary
to limit the dimensionality of the state vectors vjk, since
increasing the phonetic subspace dimension S increases the
number of both global and state-specific parameters. When the
global parameters Φi are trained on separate data, state vectors
of larger dimensionality may be used. Comparing figures 4 and
7, we see that for the cross-lingual system trained on 1 hour of
speech using a phonetic subspace dimension of S = 40 lowers
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GMM baseline
SGMM baseline, S=40
Cross lingual: w/Mul, S=40
Cross lingual: w/Mul + regularization, S=40

Fig. 6. WER of baseline cross-lingual systems, 15h training data, tested on
the development dataset.
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Cross lingual: w/Mul, S=20
Cross lingual: w/Mul, S=40
Cross lingual: w/Mul + backtrack, S=40
Cross lingual: w/Mul + regularization, S=40

Fig. 7. WER of regularized cross-lingual systems, 1h training data, tested
on the development dataset. “Cross-lingual: w/Mul, S = 20” corresponds to
the best results of the same system by tuning the number of sub-states that
is shown in Fig. 4.

the WER compared to a subspace of dimension S = 201.
Figure 7 also compares the standard ML update with a more

conservative one that “backtracks” to the previous parameter
values if the auxiliary function decreases due to the update.
Models trained using both these criteria are found to have
larger WER when the number of substates is increased, show-
ing that the models tend to overtrain when using very small
amounts of training data. However, when the state vectors
are estimated with the `1-norm regularization, the updates
are more stable and allow models with a larger number of
substates to be trained leading to lower WER overall. In fact,
the WER of 15.5% achieved by the cross-lingual SGMM

1In [28], we used a preliminary version of Kaldi toolkit that was used in
[26] and faced numerical instability when building the baseline system without
regularization. We did not have that experience using a more recent version
of Kaldi (revision 710).
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Fig. 8. WER of regularized cross-lingual systems, 5h training data, tested
on the development dataset. “Cross-lingual: w/Mul, S = 20” corresponds to
the best results of the same system by tuning the number of sub-states that
is shown in Fig. 5.

trained on 1 hour of speech using `1-norm regularization is
comparable to the GMM baseline with the entire 15 hour
training data.

Figure 8 shows the results with 5 hour training data. Not
surprisingly, the difference between the regularized model and
the one without regularization is smaller than that seen when
training on 1 hour of data. However, when the number of sub-
states is very large, regularization still helps to avoid model
overfitting and results in a small gain in terms of accuracy.
Again, the more conservative update with backtracking did
not work better than the regularized update. After increasing
the amount of training data to be 15 hours, we did not obtain
improvement by applying the `1-norm regularization as shown
in Figure 6. This agrees with our previous experience of using
`1-norm regularization for SGMMs [30] on a different task.

E. Cross-lingual experiments: with MAP adaptation
As discussed above, if Φi is estimated from out-of-domain

data, then there may be a mismatch between the target lan-
guage system and these parameters. One approach to address
this mismatch is via MAP adaptation of Φi. We applied MAP
adaptation of Mi to the systems “w/Mul, S=40” and “w/Mul +
regularization, S=40” to the 1h and 5h training data conditions
(Figures 9 and 10). As stated in section IV, the two covariance
matrices ΩΩΩr and ΩΩΩc are set to be the identity matrix I. For
the 1h training data case, we set smoothing parameter used in
equation (11) τ = 500. By using MAP adaptation, we obtained
a small reduction in WER (2% relative) compared to the
regularized system. The improvement is not comparable to our
previous results [29] since the baseline is much stronger here.
When we applied MAP adaptation to the baseline without
regularization, we did not observe a reduction in WER when
the number of sub-states was large. This may be because the
sub-state vectors vjk are not well estimated due to overfitting
and hence we not have sufficient and accurate statistics for
equation (7) to adapt Mi.
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Cross lingual: w/Mul, S=40
Cross lingual w/Mul + MAP, S=40
Cross lingual: w/Mul + regularization, S=40
Cross lingual: w/Mul + regularization + MAP, S=40

Fig. 9. WER of MAP-adapted cross-lingual systems, 1h training data, tested
on the development dataset.
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Fig. 10. WER of MAP-adapted cross-lingual systems, 5h training data, tested
on the development dataset.

In the 5h training data case (Figure 10), we did not observe
any reduction in WER using MAP adaptation for both systems
with and without regularization, even though the amount of
adaptation data was increased. When applying MAP adap-
tation, the likelihood on the training data increased, but the
higher WER suggests that it overfits to the training data. We
increased the smoothing term τ but this resulted in moving
the adapted system closer to the baseline with no gain being
observed. This may further demonstrate that the multilingual
parameters are more robust and match the target training data
well. We also did not achieve gains by using MAP adaptation
of Mi in the 15h training data case.

For the 15h training data case, we investigated the update
of the globally shared parameters Φi. We updated wi and Mi

to maximize the likelihood for the target language system.
While this resulted in lower WER for models with fewer
sub-states, the WER increased for larger models (Figure 11).
This is not unexpected since the multilingual estimation of
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Fig. 11. WER of cross-lingual systems with global parameter update, 15h
training data, tested on the development dataset.
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Fig. 12. WER of baseline (above) and regularized (below) cross-lingual
systems using speaker subspace, 1h training data, tested on the development
dataset.

wi and Mi would be expected to be more accurate and
robust than the monolingual estimate. Although updating Mi

and wi increases WERs compared with keeping them fixed
at the multilingually estimated values, the results are similar
to (and in some cases slightly better than) the monolingual
system (Figure 6). This indicates that a better initialization
of the iterative ML updates of the subspace parameters (i.e.
the multilingually trained parameters) finally does not make
a substantial difference. We also carried out the experiments
where ΣΣΣi were updated, and similar results were obtained to
the ML updates of Mi and wi.

F. Cross-lingual experiments: with speaker subspace

Our final set of experiments concerned speaker adaptive
training using the speaker subspace for cross-lingual SGMM
systems for the 1h, 5h, and 15h training data cases (Figures
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Cross lingual: w/Mul + regularization, S=40
Cross lingual: w/Mul + regularization + multi_SPK, S=40
Cross lingual: w/Mul + regularization + mono_SPK, S=40

Fig. 13. WER of regularized cross-lingual systems using speaker subspace,
5h training data, tested on the development dataset.
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Fig. 14. WER of cross-lingual systems using speaker subspace, 15h training
data, tested on the development dataset.

12–14). In the 1h training data case, there are only 8 speakers
in the training set, which is not sufficient to train the speaker
subspace Ni on a per speaker basis for our baseline SGMM
system. We trained Ni on a per utterance basis for the baseline
but did not observe an improvement. However, we can estimate
Ni in multilingual fashion by tying it across the source lan-
guage system similar to the other globally shared parameters.
We then rebuilt the target system “w/Mul + regularization,
S=40” using the resultant speaker subspace. Results are given
in Figure 12. Here the dimension of speaker vector was set
to be T = 39. We can see that for the regularized system,
using the multilingual Ni results in significant gains when the
number of sub-states is relatively small. The gains, however,
vanish as we further increased the number of sub-states. The
system without regularization is more prone to overtraining
when using speaker subspace adaptive training.
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TABLE IV
RESULTS OF CROSS-LINGUAL SGMM SYSTEMS WITH 1 HOUR TRAINING
DATA ON THE DEVELOPMENT (DEV) AND EVALUATION DATASET (EVAL).

System Dev Eval
GMM baseline 23.2 34.1

SGMM baseline 20.4 31.4
Cross-lingual: w/SP, S = 20 18.8 32.4

Cross-lingual: w/PO, S = 20 17.9 30.9
Cross-lingual: w/SW, S = 20 18.0 31.0

Cross-lingual: w/Mul, S = 20 16.8 29.3
Cross-lingual: w/Mul + `1, S = 40 15.5 26.9

+speaker subspace 15.3 26.7

TABLE V
RESULTS OF CROSS-LINGUAL SGMM SYSTEMS WITH 5 HOUR TRAINING
DATA ON THE DEVELOPMENT (DEV) AND EVALUATION DATASET (EVAL).

System Dev Eval
GMM baseline 18.5 28.0

SGMM baseline 14.9 24.9
+speaker subspace 14.6 24.7

Cross-lingual: w/SP, S = 20 15.4 26.5
Cross-lingual: w/PO, S = 20 14.6 25.2
Cross-lingual: w/SW, S = 20 14.6 25.4

Cross-lingual: w/Mul, S = 20 13.4 24.5
Cross-lingual: w/Mul + `1, S = 40 12.7 22.1

In the 5h training data case, there are 40 speakers in
the training set, enough to estimate Ni from the in-domain
data. This system is referred as “w/Mul + regularization +
mono SPK, S=40” in Figure 13. For the system using the
multilingual speaker subspace Ni, we refer it as “w/Mul +
regularization + multi SPK, S=40”. In both systems, T = 39.
We can see that both systems achieve large reductions in
WER when the number of sub-states is small — again, the
gains vanish when using a large number of sub-states. In
addition, the multilingual speaker subspace Ni achieves a
similar WER to the monolingual one. This indicates that the
speaker information from the out-of-domain data can fit the
target system well.

We did not observe notable WER differences between using
either a monolingual or a multilingual speaker subspace in the
15h training data case (Figure 14), as for the 5h training data
case. Just as with 1 hour and 5 hours of training data, using the
speaker subspace lowers the WER for smaller model sizes, but
the difference between the adaptively trained and unadapted
models vanishes when using a very large number of substates.
Although the speaker adaptive training does not provide an
overall reduction in WER, it provides a practical advantage: it
is computationally cheaper to use a smaller model with speaker
subspace than a larger model without it. In the future, we
plan to investigate using feature space (constrained) MLLR
for cross-lingual speaker adaptive training as a comparison to
the results using the speaker subspace.

G. Cross-lingual experiments: summary

Table IV summarizes the results on the development and
evaluation datasets with 1h training data. We observed a
similar trend of results on both datasets. The lowest WER on
the evaluation set (26.7%) was achieved by using multilingual
parameter estimation with regularization, followed by speaker
subspace adaptive training. This is significantly better than

TABLE VI
RESULTS OF CROSS-LINGUAL SGMM SYSTEMS WITH 15 HOUR TRAINING

DATA FOR DEVELOPMENT (DEV) AND EVALUATION DATASET (EVAL).

System Dev Eval
GMM baseline 15.4 24.8

SGMM baseline 13.0 22.1
+speaker subspace 12.4 21.5

Cross-lingual: w/Mul + `1, S = 40 12.0 21.6

the GMM and SGMM baseline using the same training data
(34.1% and 31.4%) and it is only 2% worse than the GMM
baseline using the entire 15h training dataset (24.8%). Hence,
by leveraging the out-of-domain data, the cross-lingual SGMM
system can mitigate increases in WER arising from limited
training data.

Table V summarizes the WERs of systems with 5h training
data on both the development and evaluation datasets. Using
multilingual parameter estimation and `1-norm regularization,
the cross-lingual system obtains 12.7% on the development
dataset and 22.1% on the evaluation dataset, a reduction of
about 2% absolute compared to the speaker adaptively trained
SGMM baseline using a monolingual subspace.

A summary of the results using the entire 15h training data
is given in Table VI. In this condition, the cross-lingual system
outperformed the baseline with speaker subspace adaptive
training by 0.4% absolute on the development dataset and they
achieved around the same accuracy on the evaluation dataset.

VI. CONCLUSIONS

In this paper, we have studied cross-lingual speech recogni-
tion using SGMM acoustic models in low-resource conditions.
We first present a systematic review of the techniques used
to build the cross-lingual SGMM system. We then carried
out a set of experiments using the GlobalPhone corpus with
three source languages (Portuguese, Spanish, and Swedish),
using German as the target language. Our results indicate
that the globally shared parameters in the SGMM acoustic
model can be borrowed from the source language system.
This leads to large reductions in WER when the amount
of target language acoustic training data is limited (e.g. 1
hour). In addition, estimating the globally shared parameters
using multilingual training data is particularly beneficial. We
observed that the cross-lingual system using the multilingual
parameters outperforms other cross-lingual systems using the
monolingual parameters.

Our results also demonstrate the effectiveness of regular-
ization using an `1-norm penalty for the state vectors. With
a limited amount of training data, regularization is able to
improve the numerical stability of the system, enabling the use
of a model subspace of higher dimension and with more sub-
state vectors. The benefits were demonstrated by experimental
results using 1 hour and 5 hour training data in our study,
in which substantial reductions in WER were obtained by
using a higher dimensional model subspace together with
regularization.

We also investigated the MAP adaptation of the model
subspace, and cross-lingual speaker adaptive training using
a speaker subspace. In both cases, however, they did not
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achieve further WER reduction on top of the multilingual
parameter estimation and regularization in the low-resource
settings according to our experimental results. In addition,
we compared speaker adaptive training using monolingual
and multilingual speaker subspaces and obtained comparable
recognition accuracy in 5 hour and 15 hour training data
conditions. This may indicate that the speaker subspace may
also be portable across languages. Finally, the software and
recipe for this work can be found in the Kaldi toolkit —
http://kaldi.sf.net, released under the Apache Li-
cense v2.0.
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