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On the indoor beamformer design with

reverberation
Zhibao Li , Ka Fai Cedric Yiu and Sven Nordholm

Abstract

Beamforming remains to be an important technique for signal enhancement. For applications in

open space, the transfer function describing waves propagation has an explicit expression, which can be

employed for beamformer design. However, the function becomes very complex in an indoor environment

due to the effects of reverberation. In this paper, this problem is discussed. A method based on the image

source method (ISM) is applied to model the room impulse responses (RIRs), which will act as the

transfer function between source and sensor. The indoor beamformer design problem is formulated as a

minimax optimization problem. We propose and study several optimization models based on the L1-norm

to design the beamformer. We found that it is advantageous to separate early and late reverberations in

the design process and better designs can be achieved. Several numerical experiments are presented using

both simulated data and real recordings to evaluate the proposed methods.
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recordings. The authors also would like to thank the anonymous reviewers for their useful comments and suggestions.

Zhibao Li is with the Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon,

Hong Kong, PR China, e-mail: zbli0307@163.com

Ka Fai Cedric Yiu is the corresponding author, with the Department of Applied Mathematics, The Hong Kong Polytechnic

University, Hung Hom, Kowloon, Hong Kong, PR China; tel: +852-34008981; fax:+852-23629045; e-mail: macyiu@polyu.edu.hk

Sven Nordholm is with the Department of Electrical and Computer Engineering, Curtin University, Perth, Australia; tel: +618

92667439; e-mail: S.Nordholm@curtin.edu.au

May 26, 2014 DRAFT



2

I. INTRODUCTION

Beamforming provides a versatile form of spatial filtering by an array of sensors. Beamformers are often

deployed in applications such as teleconferencing, hands-free communications, speech recognition and

hearing aids. There are numerous algorithms dedicated to the design of beamformers in the literature.

Many of the early beamforming techniques were developed for a spectrum of applications including

wireless communications [1]–[3]. Wave propagations from the source point to the sensors are described

by simple but elegant functions. When it comes to indoor acoustic applications, this creates a problem in

the accuracy of the designs. Indoor sound propagation is a very complex phenomenon in the enclosure

where the sound conducting medium is bounded on all sides by walls, ceiling and floor. Performance

requirements on the beamformers are likely fail if a simple transfer function is employed in the design

process. In recent years, many studies have been carried out on the speech dereverberation, noise reduction

and source localization in reverberant environments [4], [5]. However, applying those techniques in a

multi-microphone setting is still a challenging task.

In the design of microphone array for speech acquisition in reverberant environments, a mixed near-

field/far-field technique is developed to solve the beamformer design problem [6], in which a near-field

beamformer was designed to pass on a desired signal from a chosen near-field source location while a

far-field beamformer is employed to suppress room reverberation. However, the study was based on the

assumption that most interference/reverberation are generated from the far-field and the RIRs calculated

are generated by Legendre function and spherical Hankel function. To improve the array performance

in reverberant enclosures, a multiple beamforming and matched-filtering technique was proposed in [7],

and the performance of the matched-filter array (MFA) processing in real rooms was investigated in

[8]. In the MFA approach, the output of each microphone is processed by a time inverse of the impulse

response with fixed delaying truncation from the focal point to the microphone, and the array output is the

summation of outputs from each matched-filter, where the RIRs are measured by using the maximal length

sequences (MLS) [9] as excitatory signals. These studies provide good insights for dereverberation, but

have limitations such as inaccurate estimation of RIRs. Another common idea to deal with this problem

is to design beamformers based on approximating the multiplicative transfer function (MTF) [10], [11],

and more recently, the relative transfer function (RTF) estimator by applying the method proposed in

[12]. In the past decades, various methods have been developed to identify the RTFs; more details can

be found in [13] and the references therein.

Indeed, the sound field can be described by wave equation and appropriate boundary conditions for
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the walls. However, this wave-based acoustical modelling approach is computationally demanding and

is particularly useful for simulating low frequency sound fields [14]–[16]. Another way of modelling

room acoustics is geometrical acoustics modelling techniques, such as ray tracing and the image-source

method (ISM) [17]–[20]. They have been widely used to model the acoustic field of enclosed spaces.

The corresponding predictions are valid for frequencies above the Schroeder’s frequency [21]–[23],

fSch = 2000
√
T60/V (Hz) (T60: reverberation time in second, V : volume in m3). For instance, in

an 8m × 4m × 3m room with reverberation time T60 = 0.3s, the Schroeder’s frequency is about

fSch ≈ 112Hz. In audible frequencies, the frequency range of 300Hz to 3400Hz has been found to be

the most important for speech intelligibility and speech recognition [24], which means the geometrical

acoustics modelling techniques are valid for the frequencies of interest in such rooms. The ISM based

modelling originally proposed for rectangular enclosures by J. Allen and D. Berkley in 1979 [19] is viewed

as a simple but efficient approach for simulating room acoustics. However, the required simulation times

grow exponentially with the reflection order, and the associated computational costs is a drawback of

the original image-source implementation. E.A. Lehmann and A.M. Johansson [25] proposed a diffuse

reverberation model (fast-ISM) recently to reduce the computational cost by modelling the reverberation

tail as decaying random noise, while using the ISM simulator for the computation of the early reflections.

In this paper, we study the indoor beamformer design problem, where the room impulse responses

(RIRs) are estimated by an efficient room simulator developed in [25]. We transform the indoor beam-

former design problem into a minimax optimization problem, where the maximum of the cost is chosen

over the constrained class of position and frequency, while the minimum is taken over the set of filter

coefficients. The minimax filter design problem is equivalent to a semi-infinite linear programming prob-

lem, so that we can convert it into a constrained linear programming problem by using the discretization

technique. Since the propagation can be divided into 3 regimes, namely the direct path, early reflections

and late reverberation, we propose several optimization models based on the L1-norm to design indoor

beamformers by considering different combinations of the desired response and the reverberation. We

show that the optimization model based on the separation of the propagation path into all 3 regimes

performs better than the other existing models. Moreover, we demonstrate that early and late reverberation

behave in a Pareto manner by numerical calculations, in the sense that there is no optimized solution that

suppresses both effectively based on experimental results. It essentially becomes a multi-criteria problem

and there is a trade-off in suppressing more on either one. As a result, we propose a multi-criteria

optimization method which is able to obtain all the Pareto optima.

The rest of the paper is organized as follows. In Section II, the indoor beamformer design problem
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is formulated as a minimax optimization problem by using the RIRs, where the RIRs are estimated by

the efficient ISM based room simulator. In Section III, we construct the linear programming problem

to implement the numerical model for the design of indoor beamformers based on the L1-norm. Two

separation models based on a RIR separation scheme are proposed to improve beamforming performances.

In Section IV, we present some numerical experiments to show that the proposed methods are effective,

and carry out comparative studies among these methods. Finally, conclusions and summary of this paper

are given in Section V.

II. PROBLEM FORMULATION

Assume a microphone array containing N elements with L−tap FIR filter behind each element is

operating in a small rectangular room. Let the microphone elements be at the fixed points as ri =

(xi, yi, zi), i = 1, 2, . . . , N . If the signals received by the microphone array are sampled synchronously

at the rate of fs per second, the frequency responses of these FIR filters may be defined as

Hi(h, f) = hTi d0(f), i = 1, 2, ..., N, (1)

where hi is a vector consisting of the i-th L−tap FIR filter

hi = [hi(0), hi(1), ..., hi(L− 1)]T ,

and d0(f) is the vector defined as

d0(f) = [1, e
−j2πf
fs , ..., e

−j2πf
fs

(L−1)]T .

The beamformer output can be obtained by using the room impulse responses (RIRs) and FIR-filter

responses Hi(h, f). Denote the frequency domain RIR of the i-th microphone as Ri(r, f), where

r = (x, y, z) is a space point, suppose the desired response is Gd(r, f), then our target is to find a

group of coefficients h = [h1,h2, . . . ,hN ]T for the FIR filters, such that the beamformer output

G(r, f) =

N∑
i=1

Hi(h, f)Ri(r, f) = RT (r, f)H(h, f),

is close to the desired response Gd(r, f), where RT (r, f) = [R1(r, f), . . . , RN (r, f)]T is the frequency

domain RIR vector, and H(h, f) = [H1(h, f), ... , HN (h, f)]T is the frequency domain filter response

vector defined in (1).

Selection of good criteria to measure the effectiveness of the designed beamformer is important. A

simple model for the indoor beamformer design problem can be described as the following optimization
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problem

min
h∈RN×L

max
(r,f)∈Ω

∥∥RT (r, f)H(h, f)−Gd(r, f)
∥∥p
p
, (2)

where p > 0, Ω is the given space-frequency domain for the definition of desired response function

Gd(r, f). The problem formulation (2) is a general form to describe the beamformer design problem,

it is to find the optimal filter coefficients h to minimise the maximum error between the beamformer

response and desired response over the considered region Ω.

When the desired response Gd(r, f) is given, then the major task is to estimate R(r, f) for all

(r, f) ∈ Ω. The following direct path transfer function

T (r, f) =
1

||r − ri||
e
−j2πf||r−ri||

c , (3)

is often deployed, where c is the speed of sound, which is the Green’s function for the Helmholtz

equation to describe the sound wave propagation in the acoustic free field [26]. However, if this design

is deployed in a typical reverberant room, the beamforming performance deteriorates significantly when

T60 increases. It is necessary to employ the corresponding information to design the indoor beamformer,

and the estimation of RIRs is one of the key factor. However, the RIRs include lots of the reflections

and reverberation due to the room acoustics. A typical example of RIR estimated from fast-ISM based

room simulator is plotted in Fig. 1, showing a long tail of reflections and reverberation.
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Fig. 1: Example of an estimated RIR.

It is noted that the estimated RIR can be separated into three parts, namely the direct path response, early

reflections and late reverberation, with different delays, denoted by RD(r, f), RE(r, f) and RL(r, f),

respectively. Therefore,

R(r, f) = RD(r, f) +RE(r, f) +RL(r, f). (4)
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The direct path response RD(r, f) is defined to describe the wave propagation from the source point to

the microphone element, and it can be determined by using the distance information. The early reflections

RE(r, f) is used to describe the major energy decay of sound wave reflections to some extent, while the

late reverberation RL(r, f) is used to model the diffuse reverberation decay. The RIR model requires the

definition of a specific transition time (the cut-off point is denoted by tc) between early reflections and

late reverberation. The decomposition of RIR into early reflections and late reverberation is described

in [25], [27]. According to the transition point tc defined in [25], it is the time for which the overall

acoustic energy in the RIR has decreased by a certain amount ∆c (in dB)

tc = E−1(−∆c)

where E−1(τ) corresponds to the time lag τ such that E(t) = τ . It effectively defines a room-dependent

cut-off parameter that can be tuned to capture most of the early reflections in the specific environment

under consideration.

If we model the desired response with the direct path response, then the early reflections and late

reverberation are are also expected to be suppressed to a certain extent. However, the suppression level

cannot be controlled directly because reverberation is not a direct objective in the optimization process. In

view of this, we can extract the reverberation part from the RIRs to modify the indoor beamformer design

model (2) for desired response formulation and dereverberation respectively. One simple multi-criteria

model is

min
h∈RN×L

max
(r,f)∈Ω

ρ1‖RT
D(r, f)H(h, f)−Gd(r, f)‖pp

+ρ2‖(RE(r, f) +RL(r, f))TH(h, f)‖pp,
(5)

where ρ1 > 0 and ρ2 > 0 are weighting parameters. They can be adjusted gradually within a range

[28] to change the influence of the different objectives during the optimal beamformer design and obtain

a set of solutions which constitutes the Pareto optima set. Since the direct path response model is

fairly accurate, the separation of the direct path response beamforming and reflection parts suppression

can reduce the influence of the measurement errors on the reflection parts of RIRs estimation, and the

designed beamformer will have better robustness. In this model, the total reverberation is suppressed as

a whole and is introduced directly into the objective function to ensure reverberation is reduced in the

optimization process.

On the other hand, since the early reflections have most of the energy of the reverberation, a better
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multi-criteria model for indoor beamformer design can be established as

min
h∈RN×L

max
(r,f)∈Ω

ρ1

∥∥RT
D(r, f)H(h, f)−Gd(r, f)

∥∥p
p

+ρ2

∥∥RT
E(r, f)H(h, f)

∥∥p
p

+ ρ3

∥∥RT
L(r, f)H(h, f)

∥∥p
p
,

(6)

where ρ1 > 0, ρ2 > 0 and ρ3 > 0 are weighting parameters. This is the most elaborate model to control

early and late reverberation separately. Indeed, depending on applications, it is advantageous to have

direct controls over both early and late reverberations, whereas they may yield different acoustic effects.

Since the L1-norm based model is effective in beamformer design problem [29], [30], it is introduced

to measure the residuals of the desired response approximation and reverberation suppression for our

indoor beamformer design based on the above developed models (2), (5) and (6), respectively.

III. THE IMPLEMENTATION MODELS

A. L1-norm implementation

It is noted that all the minimax problems (2), (5) and (6) are formulated in the continuous space-

frequency region Ω, thus they are semi-infinite problems. And the general numerical schemes in dealing

with them are the discretization methods and the reduction based methods [31]–[34]. For the discretization

methods, in order to determine suitable multi-dimensional grids to solve the semi-infinite problems,

sequences of adaptive meshes can be applied so that the meshes are refined gradually.

Let us consider first problem (2) with a multi-dimensional grid region ΩM for approximating Ω with

a uniform grid containing M mesh points in each dimension of the space-frequency domain, and with

the frequency domain RIR vectors R(r, f), ∀(r, f) ∈ ΩM have been estimated by the fast-ISM room

simulator. By combining the RIR vectors R(r, f) with the vector d0, we rearrange the expression as

RT (r, f)H(h, f) = hTd(r, f). (7)

Expanding the complex functions as

d(r, f) = d1(r, f) + jd2(r, f),

Gd(r, f) = Gd1(r, f, L) + jGd2(r, f, L),
(8)

where d1(r, f), d2(r, f), Gd1(r, f, L) and Gd2(r, f, L) are the real and imaginary parts of d(r, f) and

Gd(r, f), respectively, and so on. Thus, denoting

u(r, f) = hTd1(r, f)−Gd1(r, f),

v(r, f) = hTd2(r, f)−Gd2(r, f).
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the minimax problem (2) for the beamformer design can be rewritten as

min
h∈RN×L

max
(r,f)∈ΩM

|u(r, f) + jv(r, f)| .

By using the L1-norm, the beamformer design problem can be expressed as

min
h∈RN×L

max
(r,f)∈ΩM

|u(r, f)|+ |v(r, f)| . (9)

To convert it into a linear programming problem, one approach is to introduce two new variables for

controlling the real part and imaginary part separately as

ξI,1 = max
(r,f)∈ΩM

|u(r, f)| , ξI,2 = max
(r,f)∈ΩM

|v(r, f)| ,

then an implementation model for problem (9) can be established.

Model I

min
h∈RN×L, ξI∈R2

ξI,1 + ξI,2

s.t. |u(r, f)| ≤ ξI,1, ∀(r, f) ∈ ΩM ,

|v(r, f)| ≤ ξI,2, ∀(r, f) ∈ ΩM .

(10)

It can be formulated as the following standard linear programming model in matrix notation:

min
ZI∈RN×L+2

cTZI

s.t. A(r, f)ZI − b ≤ 0, ∀(r, f) ∈ ΩM ,
(11)

where

A(r, f) =


d1(r, f) −1 0

−d1(r, f) −1 0

d2(r, f) 0 −1

−d2(r, f) 0 −1

 ,

ZI =


h

ξI,1

ξI,2

 , c =


0

1

1

 , b =


Gd1(r, f)

−Gd1(r, f)

Gd2(r, f)

−Gd2(r, f)

 .

This is the current approach in the literature to achieve a target response without giving special consid-

eration to reverberation. Therefore, only the direct path impulse response is needed in this formulation.
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B. Multi-criteria models

Problems (5) and (6) can be formulated into linear programming problems like Model I based on the

L1-norm measure. In the reverberation responses (4), denote

RR(r, f) = RE(r, f) +RL(r, f).

Similar to (7) and (8), we rearrange

RT
D(r, f)H(h, f) = hTdD(r, f),

RT
R(r, f)H(h, f) = hTdR(r, f),

and expand the complex functions as

dD(r, f) = dD1
(r, f) + jdD2

(r, f),

dR(r, f) = dR1
(r, f) + jdR2

(r, f).

Similar to (9), we have

uD(r, f) = (hTdD1
(r, f)−Gd1(r, f)),

vD(r, f) = (hTdD2
(r, f)−Gd2(r, f)),

uR(r, f) = hTdR1
(r, f), vR(r, f) = hTdR2

(r, f).

The problem (5) can be reformulated as

min
h∈RN×L

max
(r,f)∈ΩM

ρ1 |uD(r, f) + jvD(r, f)|

+ρ2 |uR(r, f) + jvR(r, f)| .

Using the L1-norm and introducing the following auxiliary variables:

ξII,1 = max
(r,f)∈ΩM

|uD(r, f)| , ξII,2 = max
(r,f)∈ΩM

|vD(r, f)| ,

ξII,3 = max
(r,f)∈ΩM

|uR(r, f)| , ξII,4 = max
(r,f)∈ΩM

|vR(r, f)| ,

the optimization model corresponding to problem (5) can be established as

Model II

min
h∈RN×L, ξII∈R4

ρT ξII

s.t. |uD(r, f)| ≤ ξII,1, ∀(r, f) ∈ ΩM ,

|vD(r, f)| ≤ ξII,2, ∀(r, f) ∈ ΩM ,

|uR(r, f)| ≤ ξII,3, ∀(r, f) ∈ ΩM ,

|vR(r, f)| ≤ ξII,4, ∀(r, f) ∈ ΩM ,

(12)
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where ξII=[ξII,1 ξII,2 ξII,3 ξII,4]T , and ρ=[ρ1 ρ1 ρ2 ρ2]T are the weighting parameters developed in

(5). In this formulation, the total reverberation are introduced directly into the objective function in order

to achieve a better suppression.

For the multi-criteria problem (6), we can divide the reverberation responses RR(r, f) further into

early reflections and late reverberation. Rearranging them as

RT
E(r, f)H(h, f) = hTdE(r, f),

RT
L(r, f)H(h, f) = hTdL(r, f),

expanding the complex functions

dE(r, f) = dE1
(r, f) + jdE2

(r, f),

dL(r, f) = dL1
(r, f) + jdL2

(r, f),

we have the following additional variables in the objective function:

uE(r, f) = hTdE1
(r, f), vE(r, f) = hTdE2

(r, f).

uL(r, f) = hTdL1
(r, f), vL(r, f) = hTdL2

(r, f).

Introduce the auxiliary variables as

ξIII,1 = max
(r,f)∈ΩM

|uD(r, f)| , ξIII,2 = max
(r,f)∈ΩM

|vD(r, f)| ,

ξIII,3 = max
(r,f)∈ΩM

|uE(r, f)| , ξIII,4 = max
(r,f)∈ΩM

|vE(r, f)| ,

ξIII,5 = max
(r,f)∈ΩM

|uL(r, f)| , ξIII,6 = max
(r,f)∈ΩM

|vL(r, f)| ,

then the optimization model for problem (6) can be established as

Model III

min
h∈RN×L, ξIII∈R6

ρT ξIII

s.t. U(r, f) ≤ ξIII , ∀(r, f) ∈ ΩM ,
(13)

where

U(r, f) = [|uD(r, f)| |vD(r, f)| |uE(r, f)|

|vE(r, f)| |uL(r, f)| |vL(r, f)|]T ,

and ξIII = [ξIII,1 . . . ξIII,6]T , ρ = [ρ1 . . . ρ6]T . In this formulation, the effect of the early reflections

and the late reverberation are separated in the objective function and the corresponding impulse response

functions are used in the calculations.

The above multi-criteria models Model II and Model III can also be transformed into linear program-

ming problems similar to (11) of the Model I. Linear programming has been studied extensively in the
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literature and the computation for a linear problem is much less than for nonlinear ones [35]. Interior

point method [36] can be employed as an efficient solver. According to the formulation, the Model I can

be implemented efficiently with just one linear program, while for Model II and Model III, it will take

need to solve several linear programs to develop the Pareto optima. Furthermore, Model II will have a

relatively lower complexity than Model III because the reverberation effect is considered as a whole in

the optimization problem, while it is attempted to differentiate between early and late reverberation in

Model III.

IV. EVALUATION OF THE PROPOSED METHOD

In this section, we want to evaluate the performances of the designed beamformers, not only in

simulated rooms but also in an actual enclosure. First, one simple rectangular room with adjustable

parameters is defined for the fast-ISM room simulator to estimate the RIRs. Then, the proposed models

are used to design beamformers and various performance measures are evaluated. A recorded signal is

also employed as an input to evaluate the performance in the stopband. Finally, a set of signals are

recorded in an actual room to evaluate the beamformers on both dereverberation and noise suppression.

Example 1. Indoor beamformer design

In this example, we define a simple 8m × 4m × 3m rectangular office room with adjustable ab-

sorption coefficients characterizing the room surface, which is also measured by reverberation time T60

for convenience. To define a microphone array for beamforming, an equispaced linear array with 5

microphone elements are setup at {(2, 3.9, 1.5), (2, 3.95, 1.5), (2, 4, 1.5), (2, 4.05, 1.5), (2, 4.1, 1.5)} in

meter, respectively. The array spacing is 0.05m to avoid spatial aliasing for the frequency of interest,

and a 10-tap FIR filter is used in every channel. We define the passband region as

Ωp = {(r, f)|x = 1m, |y − 4| ≤ 0.4m,

z = 1.5m, 0.5kHz ≤ f ≤ 1.5kHz},

and the stopband regions as

Ωs = {(r, f)|x = 1m, |y − 4| ≤ 0.4m,

z = 1.5m, 2.0kHz ≤ f ≤ 4.0kHz},

∪{(r, f)|x = 1m, 1.5m ≤ |y − 4| ≤ 3.0m,

z = 1.5m, 0.5kHz ≤ f ≤ 1.5kHz},

∪{(r, f)|x = 1m, 1.5m ≤ |y − 4| ≤ 3.0m,

z = 1.5m, 2.0kHz ≤ f ≤ 4.0kHz}.
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For illustration, the configuration is depicted in Fig. 2.
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Fig. 2: Setup of acoustic room and layout of microphone array for the indoor beamformer design.

In addition, the desired response function in the passband region Ωp is given by

Gd(λ, r, f) = e−j2πf
||r−rc||

c ,

where c is the sound speed and rc is the center element of the microphone array which is usually defined

as the beamformer output point. In the stopband region Ωs, we simply set Gd(r, f) = 0 in order to filter

out the interference and noise. The space-frequency domain of the passband and stopband is discretized

by a grid of 30 × 30 for calculations. A denser grid 120 × 120 is employed to verify the beamforming

performances.

In a typical room environment, when a sound wave strikes a surface, a certain fraction of energy is

absorbed and the fractional loss is characterized by the absorption coefficients. The overall effect can be

captured by the reverberation time T60 (see [25] for more details). Therefore, we use a uniform absorption

coefficient for all room boundaries to generate the room acoustics and we choose different T60 in the

following numerical experiments.

The implementation of Model I is a standard linear programming problem and the beamformer

coefficients can be solved directly, but the beamformers designed from the multi-criteria decision Model

II and Model III are governed by the weighting parameters ρ. In general, for independent objectives,

there does not exist a single solution that simultaneously optimizes all objectives in the multi-criteria

optimization. The Pareto optima set is therefore needed. For Model II and Model III, we can vary the

weighting parameters ρ to obtain the Pareto optima set corresponding to different indoor beamformer

designs. In the following, we choose the Pareto optimal solutions based on the total reverberation

suppression for Model II and Model III.

To explain the multi-criteria Model III, we give an example to illustrate the conflicting of the early

reflections suppression and late reverberation suppression in Fig. 3. Clearly we cannot find a design to
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minimize both early reflections and late reverberation and we need to trade off between both suppressions.

It demonstrates that the separation scheme for suppressing early reflections and late reverberation in Model

III is meaningful.

−22 −21.5 −21 −20.5 −20
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 (
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Fig. 3: Conflicting nature of early reflections suppression (ERS) and late reverberation suppression (LRS) with

T60 = 0.2s.

Since all the indoor beamformer design models can achieve the desired response in the passband, the

other measures of performance are the noise reduction and reverberation suppression. Therefore, we use

the following performance indicators to measure and compare among different models: the direct path

response suppression (DRS (in dB)):

1

||Ωs||
∑

(r,f)∈Ωs

∥∥RT
D(r, f)H(h, f)

∥∥
2
,

the early reflections suppression (ERS (in dB)):

1

||Ωs||
∑

(r,f)∈Ωs

∥∥RT
E(r, f)H(h, f)

∥∥
2
,

and the late reverberation suppression (LRS (in dB)):

1

||Ωs||
∑

(r,f)∈Ωs

∥∥RT
L(r, f)H(h, f)

∥∥
2
.

Define the overall performance of the designed beamformer to be the total reverberation suppression

(TRS=DRS+ERS+LRS), the numerical results are summarised in Table I under 8 different reverberation

time T ′60s = {0.05s, 0.1s, . . . , 0.4s}.

From the results in Table I, the beamformers designed by the proposed models are all effective for noise

reduction and reverberation suppression for different reverberation time T60’s. The beamformers designed

using the multi-criteria decision based Model II and Model III have better performances than Model I

in all performance indicators, and it can be seen that Model II and Model III have more significant

May 26, 2014 DRAFT



14

TABLE I: Summary of the performances of the designed indoor beamformers with different reverberation times

on desired response, early reflections and late reverberation suppression (in dB).

T60

Model I Model II Model III

DRS ERS LRS TRS DRS ERS LRS TRS DRS ERS LRS TRS

0.05 -14.1400 -39.2890 -61.2107 -14.1267 -21.4810 -45.1816 -65.9210 -21.4624 -22.4063 -44.4467 -67.2945 -22.3791

0.1 -14.1377 -24.4809 -55.4227 -13.7536 -20.5304 -29.4417 -59.1716 -20.0049 -21.6910 -29.8507 -59.7177 -21.0730

0.15 -14.1377 -19.4207 -47.1581 -13.0090 -20.4440 -21.9449 -41.0765 -18.0977 -21.6191 -24.7314 -50.3162 -19.8880

0.2 -14.1364 -16.6324 -38.2722 -12.1865 -20.2677 -21.1781 -38.8466 -17.6556 -20.8478 -21.2104 -40.7866 -17.9921

0.25 -14.1353 -14.7239 -32.0293 -11.3718 -18.8318 -17.6315 -32.0034 -15.0907 -19.0192 -18.1811 -34.5490 -15.5151

0.3 -14.1345 -13.3163 -27.4316 -10.6047 -17.0809 -15.2531 -27.7305 -12.9155 -18.5007 -16.4701 -31.0600 -14.2657

0.35 -14.1337 -12.2411 -23.9777 -9.9015 -17.7867 -14.5372 -23.8327 -12.5210 -18.6589 -15.4044 -27.1069 -13.5285

0.4 -14.1331 -11.3921 -21.2057 -9.2533 -17.4041 -13.4633 -21.6259 -11.5425 -18.3217 -13.2024 -23.5995 -11.7445

TABLE II: Summary of off-design performances (in dB) of the indoor beamformers designed for a room with a

reverberation time of T60 = 0.1s.

T60

Model I Model II Model III

DRS ERS LRS TRS DRS ERS LRS TRS DRS ERS LRS TRS

0.08 -14.1395 -28.1768 -57.3646 -13.9712 -21.1037 -33.8798 -62.1626 -20.8800 -20.9454 -33.4870 -62.0590 -20.7097

0.09 -14.1392 -26.1214 -56.0164 -13.8722 -22.0220 -31.7308 -60.2814 -21.5802 -21.8461 -31.6153 -60.6142 -21.4102

0.11 -14.1387 -23.1337 -54.5959 -13.6228 -20.7166 -28.2511 -57.8366 -20.0103 -22.0703 -28.5929 -58.3538 -21.1962

0.12 -14.1385 -22.0046 -53.4133 -13.4806 -20.5373 -26.9751 -56.1224 -19.6475 -21.2157 -26.9252 -56.7525 -20.1816

improvements on DRS than Model I. Also, beamformers designed from Model III performs slightly

better than that from Model II in the TRS, which gives credit to the flexibility introduced into Model

III in choosing different weights. To take a closer look at the the overall performance of the designed

beamformers from Model III, frequency response functions with reverberation time T60 = 0.1s and

T60 = 0.2s are shown in the Fig. 4 (in these figures, x(m)and f(Hz) denotes the space and the frequency

domain, respectively).

In addition, we use the perturbed room acoustics to examine the robustness of the designed beamform-

ers. We apply the designed beamformers at reverberation time T60 = 0.1s into the perturbed acoustic

room with reverberation time T60 = {0.08s, 0.09s, 0.11s, 0.12s}, respectively. From the experimental

results summarized in Table II, the designed beamformers from the proposed models are all robust to

small perturbations in the reverberation time.
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(a) T60 = 0.1s

(b) T60 = 0.2s

Fig. 4: Overall performance of the indoor beamformers designed by using Model III.

Example 2. Signal suppression in stopband

In this example, we input a test signal in the stopband and evaluate the performances of the designed

indoor beamformers. We use a male speech as the input signal and employ the setup of the room and

layout of microphone array defined in Example 1 with reverberation time T60 = 0.1s for the simulation.

The beamformers are designed using Model I, Model II and Model III. For comparison, we use the signal

captured by the center element of the microphone array as a reference signal. The positions tested are

at r = (1, 2, 1.5) ∈ Ωs and r = (1, 1, 1.5) ∈ Ωs and the amplitude suppressions are depicted in Fig. 5.
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It can be seen that all the designed beamformers are effective on the noise suppression in the stopband,

and the beamformer designed using Model III is slightly better than Model I and Model II.
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Fig. 5: Performances of the designed indoor beamformers in the stopband.

There are many objective measurement methods derived in the literature to evaluate the performance

of speech enhancement [37], such as the signal-to-noise ratio (SNR) [38] and signal-to-interference ratio

(SIR) [39]. In order to measure the noise and reverberation suppression in the stopband, we can similarly

define the overall suppression measurement as follows:

Supp = 10 log10

||S(f)||22
||Y(f)||22

(dB), (14)
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where S(f) and Y(f) represent the frequency spectrums of the input signal and the beamformer output,

respectively. We select the stopband location from r = (1, 1, 1.5) to r = (1, 2.5, 1.5) with 0.1m spacing

to evaluate the noise suppression. A summary of the results is depicted in Fig. 6. We can see that all the

suppression measurements in the stopband interval [2.5m, 1m] have been enhanced after beamforming by

using the proposed models, and the farther away from passband, the better performance on suppression.

Moreover, we can see that the multi-criteria based Model II and Model III perform better than Model I;

in particular, the proposed Model III performs best among all the methods.
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Model III

Fig. 6: Evaluation of designed indoor beamformers in the stopband.

Example 3. Performance evaluation with recordings

In this example, the effectiveness of the proposed models for beamformer design is evaluated using

sound recordings in an actual meeting room. We also compare the performances of beamformers designed

via the matched-filter array (MFA), direct path transfer function and the proposed methods. We choose

a meeting room to generate the room acoustics with the parameter settings of the environment and

microphone array as shown in Table III.

TABLE III: Parameter settings for the experiment.

Room dimensions 8.015m× 4.671m× 2.7m

Temperature 22.6 ◦C

Relative humidity 39%

Reverberation time T60 ≈ 0.45s

Plan view Fig. 7
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Fig. 7: Setup of the meeting room and layout of the microphone array.

In order to setup a microphone array, a linear microphone array composed of 7 elements having an

inter-element spacing of 0.04m is placed in the middle of the table, with about 1.13m above the floor.

Then we set the passband to be the rectangular region Ωp = {x0±0.05m, y0±0.05m} with a 5×3 grid

for discretization, where (x0, y0) is the speaker position and they are all 1.13m above the floor. For the

recordings, a male and a female speech are played back at 48kHz for about 9 seconds. The recording

signals are re-sampled to be 16kHz for beamforming processing. In the frequency domain, we set the

passband and stopband to be [0.5kHz, 4kHz] and [5kHz, 16kHz], respectively, and with 40 grid points

for discretization.

We define a 20−tap FIR filter behind each microphone element to design the beamformer, and select

microphone element at the centre as the beamformer output. In general, the direct path captured signals are

defined as the desired output and used in performance evaluation. As the recordings are contaminated by

reflections and reverberation, therefore, we simulate the desired output signals by using the convolution

of original speeches with the direct path impulse responses and extract the components in frequency

region [0.5kHz, 4kHz] to generate the desired signals.

To evaluate the performance of dereverberation, we introduce the segmental signal-to-reverberation

ratio (SRR) [40] as

SRRseg =
1

Q

Q−1∑
q=0

10 log10

||S(q)||2

||S(q)− Ŝ(q)||2
dB, (15)

where S(q) and Ŝ(q) represent the desired speech signal estimated according to above method and the

enhanced speech from the beamformer out in q-th time frame, respectively.

In the experiment, we first measure the room acoustics to characterize the meeting room, then we

design a similar room using the room simulator with similar characteristics. We take the reverberation

time as T60 = 0.45s for the fast-ISM room simulator to estimated the corresponding RIRs during the
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design of beamformer. Then, we use the proposed implementation models to design beamformers and

carry out beamforming for speech quality enhancement. In addition, we apply the matched-filtering array

(MFA) technique to process the reverberant signals for comparison, and also apply the beamformer

designed from the direct path transfer function. The experimental results are summarized in Table IV,

in which the column ‘Reverberant’ is the unfiltered reverberant signal captured by the centering element

of microphone array, ’MFA-method’ is the filtered signal using the matched-filter array, and the ‘Direct

path’, ‘Model I’, ‘Model II’ and ‘Model III’ are the filtered signals using beamformers designed via the

direct path transfer function, Model I, Model II and Model III, respectively.

TABLE IV: Comparison results among proposed models on the overall dereverberation performance SRRseg .

Speech Reverberant MFA-method Direct path Model I Model II Model III

Male -6.7793 -6.4732 -5.6748 -4.9231 -4.2572 -3.9258

Female -7.3200 -6.4666 -5.8230 -5.1694 -4.5500 -4.1520

TABLE V: Comparison results among proposed models on the stopband noise suppression Supp.

Speech MFA-method Direct path Model I Model II Model III

Male 0.8868 3.1087 5.5757 7.2275 9.2821

Female 1.2224 4.8809 6.5341 8.1541 9.2587

According to the evaluation in Table IV, we can see that the qualities of Male and Female speeches

have been deteriorated by the room acoustics. After beamforming, all the segmental SRR scores are

increased by different levels, and the results show that all the beamformers designed are effective. In

addition, we can see that the beamformer based on Model III has the best performance on dereverberation.

Furthermore, we also evaluate the stopband suppression for these methods by using the indicator

Supp defined in (14) and the results are in Table V. From the stopband suppression measurement,

the beamformers designed based on the MFA-method and direct path transfer function have very poor

performance on both Male or Female speeches, whereas all the other proposed models perform better.

Among all, Model III shows the best result.

To illustrate further the overall beamforming performance, we plot the Female speeches before and

after processing by using the beamformers in Fig. 8. We also plot the spectrograms by using a 2 second

signals in Fig. 9. From the results, reflections of the speeches are removed to a certain extent in the outputs
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of the designed beamformers from the MFA-method, direct path method, and the proposed methods. It

is further observed that the proposed models are more effective for dereverberation. Moreover, it can be

seen from the spectrograms that distortion is not serious.
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Fig. 8: Beamforming performance on the Female speech.

V. CONCLUSION

In this paper, we have formulated the indoor beamformer design problem into a minimax semi-infinite

programming problem. We introduced the fast-ISM room simulator to estimate the RIRs, and separated

them into a direct path response, early reflections and late reverberation. Based on our simulated results,

we have demonstrated that early and late reverberation behave in a Pareto manner. We went on to propose

and construct two multi-criteria optimization models incorporating separated RIRs for the design of more

effective beamformers in a reverberant environment.

To verify the effectiveness of the proposed indoor beamformer designs, we have employed both

simulated scenarios and actual recordings in a meeting room. The experimental results showed that

multi-criteria based models can improve the overall performance. The designs are also robust to small

perturbations to the room acoustics. Furthermore, we have evaluated the performance using actual record-
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Fig. 12: Male speeches and spectrograms plotting: (a) Desired speech;
(b) Reverberant speech; (c) Beamformed speech from Matched filter; (d)
Beamformed speech from Direct path Model; (e) Beamformed speech from
Model I; (f) Beamformed speech from Model II; (g) Beamformed speech from
Model III.
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Fig. 13: Female speeches and spectrograms plotting: (a) Desired speech;
(b) Reverberant speech; (c) Beamformed speech from Matched filter; (d)
Beamformed speech from Direct path Model; (e) Beamformed speech from
Model I; (f) Beamformed speech from Model II; (g) Beamformed speech from
Model III.

Fig. 9: Female speech spectrograms: (a) Clean speech; (b)-(f) Beamformed speeches from ’MFA-method’, ‘Direct

path’, ‘Model I’, ‘Model II’ and ‘Model III’.
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ings in a meeting room, and have shown that the proposed models all effective in dereverberation and

noise suppression. In particular, the proposed Model III has the best performance. As a future work, it

would also be of interest to investigate the placement problem [41] in dereverberation, and the use of

calibration signals to estimate RIRs and employed in the multi-criteria optimization.
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