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Sequential Complexity as a Descriptor for
Musical Similarity

Peter Foster, Student Member, IEEE, Matthias Mauch, Member, IEEE, and Simon Dixon

Abstract—We propose string compressibility as a descriptor of
temporal structure in audio, for the purpose of determining mu-
sical similarity. Our descriptors are based on computing track-
wise compression rates of quantized audio features, using multiple
temporal resolutions and quantization granularities. To verify that
our descriptors capture musically relevant information, we incor-
porate our descriptors into similarity rating prediction and song
year prediction tasks. We base our evaluation on a dataset of 15 500
track excerpts of Western popular music, for which we obtain 7 800
web-sourced pairwise similarity ratings. To assess the agreement
among similarity ratings, we perform an evaluation under con-
trolled conditions, obtaining a rank correlation of 0.33 between in-
tersected sets of ratings. Combined with bag-of-features descrip-
tors, we obtain performance gains of 31.1% and 10.9% for simi-
larity rating prediction and song year prediction. For both tasks,
analysis of selected descriptors reveals that representing features
at multiple time scales benefits prediction accuracy.

Index Terms—Music content analysis, musical similarity mea-
sures, time series complexity.

1. INTRODUCTION

E ARE concerned with the task of quantifying musical
W similarity, which has received considerable interest in
the field of audio-based music content analysis [1], [2]. Owing
to the proliferation of music in digital formats and the expan-
sion of web-based music databases, there is an impetus to de-
velop novel search, navigation and recommendation systems.
Music content analysis has found application in such informa-
tion retrieval systems as an alternative to manual annotation pro-
cesses, when the latter are infeasible, unavailable or amenable
to be supplemented [3].

We may distinguish between music content analysis appli-
cations such as audio fingerprinting [4], version identification
[5], genre classification [6] and mood identification [7]. Given
a query track, audio fingerprinting typically should identify a
unique track deemed similar with respect to a collection. In con-
trast, for genre and mood classification, the set of tracks deemed
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similar with respect to a collection is typically large. Thus, we
may distinguish between music classification tasks according to
the degree of specificity associated with the measure of musical
similarity [1].

In this work, we consider two low-specificity tasks, namely
similarity rating prediction and song year prediction. An im-
portant issue in our considered domain surrounds feature repre-
sentation. In particular, we address the problem of representing
temporal structure in audio features. We refer to summary statis-
tics of audio features extracted from a song as descriptors. De-
scriptors may be characterized according to how temporal struc-
ture is accounted for [2]. We may distinguish between bag-of-
features representations [8], which discard information on tem-
poral structure, and sequential representations. As a sequential
representation, we propose to estimate the complexity of audio
feature time series, where we quantify complexity in terms of
string compressibility. As a result, we obtain scalar-valued sum-
mary statistics which retain information on temporal structure.

We motivate our evaluations involving similarity rating pre-
diction and song year prediction to test the hypothesis that our
complexity descriptors capture temporal information in audio
features and that such information is relevant for determining
musical similarity. For similarity rating prediction, our ground
truth is given by human similarity judgements and we assume
that an objective musical similarity correlates with subjects’ de-
gree of perceived musical similarity, based on a five-point rating
scale. For song year prediction, our ground truth is readily given
by chart entry times of songs and we assume that musical simi-
larity correlates with chart entry time proximity. Whereas song
year prediction has received little attention in the literature, the
song year is important in determining musical preference [9].
Thus, song year prediction might be applied in music recom-
mendation [10]. Song year prediction might furthermore be in-
corporated in genre classification tasks, since musical genres are
associated with particular years.

Section II provides an overview of methods and descriptors
for computing low-specificity similarity. In Section III, we
describe our approach. In Section IV, we detail our exper-
imental method and results; we provide separate accounts
for similarity rating prediction and song year prediction in
Sections IV-A and IV-B, respectively. Finally, in Section V we
provide conclusions.

II. BACKGROUND

For a detailed review of recent literature on methods for de-
termining musical similarity, from the perspective of classifica-
tion, we refer to the work of Fu et al. [2]. To determine musical
similarity, one possible approach involves computing pairwise
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distances between tracks. The obtained distances may then be
used for classification. A second approach consists in applying
track-wise descriptors directly for classification.

Based on the second approach, Tzanetakis and Cook [11]
compute first and second-order moments on spectral features
including MFCCs, to perform genre classification using the
k-nearest neighbors (KNN) algorithm and Gaussian mixture
models (GMMs) estimated on each target class. Li and Ogi-
hara [12] propose to classify Daubechies wavelet histograms
using GMMs and KNN for genre and mood classification.
Using spectral features, West et al. [13] propose methods for
learning similarity functions based on constructing decision
trees for genre classification. Slaney et al. [14] propose feature
transformations based on supervised learning and using onset
and loudness features, for the purpose of album and artist
classification.

Based on the approach of determining distances between de-
scriptors, Logan and Salomon [15] propose to estimate GMMs
on individual tracks. Pairwise track distances are then computed
using a combination of Kullback-Leibler divergence (KLD) and
earth mover’s distance, where the KLLD is used to compare pairs
of track centroids. The approach based on KLD assumes that
each centroid follows a Gaussian distribution; thus the KLD
may be computed in closed form as

1 _ _
KLD = 2 (i (277 32) + (1 — 2)" B1" (1 — o)

)
— h—log IEZD (1)

where 3, ¥s and g7, 42 respectively denote the mean and co-
variance of two multivariate Gaussian distributions with dimen-
sionality A. Aucouturier and Pachet [16] in contrast compute
cross-likelihoods between GMMs using Monte Carlo approxi-
mations for the purpose of genre classification, whereas Beren-
zweig et al. [17] consider the asymptotic likelihood approxi-
mation of the KLD and centroid distances for the task of simi-
larity rating prediction. Mandel and Ellis [18] instead represent
tracks as single Gaussians and use (1) as a distance measure
between track pairs. The obtained distances are then applied to
artist identification, using support vector machines (SVMs) for
classification. An alternative approach to computing the KLD
is based on computing histograms of quantized features, as pro-
posed by Vignoli and Pauws [19] for playlist recommendation;
Levy and Sandler [20] compare approaches in the context of
genre classification.

The previously described techniques are commonly referred
to bag-of-features approaches, since they discard informa-
tion on temporal structure. Yet, the relative convenience of
bag-of-features approaches stands in contrast to the impor-
tance of temporal structure in perception of musical timbre,
as observed by McAdams et al. [21]. Aucouturier and Pachet
[8] argue that the bag-of-features approach is insufficient to
model polyphonic music for determining similarity. Sequential
representations based on mid-level features are widely applied
for the purpose of version identification [5]. For low-speci-
ficity classification, one possible approach to mitigating the
shortcoming of the bag-of-features approach involves the
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intermediate step of aggregating features locally, before sum-
marizing anew using obtained summary statistics. Tzanetakis
and Cook [11] propose to estimate the local mean and variance
of features contained in a 1 s window. For the task of predicting
musical similarity, Seyerlehner et al. [22] apply a single,
global summarization step to overlapping windows, computing
variance and percentiles. For the purpose of local aggregation,
alternative pooling functions are considered by Morchen et al.
[23], Hamel et al. [24], Wiilfing and Riedmiller [25].

An alternative approach is based on retaining the temporal
order of features at each window position. Spectral analysis may
be applied to the original features, resulting in a new feature se-
quence. Pampalk [26] proposes fluctuation patterns describing
loudness modulation across frequency bands, whereas Lee et
al. [27] propose statistics based on modulation spectral anal-
ysis. Morchen et al. [23] consider a variety of statistics based on
spectral analysis and autocorrelation. Meng et al. [28], Coviello
et al. [29] apply multivariate autoregressive modelling to win-
dowed features, for the tasks of genre and tag classification.

To account for temporal structure, statistical modelling may
be applied to quantized features. For genre classification, Li
and Sleep [30] propose an SVM kernel in which pairwise dis-
tances are obtained by comparing dictionaries generated using
the Lempel-Ziv compression algorithm [31]. Reed and Lee [32]
apply latent semantic analysis to unigram and bigram counts
for classification using SVMs, whereas Langlois and Marques
[33] propose to estimate language models for computing se-
quence cross-likelihoods for genre and artist classification. Ren
and Jang [34] propose an algorithm for computing histograms
of feature codeword sequences for genre classification.

Recent approaches attempt to model temporal structure using
representations constructed at multiple time scales. Based on
a bag-of-features approach, Foucard et al. [35] propose an
ensemble of classifiers, where each classifier is trained on
features at a given time scale. Features at successive resolutions
are aggregated using averaging. Applied to tag and instru-
ment classification, results indicate that a multiscale approach
benefits performance. Dieleman and Schrauwen [36] apply
feature learning based on spherical K -means clustering to tag
classification. Evaluated aggregation techniques are based on
varying the spectrogram window size, in addition to Gaussian
and Laplacian pyramid smoothing techniques. Although not
applied to classification, Mauch and Levy [37] propose a sim-
ilar smoothing approach for characterizing structural change
at multiple time scales. Finally, convolutional neural networks
have been proposed for modelling temporal structure: Dieleman
et al. [38] propose deep learning architectures for genre, artist
and key classification tasks. Hamel et al. [24] propose a deep
learning architecture incorporating multiple feature aggregation
functions for tag classification.

The approach proposed in this work resembles methods
applying statistical models to quantized feature sequences [30],
[32], [33], [34]. In contrast, we propose to compute summary
statistics directly from estimated sequential models. Since
the obtained statistics may be compared using a metric, our
approach has the potential to be combined with indexing and
hashing schemes for computationally efficient retrieval [39],
[40], [41], while retaining information on temporal structure.
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Fig. 1. Hypothetical sequences with low and high R, assuming A = 4
(a) Low R (b) Low R, (c) High R .

Our method of computing multiple representations using down-
sampling resembles the approach proposed by Dieleman and
Schrauwen [36].

Note that our approach differs from Cilibrasi et al. [42],
who propose pairwise sequence compressibility to quantify
similarity. We did not pursue this approach for low-specificity
tasks, based on results for the pairwise prediction approach
reported in Section IV-A4. Note that we may take compression
rates as estimates of sequential Shannon entropy rates, inviting
further comparison or combination with related measures of
sequential complexity [43], [44], [45]. Such measures have to
date not been evaluated quantitatively in music content analysis,
inviting further investigation beyond the scope of this work.

III. APPROACH

Assume that we are given the audio feature vector sequence
V = (v1,...,vr). Similar to the descriptor proposed in [46],
as a means of quantifying the sequential complexity of V, we
compute the compression rate Ry (V),

vy = SN @)
where C(V, A) denotes the number of bits required to repre-
sent V, given a quantization scheme with X levels and using a
specified sequential compression scheme. To obtain a length-in-
variant measure of sequential complexity, we normalize with re-
spect to the sequence length T'.

Given the +th track in our collection, we compute compres-
sion rates for feature sequences extracted from musical audio.
We refer to the set of compression rates as feature complexity
descriptors (FCDs). For features based on constant frame rate,
we compute FCDs using the original feature sequence, in addi-
tion to FCDs computed on downsampled versions of the orig-
inal sequence; we consider downsampling factors 1,2,4,8. We
distinguish among temporal resolutions using the labels FCDI1,
FCD2, FCD4, FCDS, respectively. For features based on vari-
able frame rate, we compute FCDs with no further downsam-
pling applied.

Thus proposed, consider FCDs computed on a hypothetical
scalar-valued feature sequence exhibiting a high amount of tem-
poral structure, either due to periodicity or locally constant re-
gions (Fig. 1(a), (b)). For such sequences, we obtain low values
for R, since the quantized feature sequence may be encoded
efficiently. Conversely, if we discard temporal structure by ran-
domly shuffling the original feature sequence (Fig. 1(c)), we ob-
tain high values for R, since the quantized feature sequence no
longer admits an efficient encoding. In contrast to FCDs, feature
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moments such as mean and variance are invariant to any such
re-ordering of features. We observe that feature moments have
been widely applied for low-specificity content analysis tasks.
Considering that FCDs have similar dimensionality to feature
moments and assuming that temporal order of features is infor-
mative for our considered tasks, we therefore expect that FCDs
may be used to improve prediction accuracy with respect to
using feature moments alone, for our considered tasks.

A. Similarity Rating Prediction

For the task of similarity rating prediction, assume that we
have a distance metric which we use to compare descriptor vec-
tors computed on pairs of tracks. We hypothesize that the pair-
wise distance between descriptors correlates with the similarity
rating associated with track pairs. To predict similarity ratings
we take as our feature space pairwise distances between de-
scriptor vectors and apply multinomial regression. We use r; ,
to denote the nth descriptor vector computed for the ¢th track
in our collection, with 1 < n < NN and given a set of N avail-
able descriptor vectors. We compute separate descriptor vectors
across audio features and across FCD resolutions, with each
vector component in r; ,, corresponding to a quantization gran-
ularity A. We denote with d; ;) the distances betweenr; ,,, rj »
obtained across all NV descriptor vectors, using our assumed dis-
tance measure. Given the pair of tracks (¢, ) whose similarity
rating we seek to predict, we estimate the probability of simi-
larity score k € [1... K] as

oxp (B dgi ) + )
= 3)
Z exp (/Grj;ld@q) + 'Vm)

m=1

P(S = Kldg; ) =

where 3, v, are the model parameters associated with out-
come k, given a total of K similarity scores. We predict sim-
ilarity ratings by determining the value of & which maximizes
P(S = k[d; jy). We describe our model estimation method in
Section IV-A3.

B. Song Year Prediction

For the task of song year prediction, we hypothesize that de-
scriptor values correlate with the chart entry date of tracks. Fol-
lowing [10] we apply a linear regression model. Given the ith
track in our collection, we predict the associated chart entry date
; using a linear combination of components in descriptor vec-
tors r; ,,

AT
Gi =Y 0lrin+a )
n=1

where 6,, denotes regression coefficients for the nth descriptor
vector as specified for similarity rating prediction, and where «
denotes the model intercept. We describe our model estimation
method for song year prediction in Section IV-B1. We motivate
use of both multinomial and linear regression techniques as a
straightforward means of evaluating the utility of FCDs for de-
termining similarity based on a metric space. We perform our
evaluation by considering predictive accuracy, in addition to in-
terpreting estimated coefficients as feature utilities.
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TABLE 1
SUMMARY OF EVALUATED AUDIO FEATURES

Feature name
Chroma (Ellis and Po-
liner)

Description

12-component chromagram based on using
phase-derivatives to identify tonal compo-
nents in spectrum [48].

Root mean square of amplitude.

Tempo estimate based on selecting peaks
from autocorrelated onsets.

Duration of onset attack phase.

Slope of onset attack phase.

First moment of magnitude spectrum.
Proportion of spectral energy
1500Hz.

Second moment of magnitude spectrum.
Skewness coefficient of magnitude spec-
trum.

Excess kurtosis of magnitude spectrum.
95th percentile of energy contained in mag-
nitude spectrum.

85th percentile of energy contained in mag-
nitude spectrum.

Shannon entropy of magnitude spectrum.
Wiener entropy of magnitude spectrum.
Average roughness [49] between peak pairs
in magnitude spectrum.

Squared amplitude difference between suc-
cessive partials [50].

12-component MFCCs [51] (excluding en-
ergy coefficient).

First-order differentiated MFCCs.
Second-order differentiated MFCCs.

Zero crossing rate.

Half-wave rectified L1 distance between
magnitude spectrum at successive frames
[52].

Centroid of 12-component chromagram.
Peak correlation of chromagram with key
profiles [53].

dynamics.rms
rhythm.tempo

rhythm.attack.time
rhythm.attack.slope
spectral.centroid
spectral.brightness above
spectral.spread
spectral.skewness

spectral.kurtosis
spectral.rolloff95

spectral.rolloff85
spectral.spectentropy
spectral.flatness
spectral.roughness
spectral.irregularity
spectral.mfcc
spectral.dmfcc
spectral.ddmfcc

timbre.zerocross
timbre.spectralflux

tonal.chromagram.centroid
tonal.keyclarity

tonal.mode Predicted mode after correlating chroma-
gram with key profiles.
tonal.hcdf Flux of 6-dimensional tonal centroid [54].

IV. EVALUATION

For our evaluations, we use a collection of 15 473 entries from
the American Billboard Hot 100 singles popularity chart!. Each
entry in the dataset is represented by a track excerpt of approx-
imately 30 s of audio, and is annotated with a chart entry date.
Chart entry dates span the years 1957-2010 (M = 19829y,
SD = 154Yy).

For each track excerpt in the dataset, we extract a set of 25
audio features, using MIRToolbox [47] version 1.3.2 and using
the framewise chromagram representation proposed by Ellis and
Poliner [48]. With the exception of rhythmic features, which
are computed using predicted onsets, features are based on a
constant frame rate of 40 Hz. Table I summarizes the set of
evaluated audio features.

In addition to FCDs, for each track excerpt we compute the
mean and standard deviation, based on frame-level representa-
tion with no downsampling applied. We refer to the latter non-
sequential descriptors as feature moment descriptors (FMDs).

Thttp://www.billboard.com
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We compute FCDs as described in Section III, where for the
case of the vector-valued features chroma, MFCCs and delta-
MFCCs we apply principal component analysis (PCA) in track-
wise fashion as a preliminary decorrelation step. We then quan-
tize and compress each resulting component separately, before
averaging obtained compression lengths across components. We
apply PCA, since we seek to quantify temporal structure in fea-
ture vector sequences while disregarding any correlation among
feature vector components. We quantize features by applying
equal-frequency binning with A € {3,4, 5} levels; we perform
relatively coarse quantization to ensure that each symbol occurs
frequently, regardless of downsampling factor.

We choose equal-frequency binning to ensure that obtained
strings have a consistent stationary distribution; the obtained
compression rates therefore are a function of temporal structure
alone. The value log A may be interpreted as the theoretical com-
pression rate for a temporally uncorrelated sequence. We com-
press symbol sequences using the prediction by partial match
(PPM) algorithm?2, described in [55]. We consider PPM a gen-
eral-purpose string compression algorithm which may be sub-
stituted with an alternative compressor; in initial experiments
we obtained similar results using Lempel-Ziv compression [31].
Nevertheless, we note that PPM compresses efficiently com-
pared to alternative compression schemes [55]. We set the PPM
model order to 5 symbols, based on the observation that for un-
correlated sequences, distinct substrings of length 5 are unlikely
to occur frequently.

With a view to characterizing the feature space represented
by FCDs, we perform a track-wise exploratory analysis of com-
puted FCDs. For each track excerpt in our collection, we com-
pute FCDs based on MFCC features alone. We obtain a scalar-
valued score for each excerpt by averaging FCDs across quan-
tization levels A and across temporal resolutions. Next, across
artists in our collection we compute the median of obtained FCD
scores. To facilitate interpretation, we consider only artists with
a minimum number of 20 chart entries; thus out of 5 455 artists
in our collection we consider 129 artists. We then rank artists
according to median FCD scores. Shown in Table II, we report
the 20 lowest-ranking and highest-ranking artists. Additionally,
across artists we report as medoid tracks those tracks whose
FCD score minimizes the error with respect to the median.

Comparing track groups, the lowest-ranking artists are
predominantly vocalists with repertoire of jazz ballads and
slow-moving pieces (e.g. Johnny Mathis, Barbara Streisand).
In contrast, the artists with highest complexity values stand
for music with strong percussive and aggressive components,
from up-tempo surf-rock (Jan & Dean), through 1980s Power
Rock (Van Halen) and Hip Hop (Eminem). Informal listening
to medoid tracks supports this observation, with the exception
of the medoid track by artist Etta James. We view this obser-
vation in support of our expectation that FCDs may be useful
for low-specificity similarity and subsequently demonstrate
validity of our expectation for the similarity tasks considered
in this work. Note however that we make no claim that FCDs
capture any notion of musical complexity as proposed in [56].

Zhttp://www.cs.technion.ac.il/ ronbeg/vmm/index.html
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TABLE II

1969

ARTISTS RANKED ACCORDING TO MEDIAN TRACK-WISE FCD SCORE. FOR EACH ARTIST, FCDS AVERAGED ACROSS QUANTIZATION LEVELS A AND ACROSS
TEMPORAL RESOLUTIONS, USING MFCCS AS AUDIO FEATURE. TABLE REPORTS LOWEST-RANKING AND HIGHEST-RANKING SCORES.

Lowest-ranking scores

Highest-ranking scores

Score  Artist name Medoid track name Score  Artist name Medoid track name

1.223  Johnny Mathis Starbright 1.286  Jan & Dean The Anaheim ... Association
1.234  Barbra Streisand Didn’t We 1.286  Bryan Adams This Time

1.240  The Platters Trees 1.287  Eric Clapton After Midnight

1.245  Bobby Vinton Rain Rain Go Away 1.287  Creedence Clearwater Revival ~ Who’ll Stop The Rain

1.247  Connie Francis (He’s My) Dreamboat 1.287  The Rolling Stones Tell Me (You’re Coming Back)
1.251  Andy Williams Sweet Memories 1.288  Johnny Cash It’s Just About Time

1.252  Jim Reeves I Guess I'm Crazy 1.288  Chubby Checker Whole Lotta Shakin’ Goin’ On
1.256  John Denver Sweet Surrender 1.288  The Kinks Tired Of Waiting For You
1.256  Barry Manilow I Write The Songs 1.288  Eddie Money Maybe I'm A Fool

1.261  Johnny Tillotson I Rise, I Fall 1.288  Aerosmith Hole In My Soul

1.261  Dionne Warwick If We Only Have Love 1.288  Van Halen When It’s Love

1.261  Helen Reddy Delta Dawn 1.289  The Doobie Brothers What A Fool Believes

1.262  Etta James Seven Day Fool 1.289  Marvin Gaye Pretty Little Baby

1.263  Carpenters Touch Me When We’re Dancing  1.289  Madonna Secret

1.263  Frank Sinatra Talk To Me 1.290  Paul Revere & The Raiders Country Wine

1.264  Engelbert Humperdinck  In Time 1.291  James Brown Signed, Sealed, And Delivered
1.264  Brenda Lee Too Many Rivers 1.291  Janet Jackson Black Cat

1.264  Nat King Cole Nothing In The World 1.291  The Isley Brothers Harvest For The World

1.266  Gene Pitney Town Without Pity 1.293  Freddy Cannon Muskrat Ramble

1.267  Tom Jones With These Hands 1.297  Eminem Cleanin’ Out My Closet

While beyond the scope of this paper, track-wise analysis of
FCDs merits further investigation.

A. Similarity Rating Prediction

We evaluate similarity rating prediction using annotations
collected for a subset of the chart music dataset. Prior to our
investigations, we obtained a total of 7 784 pairwise similarity
ratings from 456 subjects participating in a web-based lis-
tening test3. Subjects were asked to quantify pairwise musical
similarity between successive pairs of track excerpts using a
five-point ordinal scale, with score ‘1’ corresponding to ‘not
similar’ and score ‘5’ corresponding to ‘very similar’. We
assume that subjects have an internal similarity scale which
they use to perform ratings. Therefore, we omit any training
step from the rating process. Note that while we prescribe that
pairwise similarity ratings are made using a five-point scale,
we do not assume that similarities are judged using an absolute
scale across listeners. Given three track pairs for which we have
respective ratings (4, 5), (5, 5), (1, 2), we view the ratings as
quantifying relative agreement, compared to (4, 1), (5, 1), (1,
4).

For human similarity judgements, two issues prompt consid-
eration: In addition to music being inherently subjective [57],
human similarity judgements are context-dependent [58], [59].
We motivate our assumption of an internal similarity scale on
the basis that Western popular music is widely disseminated
and that listeners might form similarity judgements using a
common factor. We verify our assumptions by quantifying
similarity rating agreement.

When presenting track pairs to listeners, we select the first
song in each pair using uniform sampling. For the second song
in each pair, we again apply uniform sampling, however we bias
towards proximate chart entry times by restricting the permis-
sible chart entry deviation to < 1y with probability 0.9. We bias

3http://webprojects.eecs.qmul.ac.uk/matthiasm/audioquality-pre/check.php

TABLE III
SIMILARITY SCORE COUNTS OBTAINED FROM WEB-BASED LISTENING TEST

Similarity score
1 2 3 4 5
Count ‘ 2060 2115 1742 1391 476

as a means of controlling for historical changes in audio pro-
duction, which might affect similarity ratings [60]. We obtain a
median of 6 ratings per subject, with each rating corresponding
to a unique track pair. Table III displays obtained score counts.

As shown in Table III, the majority of ratings are associated
with scores less than ‘3’, corresponding to relative dissimilarity
on the five-point scale. We contend that for music content anal-
ysis based on an ensemble of systems as proposed in [61], the
entire target set of predicted musical similarity might be used
when forming recommendations. In contrast, for track recom-
mendation relying on predicted similarity alone, when forming
recommendations, it is typically of interest to consider tracks
deemed similar to a query, while disregarding tracks deemed
dissimilar [62]. Pertaining to the first use case, we perform eval-
uations using the five-point scale ratings, as defined previously.
Pertaining to the second use case, we merge similarity ratings
with scores ‘1’ and ‘2’, thus discarding any distinction between
similarity ratings with low scores. We then perform our evalua-
tions using the resulting four-point scale ratings.

To assess the consistency of similarity ratings, we collected
an additional set of similarity ratings under controlled experi-
mental conditions, involving 12 subjects aged 21 y—42 y. Sub-
jects were assessed using the Ollen musical sophistication index
(OMSI) [63]. We obtain a median OMSI score of 241, with an
associated median of 0.75 years of formal musical training. To
avoid subject fatigue, we imposed no minimum number of rat-
ings per subject, and collected ratings during two 30-minute ses-
sions. We selected stimuli by sampling uniformly from the set
of track pairs for which we have prior ratings. Across subjects,
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TABLE 1V
CONFUSION MATRIX OF WEB-SOURCED VERSUS CONTROLLED-CONDITION
SIMILARITY RATINGS.

Controlled-condition

1 2 3 4

Web-sourced
T3 RN
D W
o)
NN
==
DO =
N ©
DN =
(RN
(SRS RNy

we obtain a median of 42 ratings (M = 45.4, SD = 29.3).
We aggregate controlled-condition ratings across subjects and
thus obtain a total of 509 controlled-condition similarity rat-
ings, corresponding to 6.5% coverage of web-based similarity
ratings. Table IV displays a confusion matrix of web-sourced
versus controlled-condition similarity ratings.

We quantify the agreement between controlled-condition and
web-sourced similarity ratings. We report results for both five-
point and four-point rating scales; for each agreement statistic
we report results for the four-point rating scale in brackets. We
first quantify agreement using Kendall’s correlation coefficient
7y, as defined in (5). We obtain a correlation of 0.274 (0.250),
with p < 0.001 based on a permutation test for the hypoth-
esis of no correlation. We then compute a confidence interval
for the obtained sample correlation by applying bootstrap sam-
pling [64]. At the 95% level, we obtain correlations in the range
[0.205, 0.337] ([0.173, 0.325]). Subsequently, we consider the
correlation 0.337 (0.325) an upper bound on attainable accuracy
using our proposed method of similarity rating prediction. As a
second measure of rating agreement, we compute Spearman’s
correlation coefficient p;, where we obtain 0.329 (0.278) for
ratings aggregated across subjects. Analogously by applying
bootstrap sampling, at the 95% level we obtain correlations in
the range [0.247, 0.404] ([0.193, 0.361]). We consider the cor-
relation 0.404 (0.361) an upper bound on attainable accuracy
based on p;. Finally, using Table IV and interpreting the con-
trolled-condition rating process as a multinomial classification
task, we obtain a balanced classification accuracy (BA) of 0.292
(0.345); the corresponding 95% confidence interval is [0.254,
0.336] ([0.304, 0.393]).

1) Distance Measures: We predict similarity ratings by ap-
plying multinomial regression to pairwise Euclidean distances
between descriptor vectors, using the approach described in
Section III-A. As an additional baseline distance measure,
using (1) and assuming Gaussianity and diagonal covariance,
we compute the KLD on pairs of FMDs. We logarithmically
transform distances obtained using the KLD, which we ob-
served improved prediction accuracy.

As a baseline distance accounting for temporal structure,
we compute the cross-prediction error between audio feature
sequences, with each feature sequence represented at the
original frame level. Following [65], we apply state space
embedding [66] separately to pairs of feature sequences. Given
feature vectors (v1,...,vr) each with dimensionality /, state
space embedding produces higher-dimensional feature vectors
with dimensionality dh by stacking d consecutive vectors
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Vi_d,...V¢_1 at each time step #. We perform cross-predic-
tions by determining sequential successors of nearest neighbors
in the embedded space, using the approach given in [67]. As
a distance measure between predicted and observed feature
sequences, we compute the normalized mean square error [65].
We consider parameter d € {8,12,16,20} and report results
for d = 12, which yields highest average correlation between
computed pairwise distances and similarity annotations. We
apply square-root transformation to pairwise distances, which
we observed improved similarity rating prediction accuracy.

2) Performance Statistics: To quantify the accuracy of
similarity rating prediction, as discussed in [68] we compute
Kendall’s 7, and Spearman’s ps, both which are ordinal mea-
sures of association between predicted and annotated similarity
ratings. We define Kendall’s 7, as follows. Assume that we
have sequences © = (¢q1,...,qum), O = (01,...,0a7). The
pair d; ; = ((¢:, 0:),(g;, 04)) is termed concordant, if q; > q;
and o; > oy, orif ¢; < ¢j and 0; < o;. Analogously, d; ; is
termed discordant, if ¢; < ¢; and 0; > 0;, orif ¢g; > ¢; and
0; < oj. Kendall’s 7; is defined as

M, — M, )
T =
’ \/(]Mp - M) (M, — M,)

where M., M, respectively denote the number of concordant
and discordant pairs and where M,, = 3 M (M — 1) denotes the
total number of pairs. Terms M,, M, respectively denote the
number of pairs with tied (g¢;, ¢;) and with tied (0;, 6;). In the
denominator, the normalization is with respect to the geometric
mean of adjusted pair counts (M, — M,), (M, — M,). Yielding
values in the range [—1, 1], 7, may be interpreted as an estimate
of the difference in probability of sampling a concordant pair
versus sampling a discordant pair in (Q, O), while accounting
for ties.

As a second measure of prediction accuracy, we compute
Spearman’s p,, corresponding to the product-moment correla-
tion coefficient between separately ranked Q, . We assign
unique ranks to tied values, before computing average ranks
across tied values. Note that in contrast to 73, the value of p; is a
function of assigned ranks. Thus, in the presence of ties 7, may
be viewed as a more appropriate means of comparing ordinal
sequences [69]. Nevertheless, we compute p,, since its square
yields a direct interpretation as proportion of explained variance
between assigned ranks.

As a third performance measure, we view our prediction task
as multinomial classification and compute BA. Note that in con-
trast to 7y, ps, BA disregards the ordering of rating scores. Based
on the notion of rating agreement given in Section IV-A, we
thus consider BA a subsidiary measure of performance com-
pared to 7, ps.

3) Model Estimation: We evaluate similarity rating pre-
diction by applying hold-out validation to web-sourced
annotations. We use 60% of annotations for training, with the
remainder of annotations used for testing.

We apply multinomial regression separately to sets of dis-
tances between descriptor vectors, as specified in Table V. We
standardize distances by subtracting the mean and dividing by



FOSTER et al.: SEQUENTIAL COMPLEXITY AS A DESCRIPTOR FOR MUSICAL SIMILARITY

1971

TABLE V
SUMMARY OF DESCRIPTOR COMBINATIONS EVALUATED FOR SIMILARITY RATING PREDICTION. THIRD COLUMN DENOTES COMPONENTS INCLUDED IN DESCRIPTOR
VECTORS. FIFTH COLUMN LISTS NUMBER OF COEFFICIENTS IN MULTINOMIAL REGRESSION MODEL (EXCLUDING INTERCEPTS).

Set  Track representation  Descriptor vector components  Distance measure Prediction coeffs.
1. FCDs X € {3,4,5} Euclidean 4 x 25
2. Frame sequence N/A Cross-prediction error 25
3. FMDs Mean, Std Euclidean 25
4. FMDs Mean, Var KLD 25
5. Combine 3, 4 50
6. Combine 1, 3, 4 150
Chroma (Ellis and Poliner) £0.04* 0.04* 70.63* | 0.77* 0.18* 045 0.68" relative contribution of regularization due to L1 and L2 norms,
dynamics.rms [ 0.09* 0.08* 0.09* 0.11* 0.10* 0.09* 0.07* .
thythm.tempo | 0.07*  0.04* 10,02 10047 0.1 0,01 0,01 1 whereas 7 scales the regularization penalty. For each perfor-
thythm attack time | 0.05* 0.05* 0.03* 003 003 003 0.03 fotic o : ; : ;
v attack sione NN 0 Ooot o5t C0= man.ce Sté?.tlSth given in Section [V-A2 apd fgr each r§t1.ng scale
spectral.centroid | 0.12* 0.10* 0.05* 0.07* 0.06* 0.06* 0.03* as given in IV-A, we apply hold-out validation to training data
spectral.brightness  0.12* 0.13* 0.09* 0.09* 0.08* 0.05* 0.02 d timi by det . . 1 dicti
spectral.spread | 0.11*  0.10* 0.08* 0.07* 0.10* 0.07* 0.04* and optimize 7 by determining maximal prediction accuracy.
spectral.skewness F 0.04* 0.06* 0.07* 0.11* 0.10* 0.08* 0.03* 1 3 v _ 3 3
spectral.kurtosis | 0.03  0.06* 0.06* 0.10* 0.10* 0.07* 0.05* We consider ba hyper par’ameter.whlch we assign .COHStE'lIlt
spectralrolloff9s | 0.08* 0.06* 0.04* 0.08* 007* 0.05* 0.05" value; we optimize Kendall’s 7, with respect to the five-point
spectral.rolloff8s | 0.11*  0.09* 0.05* 0.08* 0.07* 0.04* 0.3 . . . .
spectral spectentropy | 0.13* 012* 009* 007* 008 006* 003*1 rating scale and using a model incorporating FCDs and FMDs,
spectral.flatness 0,005 0103 SIS0 TR0 00 Rt where we again apply hold-out validation to training data.
spectral.roughness - 0.03  0.04* 0.06* 0.09* 0.10* 0.07* 0.04* . . .
spectral.iregularity F 0.05* 0.06* 0.07* 0.10* 0.11* 0.07* 0.03"* A 4) Results: We examine the correlation between descriptor
spectral.mfcc - 0.14* 0.15* 0.07* 0.18* 0.19* 0.15* 0.08* § . . P . : : .
spectraldmfcc | 0.14*  046* [ 003 008* "004* 006* 005" distances and five-point scale similarity ratings across indi-
spectral.ddmfcc - 0.14* 016" [10.03 " 0.04* ©0.01 = 0.04* 0.04" - vidual audio features. Fig. 2 depicts correlations 7, for FCDs
timbre.zerocross | 0.12* 0.11* 0.07* 0.05* 0.06* 0.04* 0.02 4 . .
timbre.spectralflux | 0.19*  0.18* | 0.04* 0.09* 008" 0.04* 0.04* and FMDs, where we compare FMDs using both Euclidean
tonal.chromagram.centroid | 0.10*  0.10* 0.12* 0.07* 007* 007" 0.03" A : s : .
tonalkeyclarity | 0.15* 015 043* 0.14* 041 007* L0014 distance and KLD. In addition to FMDs, as described in
tonal.mode - 0.08" 0.10* 009* 015* 0.3 0.07* ©0.01+ Section IV-A1 we consider as a baseline the cross-prediction
tonalhcdf £ 0.11*  0.12* | 003 00Q9* 005" 003 0.02 4

(O A Y2 'Y o
euo\'@ea:;oe \\‘%‘6&0‘“ LA S S
BN ¢ 3 o o=
e
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Fig. 2. Feature-wise absolute correlation |7, | between pairwise distances and
web-sourced similarity annotations. Pairwise distances respectively obtained
using FMDs compared using Euclidean distance and KLD (first and second
columns), cross-prediction (third column), Euclidean distance applied to FCDs
(remaining columns). Starred entries indicate significance, where we apply Bon-
ferroni correction to v = 0.03.

the variance of the training data. Note that we compute FCD
vectors separately across temporal resolutions and across audio
features. Based on a set of 25 audio features, given a pair of
tracks we thus obtain a total of 100 distances between com-
pression-based descriptor vectors. Furthermore, note that when
combining sets of descriptors we aggregate among obtained dis-
tances. Thus given a pair of tracks, when combining sets 1, 3,
4 as specified in Table V, we obtain 150 distances. As given in
(3), we weight distances individually.

In our training step, we estimate multinomial regression pa-
rameters using elastic net regularization (ENR) [70] based on
coordinate descent4[71]. We denote with 3 = (3¥,...,8%)T,
¥ = (v1,..- ,'yK)T regression coefficients and model inter-
cepts as given in (3). Using ENR, we solve

min {n (I/||ﬂ||1 +(1—w) l”ﬁ@) — @(ﬁ,’y)} (6)
B.y 2

where #(3,4) denotes model log-likelihood. Furthermore,
n and v respectively are shrinkage and elastic net penalty
parameters, with 7 > 0 and O < v < 1. Thus, v determines the

“http://www.stanford.edu/ hastie/glmnet_matlab/

error.

We observe that FCDs and FMDs both yield maximum
correlation 0.19 (comparing FCD2 to FMDs, with both dis-
tances computed using Euclidean distance); similarly, FMDs
compared using KLD yield maximum correlation 0.18. Across
descriptors, with & = 0.05 and applying Bonferroni correc-
tion, the majority of features yield significant correlations. In
contrast, for cross-prediction, effect sizes are comparatively
small. Comparing descriptors, for FCD2 we observe corre-
lations exceeding 0.1 for 9 features, and for 12 features for
the case of FMDs compared either using KLD or Euclidean
distance. On average, FMDs yield greater correlation compared
to FCD1 (0.095 versus 0.087). However, for specific features
FCDs yield higher correlation than FMDs. Comparing FCDs
amongst temporal resolutions, we observe a monotonically
decreasing relationship between downsampling factor and
average correlation.

Fig. 3 displays a comparison of similarity rating prediction
accuracy, where for each descriptor set in Table VI we apply
feature selection as described in Section IV-A3. We estimate
models using 73, ps, BA as performance statistics. We consider
both 5-point and 4-point rating scales. In particular, we con-
sider the performance gain obtained by including FCDs in our
models.

Across both rating scales, we observe that FCDs are outper-
formed by FMDs compared using KLD alone, or using Eu-
clidean distance and KLD in combination. However, a com-
bination of FCDs and FMDs outperforms evaluated combina-
tions employing FMDs alone. By incorporating compression
descriptors, compared to FMDs based on aggregated KLLD and
Euclidean distance, based on the five-point rating scale we ob-
tain absolute performance gains of 0.033, 0.030, 0.013 with re-
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TABLE VI
SUMMARY OF DESCRIPTOR COMBINATIONS EVALUATED FOR SONG YEAR PREDICTION. FOURTH COLUMN
LiSTS NUMBER OF COEFFICIENTS IN LINEAR REGRESSION MODEL (EXCLUDING INTERCEPT).

Set  Track representation  Descriptor vector components  Prediction coeffs.
1. FMDs Mean, Std 21 x2+4x 24
2. FCDs A€ {3,4,5} 25 x4 x 3
3 Combine 1, 2
Chroma (Ellis and Poliner) f 0.010  0.012 = 0.0056 0010 = 0.do4 = 0.001 {
dynamics.rms | 0.006 | 0.002 0003 0003 0007 0.005 -
FMDs (KLD,Eucl.), FCDs rhythm.tempo - 0.005  0.006 ' 0.001  0.001  0.000  0.000 4
rhythm.attack time | 0.006  0.005 = 0.001 0001 0001  0.001 -
FMDs (KLD,Eucl.) rhythm.attack.slope  0.007 = 0.001 0.001  0.001 0.000 0.000 A
spectral.centroid [ 0.010 0.005 0.018 0.003 0.003 0.002 A
FMDs (KLD) spectral.brightness - 0.023 0.009 0.007 0.002 0.003 0.004 -
spectral.spread [ 0.009 0.005 0.011 0.005 0.005 0.005 A
FMDs (Euclidean) spectral.skewness [ 0.017 0010 0.014 0008  0.004  0.005 -
spectral.kurtosis [ 0.022 0.012 0.007 0.006 0.007 0.006 -
~ E—— P spectral.rolloff95 F 0.011  0.008 | 0.002 0006 0004  0.001 4
Frame-level cross-prediction | . spectral.rolloff85 F 0.020 ~ 0.010 0012 0008 0003 0.003 -
ECD: _ b spectral.spectentropy - 0.014 0.007 0.006 0.009 0.002 0.005 A
s [ sa spectral flatness | 0.009  0.009 = 0.002 0005 0004 0.004 -
c \ati spectral.roughness | 0.006 0.002 0.006 0.010 0.004 0.007 A
orrelation spectral.iregularity F 0.006  0.006  0.008  0.006  0.002  0.004 -
b spectral.mfcc 0021 0.016 0009 0015 0.007  0.005 A
(b) spectral.dmfcc | 0.018  0.013 ~ 0.006  0.007 0006 0.008 -
0311 spectral.ddmfcc [ 0.016 0.017 0.010 0.022 0.005 0.004 A
FMDs (KLDEucl.), FCDs timbre.zerocross | 0.007 70,0020 0.003 0008  0.005  0.003
0290 timbre.spectralfiux - 0.008  0.008  0.005 0.004 0006  0.002 -
FMDs (KLD,Eucl.) tonal.chromagram.centroid F 0,003 0.006  0.005  0.008 | 0.001  0.002 -
0283 tonal.keyclarity [ 0.018 0.010 0.008 0.005 0.005 0.002 -
FMDs (KLD) tonal.mode - 0.011 0.008 0.006 0.004 0.004 0.005 -
VDS (Eucidean) -, tonalhcdf f 0.06  0.04  0.Q05  0.Q07  0.Q05  0.Q05
S (Euclidean
) A Y2 Y >
5 o @t o ot o
Frame-level cross—prediction _ s \10° & %
T
0281 - b €
FCDs [ _Jsea

Correlation

Fig. 3. Similarity rating prediction accuracy. Standard errors obtained by boot-
strap sampling pairs of predicted and observed similarity ratings (a) Five-point
rating scale (b) Four-point rating scale.

TABLE VII
CONFUSION MATRICES OF PREDICTED VERSUS ANNOTATED SIMILARITY
RATINGS, FOR MODEL BASED ON FOUR-POINT RATING SCALE AND p.
(A) FMDs (KLD, EucL.) (B) FMDs (KLD, EucL.), FCDs.

(@ (b)
Predicted Predicted
152 3 4 5 | 152 3 4 5
- 152 1490 96 80 1 1361 152 131 23
£ 3 532 75 78 0 458 115 101 11
é 4 435 48 87 4 311 111 129 23
Z 5 130 15 42 0 106 37 37 7

spect to ps, T», BA. The respective relative performance gains
are 10.4%, 11.3%, 4.7%. Based on the four-point rating scale,
we obtain absolute performance gains of 0.059, 0.051, 0.021;
the respective relative performance gains are 31.1%, 29.1%,
7.2%. For the model using p, and the four-point rating scale,
Table VII displays confusion matrices of predicted versus an-
notated ratings. We test for differences between correlations by
applying bootstrap sampling to predicted and observed simi-
larity ratings, from which in turn we estimate standard errors
of performance statistics. Based on a one-way analysis of vari-
ance with Tukey-Kramer post-hoc analysis and setting o

Fig. 4. Normalized regression coefficient magnitudes, estimated using elastic
net regression, for task of similarity rating prediction. Candidate descriptor set
comprised of FCDs compared using Euclidean distance, and FMDs compared
using Euclidean distance and KLD.

0.05, we reject the hypothesis of no difference between correla-
tions across all considered pairs, for all considered performance
statistics.

Fig. 4 displays regression coefficients across features and de-
scriptor classes, where we consider the best-performing model
evaluated in Fig. 3 based on p, and using the five-point rating
scale. We sum regression coefficient magnitudes across each of
the K binary classifiers given in (3), before normalizing the
obtained values to sum to one. Comparing FMDs and FCDs,
we observe that both FCDs and FMDs are selected within indi-
vidual features. FCDs appear to be selected across diverse tem-
poral resolutions, with emphasis on higher temporal resolutions.
We observe that multiple FCD resolutions are selected within
the same feature.

B. Song Year Prediction

For song year prediction, we compute FCDs and FMDs as
performed for similarity rating prediction. We use chart entry
dates as our annotation data and apply the linear regression
model given in (4). Fig. 5 displays a histogram of chart entry
dates.

1) Model Estimation: To evaluate our descriptors for song
year prediction, we partition the dataset into random training
and testing subsets, where we ensure that title or artist strings are
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Fig. 5. Histogram of chart entry dates.
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Fig. 6. Box plots of FCDs and FMDs computed using spectral spread features,
with FCDs computed without downsampling. Each box corresponds to the po-
sition of a non-overlapping 1-year window applied to chart entry dates (a) FCDs
(FCD1) (b) FMDs.

not duplicated across subsets. We apply the aforementioned fil-
tering procedure to control for potential cover version and album
effects, in addition to any analogous effects at the level of artists
[72]. The resulting training and testing datasets consist of 10 728
and 4 745 tracks respectively. We deem as outliers descriptor
values in the training data exceeding 10 standard deviations be-
yond the 99th percentile. We replace such outliers with imputed
values, using the K -nearest neighbor algorithm.

We apply linear regression separately to sets of descriptor
vectors, as specified in Table VI. We standardize descriptors by
subtracting the mean and dividing by the variance of the training
data. As performed for similarity rating prediction, we compute
FCDs separately across temporal resolutions and across audio
features. In contrast, we apply linear regression directly to de-
scriptor vectors without the intermediate step of computing dis-
tances. Based on a set of 25 audio features, given a single track
we obtain a total of 300 scalar-valued FCDs, for each of which
we estimate a single regression coefficient. Note that since we
represent FMDs using the mean and standard deviation, we es-
timate two regression coefficients for each univariate audio fea-
ture. For FMDs, it follows that we estimate 24 regression coef-
ficients for MFCCs and chroma features.

As was performed for similarity rating prediction, we esti-
mate linear regression parameters using ENR. We denote with
0 = (67,....0%)7, o regression coefficients and the model
intercept as given in (4). Using ENR, we solve

tyin {n <v||0|1 v %IIGII%) T ssme,a)} @
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Fig. 7. Sample autocorrelation of undifferenced and differenced FCD, FMD
averages. Descriptor averages obtained by applying non-overlapping 30-day
window to chart entry dates. Descriptors computed on spectral spread features,
with FCDs computed without downsampling. Horizontal bars indicate 95% con-
fidence intervals under the assumption of Gaussian white noise for differenced
time series (a) FCDs (FCD1) (b) FMDs.

where SSR(8, o) denotes the sum of squared residuals. Both 7,
v behave as defined in (6). We apply cross-validation to training
data and optimize 7 by determining minimal prediction mean
square error. We again consider v a hyper-parameter which we
assign constant value; we optimize prediction mean square error
based on a model incorporating FCDs and FMDs, and by ap-
plying cross-validation to training data. We threshold predic-
tions to fall in the range [1957 y .. 2010 y].

In addition to the year prediction task based on individual
tracks, we evaluate prediction performance when considering
groups of tracks. We perform this experiment to establish
whether FCDs consistently improve performance when com-
bined with grouped FMDs, or if grouped FMDs amortize any
potential performance gain due to FCDs. We select groups of
tracks by applying a non-overlapping sliding window to chart
entry dates. We then take as descriptor vector /., ,, the average

1
rem > tim ®)

where C,, denotes the set of tracks at window position .
We apply the windowing procedure separately to training
and testing data sets. Note that by windowing tracks, at each
window position we assume prior knowledge of differences
among chart entry times in training and testing data, respec-
tively. For a given window size, we average descriptor vectors
in the training data and proceed as described in Section IV-B1.
Given the obtained regression model and given averaged de-
scriptor vectors at window position z in the testing data, we
seek to predict the associated window centre /..

2) Performance Statistics: We quantify prediction accuracy
with respect to annotated chart entry dates, using the mean abso-
lute error (MAE) and root mean square error (RMSE) statistics.

3) Results: Fig. 6 displays the result of exploratory anal-
ysis for song year prediction, where for FMDs and FCDs we
group descriptor values across time, by applying a non-over-
lapping 2-year sliding window to chart entry dates. We restrict
analysis to obtained spectral spread features [47]. The resulting
year-wise box plots suggest that the examined descriptors are

!
r urLn T
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TABLE VIII
SUMMARY OF SONG YEAR PREDICTION ACCURACY, EXPRESSED USING MAE
AND RMSE STATISTICS. STANDARD ERRORS OBTAINED BY BOOTSTRAP
SAMPLING PAIRS OF PREDICTED AND OBSERVED CHART ENTRY DATES.

Set MAE RMSE

FCDs 9.44 £ 0.096 11.54 £ 0.107
FMDs 828 £0.092 1045 £ 0.113
Combined  7.38 £ 0.085  9.43 £ 0.107

non-stationary with respect to chart entry dates, exhibiting dis-
tinct trends. To examine the behavior of descriptors at a finer
time scale, we apply a non-overlapping 30-day sliding window
to chart entry dates, where at each window position we compute
the mean descriptor value. Examining the sample autocorrela-
tion of the resulting time series for lags in the range [1 .. 5],
we observe weaker correlations for FCDs compared to FMDs.
Yet, both autocorrelations exhibit slowly decaying autocorre-
lations (Fig. 7), characteristic of a non-stationary time series
[73]. Following the method of Box and Jenkins [74], we attempt
to attain stationarity by applying first-order differencing to the
time series. However, we observe autocorrelation close to —0.5
at unit lag, suggesting that the time series have been overdif-
ferenced [73]. We interpret these observations as evidence for
a non-trivial, trend-exhibiting process governing observed de-
scriptor values [75].

Table VIII summarizes the accuracy of song year prediction
using MAE and RMSE statistics. Quantified using either MAE
or RMSE, song year prediction based on FMDs outperforms
prediction using FCDs alone. However, we observe that a com-
bination of FMDs and FCDs yields the highest prediction accu-
racy. By incorporating FCDs we observe performance gains of
10.9%, 9.8% relative to FMDs, in terms of MAE and RMSE. As
performed in Section IV-A4, we test for differences among pre-
diction accuracies by applying bootstrap sampling to predicted
and observed chart entry times, from which we estimate stan-
dard errors of MAE and RMSE statistics. Again using one-way
analysis of variance with Tukey-Kramer post-hoc analysis and
setting « = 0.05, we reject the hypothesis of no difference be-
tween prediction accuracies across all pairs, for both MAE and
RMSE.

Fig. 8 displays regression coefficients obtained using unwin-
dowed chart entry dates. We compute coefficient magnitudes
and normalize to sum to one. Thus computed, we interpret
coefficient magnitudes as predictive utilities across individual
audio features. In addition, we consider the utility of FCDs
across time scales, compared to FMDs. Summed across fea-
tures, we observe that compared to FCD1, FMDs are weighted
more strongly (0.591 versus 0.201). Further examining relative
weightings, we observe a prevalence of weight assigned to
FCDI1 compared to higher downsampling factors. However,
we observe that individual features may be weighted relatively
strongly across multiple temporal scales. Note from Table V
that for chroma features, MFCCs and derivatives, FMD weights
are summed across 24 prediction coefficients, compared to 3
coefficients for FCDs.

In Fig. 9 we examine prediction accuracy in response to win-
dowed descriptors, as described in Section IV-A3 and quanti-
fied using MAE. For increasing window size up to 60 d, perfor-
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Chroma (Ellis and Poliner) F 0.0167 = 0.0023  0.0085  0.0036  0.1436 -
dynamics.rms | 0.0135 0.0080 0.0022 0.0007 0.0043 A
rhythm.tempo - 0.0013 0.0013 0.0012 0.0013 0.0012

rhythm.attack.time = 0.0006 0.0008 0.0007 0.0009 0.0089
rhythm.attack.slope  0.0014 0.0014 0.0014 0.0015 0.0086 -
spectral.centroid | 0.0039 0.0039 0.0051 0.0017 0.0245 A
spectral.brightness | 0.0042 = 0.0004  0.0009 0.0018 0.0143 -
spectral.spread - 0.0266 0.0061 0.0028 0.0019 0.0062 o
spectral.skewness  0.0076 0.0017 0.0017 0.0002 0.0110 A
spectral.kurtosis | 0.0121 0.0034 0.0044 0.0038 0.0141 -
spectral.rolloff95 | 0.0010 0.0088 0.0016 0.0015 0.0334 A
spectral.rolloff85 - 0.0134 0.0044 0.0008 0.0015 0.0324 -
spectral.spectentropy [ 0.0031 0.0014 0.0061 0.0011 0.0104 4
spectral.flatness  0.0029 0.0034 0.0009 0.0015 0.0060 A
spectral.roughness [ 0.0237 0.0156 0.0099 0.0026 0.0064 -
spectral.irregularity - 0.0070 0.0030 0.0025 0.0159 -
spectral.mfcc | 0.0176 0.0030 0.0029 0.0040 0.0741
spectral.dmfcc - 0.0096 0.0040 0.0021 0.0016 0.0593 A
spectral.ddmfcc | 0.0060 0.0018 0.0041 0.0023 0.0194 -
timbre.zerocross [ 0.0014 0.0022 0.0012 0.0446 -
timbre.spectralflux - 0.0114 0.0035 0.0042 0.0033 0.0034 A

tonal.chromagram.centroid - 0.0022 0.0043 ~0.0015 0.0178 A

tonal.keyclarity [ 0.0062 0.0060 0.0021 0.0003 \ 0.0114 A

tonal.mode - 0.0039 0.0028 0.0008 0.0020 0.0045

tonal.hcdf | 0.0037 0.0p09 0.0017 0.0019 0.0156 A
?00'\ ?(’,OFL ?005‘ ?00% ?\4\0

Fig. 8. Normalized regression coefficient magnitudes, estimated using elastic
net regularization, for task of song year prediction. Candidate descriptor set
comprised of FCDs and FMDs.
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Fig. 9. Song year prediction accuracy obtained using windowed descriptors, in
response to window size. Error bars denote standard errors.

mance improves monotonically across all considered descriptor
sets. Across considered window sizes, using combined FCDs
and FMDs we observe a mean performance gain of 17.5%, rel-
ative to using FMDs alone.

V. CONCLUSIONS

We have considered the problem of determining musical sim-
ilarity, using feature sequences extracted from musical audio. In
particular, we have considered musical similarity in the context
of two low-specificity content retrieval tasks, namely similarity
rating prediction and song year prediction. To this end, we have
evaluated the utility of sequential complexity as a descriptor for
quantifying musical similarity.

For both considered tasks, we observe that sequential com-
plexity descriptors predict the outcome variable. Furthermore,
in combination with feature moment descriptors, sequential
complexity descriptors improve prediction accuracy with re-
spect to the baseline. The results confirm that our proposed
descriptors capture musically relevant information and that
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temporal structure is relevant in our chosen domain. Con-
sequently, our results show that sequential complexity may
be used to improve the accuracy of low-specificity content
retrieval based on bag-of features approaches.

Our proposed descriptors are computed in an unsupervised
manner and may be implemented efficiently, requiring O(n)
time complexity for each track [76]. In addition, our proposed
descriptors have similar dimensionality compared to feature
moment descriptors. Since our descriptors may be computed
off-line or incrementally and thereafter combined with in-
dexing methods as proposed in [39], [40], [41], we deem them
potentially applicable in large-scale content retrieval systems.

Similar to results obtained in [35], [36], [77], [24], our re-
sults using sequential complexity descriptors suggest that an ap-
proach based on multiple temporal resolutions is advantageous
for determining musical similarity. As an alternative to down-
sampled features, we initially employed beat-synchronous rep-
resentations, which yielded comparatively small gains in predic-
tion accuracy, when combined with original frame-based fea-
tures. This result suggests that for our chosen domain, tem-
poral structure at short time scales is more advantageous, com-
pared to temporal structure at the metrical level. One possible
explanation for this behavior is that an abundance of obser-
vations is beneficial when estimating compression rates. Al-
ternatively, for our chosen tasks similarity judgements might
predominantly be based on short-term timbral characteristics,
rather than long-term structures such as motifs and chord pro-
gressions. For future work, we aim to examine in closer de-
tail the utility of representing features at multiple time scales,
and to characterize the feature spaces relevant for similarity
judgements.

For similarity rating prediction, note that by biasing towards
tracks with proximate chart entry dates, we attempt to control
for historical changes in audio production. For song year pre-
diction, where we do not control in the described manner, audio
production may confound the association between musical sim-
ilarity and chart entry date. We acknowledge that in both cases,
audio production may confound the association between simi-
larity measures and respective outcome variables, as observed
in [60]. For future work, we aim to measure the degree of con-
founding by introducing suitable audio degradations [78]. A fur-
ther issue concerns the practical impact of predicted similarity in
music information retrieval. We aim to evaluate our descriptors
for search, navigation and recommendation tasks, using collec-
tions of various scales.

Finally, the present work considers only a single sequential
complexity measure, estimated using a single algorithm. It is
conceivable that using multiple compression algorithms may
reduce the error variance of estimated sequential complexity.
Using alternative classification tasks, we aim to evaluate
whether multiple compressors yield an improvement in predic-
tion accuracy.
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