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Abstract—Current very low bit rate speech coders are, due
to complexity limitations, designed to work off-line. This paper
investigates incremental speech coding that operates real-time
and incrementally (i.e., encoded speech depends only on already-
uttered speech without the need of future speech information).
Since human speech communication is asynchronous (i.e., dif-
ferent information flows being simultaneously processed), we
hypothesised that such an incremental speech coder should also
operate asynchronously. To accomplish this task, we describe
speech coding that reflects the human cortical temporal sam-
pling that packages information into units of different temporal
granularity, such as phonemes and syllables, in parallel. More
specifically, a phonetic vocoder — cascaded speech recognition
and synthesis systems — extended with syllable-based infor-
mation transmission mechanisms is investigated. There are two
main aspects evaluated in this work, the synchronous and asyn-
chronous coding. Synchronous coding refers to the case when the
phonetic vocoder and speech generation process depend on the
syllable boundaries during encoding and decoding respectively.
On the other hand, asynchronous coding refers to the case
when the phonetic encoding and speech generation processes are
done independently of the syllable boundaries. Our experiments
confirmed that the asynchronous incremental speech coding
performs better, in terms of intelligibility and overall speech
quality, mainly due to better alignment of the segmental and
prosodic information. The proposed vocoding operates at an
uncompressed bit rate of 213 bits/sec and achieves an average
communication delay of 243 ms.

Index Terms—Very low bit rate speech coding, parametric
speech synthesis

I. INTRODUCTION

Current very low bit rate (VLRB) speech coders that operate
at bit-rates of the order of hundreds bits per second (bps) are
designed with a different structure than conventional speech
coders for communication. Because of communication delay
and complexity limitations, the VLBR coders are currently
used only to store large amounts of pre-recorded speech, such
as audio books and electronic dictionaries. Indeed, no ITU-T
standard has been yet created for bit rates below 4 kbps. The
standardisation effort begun in 1994 [1], but it has been shown
to be difficult to achieve toll-quality performance in all con-
ditions, such as intelligibility, quality, speaker recognizability,
communicability, language independence and complexity.

In this paper we elaborate on the condition on communica-
bility of 200–300 bps VLBR systems. Our aim is to investigate
speech coding that can be used as a conventional coder with an
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acceptable communication delay for real-time speech commu-
nication, with a view to being exploited in military and tactical
communication systems. To our knowledge such a system is
not available. To achieve such low bit rates, parametric speech
coding paradigm has to be used. It has already been shown
that automatic speech recognition (ASR) and text-to-speech
(TTS) can be cascaded to form a vocoder [2]–[5], where
a set of transmitted parameters is derived from recognised
and re-synthesized segments. However, ASR and TTS are
both in principle designed to work off-line, with observed
significant degradation if employed in an online mode, a basic
requirement of a real-time communication.

Humans, by contrast, “encode” speech real-time and in an
incremental fashion, i.e., encoded speech depends only on
current and past/already-uttered speech and not future/to-be-
uttered speech (similar to causality in digital signal processing
theory) [6]. Recent neuroimaging studies of Giraud et al. [7]
have shown that, during speech processing, the brain generates
cortical oscillation in the θ-range (4-7 Hz) that may correspond
to the syllable rate, and faster γ-range oscillations (25-40 Hz)
that correspond to the phonetic scale. This cortical temporal
sampling, i.e., packaging information into units of different
temporal granularity such as the phonetic level structural units
(phonemes) and the syllabic level structural units (syllables), is
thought to play a key role in human speech processing. Further,
auditory cortical oscillations show hierarchical phase-nesting
or synchronisation across different temporal granularity [8].
Speech communication is also known to be an asynchronous
process due to these different information flows embedded in
the speech [2].

We can learn from the human speech processing that it
has explicit simultaneous phonetic and syllabic components,
which are synchronously or asynchronously related. Driven
by this, we hypothesise that speech coding inspired by the
human speech signal processing can target the communica-
bility requirement of low bit rate coding, and should work
asynchronously as well. For that purpose we evaluate syn-
chronous and asynchronous versions of both speech encoder
and decoder. In brief, synchronous coding refers to the case
where the phonetic vocoder and speech generation process de-
pend on the syllable boundaries during encoding and decoding
respectively. On the other hand, asynchronous coding refers to
the case where the phonetic encoding and speech generation
process perform independently to the syllable boundaries.

The recent work of Flanagan [9], also inspired by human
speech processing, proposes parametric speech coding based
on an articulatory representation. The drawback of this ap-
proach is that it is computationally very expensive (around
100 times real-time only to compute solutions of the Navier-
Stokes fluid flow equations). However, since our goal was
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to design an incremental real-time codec, we have chosen a
minimalist approach using a phonetic vocoder. Rather than
using a segmental vocoder [10] as the syllabic component
observed in the human speech processing, we propose to ex-
tend phonetic vocoding with syllable-based (hereinafter called
syllabic) information transmission mechanisms (e.g., stress,
accent, pitch information). The design of the syllable-context
phonetic coding and understanding of the synchronisation
between phonetic and syllabic information in encoded speech
constitute the main contributions of this paper.

The paper is structured in the following way. Section II
introduces incremental phonetic and syllabic information cod-
ing. Section III describes in more details the proposed speech
coding. Section IV presents the experiments and results, and
finally Section V concludes the paper with discussion and
future work outline.

II. INCREMENTAL PHONETIC AND SYLLABIC
INFORMATION CODING

A. Background

The coding process can be abstracted as a copy-synthesis
task, i.e., trying to copy as well as possible the audio from the
speaker at the transmitter side and synthesize it at the receiver
side. From this point of view we can classify parametric
VLBR copy-synthesis approaches that differ in the temporal
granularity of the re-synthesis method as: (i) frame-based
(e.g., formant [11], articulatory [12], [13], MELP synthesis
[14]), (ii) phoneme-based (corpus-based [5] or HMM-based
[2], [3]), and (iii) segment-based [10], [15], [16]. The trend
in lowering the bit rate while preserving high speech quality
is to increase temporal granularity of the copy-synthesis, i.e.,
additionally increasing communication delay. For example, the
enhanced MELPe 1.2 kbps coder that employs a context of
three consecutive 22.5 ms frames performs nearly as well
as 2.4 kbps MELP coder [14]. The temporal granularity can
be phonologically interpreted as (sub)phonetic and syllabic
information.

1) Phonetic information: The condition of communicabil-
ity of the speech encoder leads to the incremental speech
processing system, i.e., encoded speech is generated imme-
diately from received current and past speech parameters. If
the coder is composed of cascaded ASR and TTS systems,
both need to operate incrementally. The phonetic vocoder
transmits phonetic information about phoneme segments (their
identity along with their durations). We try to investigate a
phonetic vocoder that would also allow effective transmission
of important information beyond the phonemes.

2) Syllabic information: Syllables are important supra-
segmental units because the span covers the fundamental pitch
variant for prosody events as shown in the linguistic research
of Xu et al. [17]. Syllabic information consists of accent and
stress of the syllable, its length in terms of the number of
phonemes, and the vowel name that forms the nucleus of
the syllable. Syllables are considered as language-independent
and therefore are suitable also for speech coding. The G.114
recommendation regarding mouth-to-ear latency indicates that
most users are “very satisfied” as long as latency does not

exceed 200 ms [18]. This duration is the average duration of
syllables (valid for our English and Mandarin speech data).

B. Syllable-context phonetic coding

Rather than using the segmental vocoder as the syllabic
component observed in the human speech processing, we
propose to extend phonetic vocoding — phoneme ASR — with
syllabic information transmission mechanisms, based on syl-
lable context parametric TTS, aiming to unify the transmitted
information on the syllable context level. We hypothesise that
unifying context across all levels of transmitted information,
i.e., phoneme and syllable levels, may decrease the overall bit
rate of the speech coder, while allowing acceptable communi-
cation delay.

We parametrize the original pitch of each syllable using
the discrete (Legendre) orthogonal polynomial (DLOP). DLOP
has successfully been used before in this task [19], [20]. The
syllabic pitch contour f
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j-th DLOP polynomial. Using the transformation described
by Eq. 2, a pitch contour is encoded into a parameter vector
(a0, a1, . . . , aJ−1). Considering that the pitch of unvoiced
segments is undefined, only the longest contour within a
syllable is parameterized. More details and evaluation results
of this approach can be found in our previous work [16].

The pitch parametrisation is extended with quantized syl-
labic accent and stress parametrisation. We use syllable-based
accent and stress encoding as described in detail in our
previous work [21]. We showed how to infer accent and stress
features from the speech signal (hereinafter called also signal-
based labels), using syllabic quantized F0 and energy acoustic
measures.

We constrain the TTS contextual factors to the syllable level
in the decoding module. We have already showed that the con-
text above syllable, i.e., information related to words, phrases
or utterances, is less important for the VLBR coding [22].

1) Synchronisation of incremental encoding: Incremental
encoding can be performed using incremental phoneme ASR
and incremental syllabification (see Sec. III-A)). To combine
phoneme ASR and syllabification, satisfying in the same time
the causality of the system, we investigated two incremental
encoding approaches:
• Asynchronous encoding: The phoneme ASR generates

the sequence of phonemes from the best partial hypothe-
ses within a fixed time delay τ , usually in the range of
80–200 ms. Asynchronously to the τ , syllable boundaries
are determined from the phoneme sequence.
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• Synchronous encoding: Synchronous encoding is driven
by a speech signal-based syllable boundaries determi-
nation algorithm. All the partially recognised phonemes
between these syllable boundaries then compose the
syllables. In this case phoneme ASR and syllabification
are synchronous.

2) Synchronisation of incremental decoding: In the incre-
mental decoding part, the reconstructed syllable context sym-
bolic representation of transmitted speech is used for speech
re-synthesis performed by the phonetic vocoder. Similar to
the speech encoding, we identified two approaches to re-
synthesize the speech incrementally:
• Asynchronous decoding: The phonetic vocoder always

uses the same previous context (e.g., last two phonemes),
asynchronously to the detected syllable boundaries.

• Synchronous decoding: The phonetic vocoder uses cur-
rent syllable determined by the syllable boundaries,
to synthesize the speech parameters. Similarly to syn-
chronous encoding, the buffer to smoothing speech pa-
rameters is synchronous to the syllable boundaries deter-
mined by syllable onsets.

III. DESCRIPTION OF THE CODER

The speech coder is designed as a real-time incremental
system operating with an algorithmic (communication) delay
of approximately the duration of a syllable. It consists of three
basic modules: (A) syllabic speech segmentation, applied in
(B) speech encoding and (C) speech decoding.

A. Syllabic speech segmentation

Speech segmentation has already been identified as an
important property of low bit rate coders. For example, the
scalable phonetic vocoder using MELP analysis/synthesis [23]
can benefit from the fixed segmentation [24], i.e., segmenting
periodically in fixed time intervals. However, we hypothesise
that variable speech segmentation, i.e., based on syllable
boundaries, can further optimise the speech transmission pro-
cess.

Conventionally, syllabification is performed on the sequence
of phonemes [25], or directly from the speech signal [26].
However, most of the published techniques do not satisfy
causality. In our work, a Syllable Onset Detection (SOD)
is used to determine syllable boundaries. Variable speech
segmentation is thus performed using the SOD component
operating as:
• Asynchronous SOD (A-SOD): The syllabification used

in the asynchronous encoding. The syllable boundaries
are determined from the encoded phoneme and the sonor-
ity sequencing principle approach [27].

• Synchronous SOD (S-SOD): The syllabification used in
the synchronous encoding. The syllable boundaries are
determined directly from the speech signal.

B. Encoder

Figure 1a shows the design of the proposed encoder.
The phonetic component is based on a phonetic encoder —

Source
xn1 Phonetic

encoder

S-
SOD

A-
SOD

or

Prosodic
params

τk1 Phonemes

+
zk1

(a)

zk1 Syllabic
context re-

construction

F0
decoding

S-PDEC
A-PDEC

or
Synth. x̂n1

(b)

Fig. 1. The composition of the functional components of the speech coder.
Phonetic vocoder consists of a phonetic encoder and two versions of phonetic
decoders (PDEC). The encoder (a) encodes the speech signal xn1 to syllable
tokens zk1 , and can work either with the S-SOD that triggers the phonetic
encoder on syllable onset times τk1 , or with the A-SOD that depends on
the phonetic encoder. On the decoder side (b), the reconstructed syllable-
context symbolic representation is used for speech re-synthesis performed
by the phonetic decoder that also may work synchronously (S-PDEC) or
asynchronously (A-PDEC) with syllable boundaries.

TABLE I
SPECIFICATION OF SYLLABLE TOKENS z.

No. Encoded information

1. the phonemes
2. the duration of the phonemes
3. the quantized F0 label of the current syllable
4. the quantized energy label of the current syllable
5. DLOP ai parameters of the current syllable

phoneme ASR — while the syllabic component is based on
syllable-context phonetic coding introduced in Section II. The
encoder with the SOD, that plays a role of ‘a system clock’,
outputs syllable tokens z ∈ zk1 that each consist of the syllabic
symbolic representation and prosody parametrisation of the
encoded speech. The pitch parametrisation is complemented
with quantized syllabic accent and stress parameters. Table I
lists all information encoded in z.

1) Phonetic vocoder analysis: A real-time ASR system is
composed of a feature extraction and an incremental search
module. We use tracter1, a data-flow framework, as an inter-
face between the ASR’s pull architecture and the Analogue to
Digital Converter’s push architecture [28]. Figure 2 shows the
directed graph of components.

The incremental encoding is triggered by a minima-based
voice activity detection [29], [30]. In addition to conven-
tional mel-frequency cepstral features with adaptive cepstral
mean normalisation, the feature extractor also provides energy
features. As the feature extractor is not aware of syllable
boundaries, it also pushes all speech samples to the encoder
for syllabic pitch parametrization that is performed directly by
the speech encoder.

The speech encoder is based on an incremental phonetic

1https://github.com/idiap/tracter
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Fig. 2. Front-end of the encoder. The source component can be selected from microphone, file or TCP/IP socket inputs. The gate component is controlled
using minima-based voice activity detection. The front-end outputs 39 dimensional mel-cepstral features plus an energy feature, and passes all speech samples
for syllabic pitch parametrisation calculated directly in the encoder.

ASR system2, a Weighted Finite State Transducer (WFST)-
based recognition system. The WFST graph is basically com-
posed of an n-gram phoneme language model (LM). The ASR
pulls features frame-by-frame from tracter, and implements
a partial decoding mechanism that traces active paths and
returns the path of the best token with each processed frame.
The encoded speech is segmented into the syllables using S-
SOD or A-SOD. The encoder then integrates the TEMPO

2https://github.com/idiap/juicer

method [31] for syllabic pitch extraction using 10 ms frame
shift. Optionally, syllable-based Kalman smoothing of the raw
pitch values is used before pitch curve fit encoding [32].

2) Syllabic prosody packaging: In asynchronous incre-
mental syllabification (A-SOD in Figure 1a), based on the
phoneme identity, a sonority sequencing principle with onset
maximisation is applied to determine the syllable onsets. We
use a simplistic approach with the sonority distance parameter
set to 2. Table II shows the sonority scale that was used.

In synchronous incremental syllabification (S-SOD in Fig-
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TABLE II
THE SONORITY SCALE USED IN THE ASYNCHRONOUS INCREMENTAL

SYLLABIFICATION.

Sounds Level

Vowels 4
Glides (w, j) 3
Liquids (l, R) 2
Nasals (m, n, N) 1
Obstruents (all other consonants) 0

TABLE III
CONTEXTUAL FACTORS USED IN THE SYLLABLE-CONTEXT PHONETIC

DECODER. SYLLABLE-CONTEXT FACTORS $PS$ AND $CS$ STAND FOR
THE PREVIOUS AND CURRENT SYLLABLE, RESPECTIVELY. POSITION

STARTS FROM 0 AND NUMBER STARTS FROM 1.

No. Contextual factors

1. the phoneme before the previous phoneme
2. the previous phoneme
3. the current phoneme
4. the next phoneme
5. the phoneme after the next phoneme
6. forward position of the current phoneme in $PS$
7. backward position of the current phoneme in $CS$
8. the number of phonemes in $PS$
9. the number of phonemes in $CS$

10. name of the vowel in $CS$
11. the quantized F0 pi label of the $PS$
12. the quantized energy ei label of the $PS$
13. the quantized F0 pi label of the $CS$
14. the quantized energy ei label of the $CS$

ure 1a), we use text-based pre-processed syllable boundaries,
as an oracle syllable onset detector. We hypothesise that any
robust speech-based incremental syllable onset detector, which
to our knowledge is not available now, can only reach (and not
overcome) the performance of the text-based syllabification.
Pre-processed syllable boundaries were generated from text by
finding the minimum sonorant position between vowels [27],
as applied in the Festival system [33].

Stress, accent and pitch information is encoded using
syllable-based techniques introduced in the previous Section
II-B. Finally, the zk1 tokens are formed for transmission.

C. Decoder

Figure 1b shows the design of the decoder. It has been
shown that missing syllabic-rate information degrades par-
ticipants’ ability to identify consonants and to understand
sentences [34]. Therefore, analogous to human perception,
syllabic context re-construction is processed first. The seg-
mental details are reconstructed using either synchronous (S-
PDEC) or asynchronous (A-PDEC) re-synthesis of the pho-
netic vocoder, and the pitch is decoded from pitch parameters.

1) Syllable-context reconstruction: For the PDEC mod-
ule, we employ the HMM-based speech synthesis system
(HTS) [35] with STRAIGHT re-synthesis [31]. By default,
HTS synthesizers need a contextual symbolic speech represen-
tation (hereinafter called labels), where each phonetic symbol

to be synthesised depends on all words and phrases in the
synthesised utterance. As stated in the previous Section II-B,
we use only syllable context phonetic labels where the word,
phrase and utterance related factors are removed from the
training labels.

Therefore, the task of syllable-context reconstruction is
to create the 14 contextual factors listed by Table III from
received tokens z. The contextual factor reconstruction is
straightforward: the first 10 factors are created from the
phonemes of the current syllable, the vowel of the syllable
is taken from the first vowel in the phoneme sequence; the
last 4 factors are reconstructed using the codebooks of the
quantized syllabic pitch and energy.

2) Phonetic vocoder re-synthesis: In the task of real-time
speech synthesis, it is required that the processing time of
the current speech unit is shorter than the duration of the
previous synthesized unit. Aiming at constructing a real-
time incremental speech coding system, we propose real-
time speech synthesis from two aspects. We investigate both
synchronous and asynchronous parameter generation methods,
S-PDEC and A-PDEC respectively. The decoder is designed
and implemented in such a way that for syllabic contexts,

1) real-time parameter generation methods do not distort
the generated parameter trajectories and

2) online STRAIGHT re-synthesis does not degrade output
voice quality.

To implement asynchronous decoding (A-PDEC on Fig-
ure 1b), we use the performative HTS-based speech synthesis
system [36]. In the streaming/performative-HTS framework, it
is assumed that a real-time system may require some knowl-
edge of the future of its input to produce the current output.
Thus, its requirement for time lookahead is implemented in
a buffer. This assumption is true in terms of performative
real-time, as well as in the real-time speech coding task. In
the present work, the incremental asynchronous decoding is
implemented as performative-HTS speech parameter genera-
tion with 2 previous phoneme smoothing [37]. Although the
algorithmic delay varies according to the phoneme duration,
the synthesizer operates real-time using the current setup of the
speech coding system. Cepstral instead of mel-cepstral features
are used, as re-synthesis without mel-warping was almost two
times faster.

To implement synchronous decoding (S-PDEC in Fig-
ure 1b), we use a low latency parameter generation method
called MLPG-b proposed for HMM-based real-time speech
synthesis [38]. In the conventional HTS systems, speech
parameters are generated by solving

Rc = r, (3)

where c represents the acoustic parameter sequence to be
used for synthesising the speech signal. To solve Equation 3,
matrices R and r are calculated given the HTS models. R is
determined by the variance matrix, and r is determined by the
mean vectors, which describe the sequence of Gaussian-based
acoustic models at the sentence level. However, MLPG-b
was proposed by generating the phoneme sequence and the
acoustic parameter trajectories as context-dependent semantic
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blocks. By segmenting the input labels into context-dependent
blocks (syllables), Eq. (3) is approximated by

{Rycy = ry}Yy=1 , (4)

where cy represents the acoustic parameter of the yth block.
Ry and ry denote the corresponding blocked matrices. By
solving a batch of Y equations consecutively, the whole sen-
tence of parameters is generated. The advantage of MLPG-b
is that the rendering of speech can be started shortly after
the synthesis phase begins, without necessity to wait for
the completion of the whole sentence. The evaluation results
indicate that the generated acoustic parameters by the MLPG-b
system are not significantly distorted compared to the HTS
system, and it is faster than real-time even in an extremely
limited computational environment.

Unlike the asynchronous decoding system, the synchronous
system does not apply a lookahead and smoothing strategy.
According to the theoretical analysis of the matrices of Eq. (4),
the generated parameters given high-level contextual block-
ing boundaries, which in this case are the syllabic bound-
aries, promise an acceptable continuity of the synthesised
speech [38].

3) F0 decoding: The pitch contour between the syllable
boundaries is reconstructed using Eq. 1. Once the parameters
have been generated using S-PDEC or A-PDEC systems,
we use model-based generated pitch trajectory to update the
transmitted (decoded) trajectory: if the generated pitch is zero
(i.e., re-synthesising an unvoiced frame), the corresponding
frame of the decoded trajectory is always set to zero as well;
else, the generated pitch is replaced with the decoded pitch.
This trick removes pitch discrepancy between syllabic and
phonetic information.

Speech samples are finally re-synthesized using a real-time
incremental (online) version of the STRAIGHT re-synthesis.
In this way speech samples are generated frame-by-frame,
either with each processed phoneme with the asynchronous
system, or with each syllable in the synchronous system.
Comparing the offline and online re-synthesis, the difference
in the quality of the generated speech is minimal. In the offline
version, the bias used in smoothed spectrum to cepstrum
calculation is a scaled minimal value of whole spectrum of
synthesized speech, while in the online version this bias is
estimated only from the current frame of generated speech.
This local bias estimation finally results in slightly suppressed
spectral amplitudes over the whole frequency range, neverthe-
less it is perceptually negligible.

IV. EXPERIMENTS

We first evaluate the proposed decoder with oracle encoder.
This includes evaluation of syllabic accent and stress param-
eters, used during the decoding. Afterwords we evaluate the
whole coding system with an integrated encoder. Thus, we
evaluate:

1) Decoder with oracle encoder, measuring qualities of
log quantized syllabic pitch and energy parameters, and
focusing on synchronous vs. asynchronous incremental
speech signal re-synthesis,

2) Integrated encoder and decoder, focusing on the
impact of the latency of incremental ASR on speech
encoding, and evaluating synchronous vs. asynchronous
incremental syllabification.

First, we describe the training of the acoustic models used
for speech encoder and decoder. Then we continue with the
performed experiments and discussion of the results.

A. Training

Two American English acoustic models, first for the encoder
(HMM/GMMs system) and second for the decoder (HTS
system) were developed, both using the CMU pronunciation
dictionary. The dictionary consisted of 40 unique phonemes
including silence.

1) Phonetic encoding: We trained HMM/GMM systems
for phonetic encoding using the Wall Street Journal WSJ0
and WSJ1 continuous speech recognition corpora [39]. Three-
state, cross-word triphone models were trained with the HTS
variant [35] of the HTK toolkit on the si tr s 284 set of
37,514 utterances. We tied triphone models with decision
tree state clustering based on the minimum description length
(MDL) criterion [40]. The MDL criterion allows an unsuper-
vised determination of the number of states. In this study, we
obtained 12,685 states each modelled with a GMM consisting
of 16 Gaussians.

The phoneme language model was trained from mono-
phone transcription of the acoustic model training set, using
Witten-Bell discounting for N-grams of order 3.

Finally, WFST models were composed using the Juicer tools
and the AT&T FSM library [41] into the final C ◦ L ◦ G
transducer.

2) Phonetic decoding: For the re-synthesis, the HTS system
trained using the CMU-ARCTIC database was used.

In order to justify an application of the syllabic signal-based
labels, the Mutual Information (MI) measure between the text-
based and signal-based labels was applied. MI is a measure
for evaluating the statistical information shared between two
quantities [42]. The proposed syllabic quantized F0 pi and
energy ei features were calculated from the speech signal
measures, and the labels Mi ∈ {0, 1, . . . , 7} were assigned
also to the current and previous syllable (8 labels resulted from
use of 3-bit code-books). To combine the pi and ei features
(e.g., to capture higher pitch and lower energy) into a single
label, we constrained Mi = pi = ei, where the value of the
label in question was the same for both acoustic measures. It
simplified the construction of the question set for the context
clustering as well.

The MI as a measure of the conventional text-based stress
and accent labels C and the signal-based Mi labels can be
defined as:

I(C;Mi) =
∑
c

∑
m∈Mi

p(c,m) log2

(
p(c,m)

p(c)p(m)

)
, (5)

where p(c,m) is the joint probability of C and Mi, and p(c)
and p(m) are marginal probabilities. The MI is a measure
of information in bits conveyed by Mi about C, and it
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is normalised by the mutual information measure with the
entropy of C defined as:

H(C) = −
∑
c

p(c) log2 p(c). (6)

We evaluated the normalised measure I(C;Mi)
H(C) for the fol-

lowing classes (options) of C:
1) Ca, where Ca = accent, and is a measure of information

in bits that conveys Mi about conventional accent labels,
2) Cs, where Cs = stress, and is a measure of information

in bits that conveys Mi about conventional stress labels,
3) Cs∧a, where Cs∧a = stress ∧ accent, and is a measure

of information in bits that conveys Mi about the in-
tersection of conventional stress and accent labels, i.e.,
Ca ∩ Cs = {c : c ∈ Ca ∧ c ∈ Cs}.

4) Cs|a, where Cs|a = stress|accent, and is a measure of
information in bits that conveys Mi about the union of
conventional stress and accent labels, i.e., Ca ∪ Cs =
{c : c ∈ Ca or c ∈ Cs},

Table IV shows the normalised MI values calculated for the
male bdl and female slt testing speakers from the CMU-
ARCTIC speech database [43].

TABLE IV
Normalised MI values of bdl and slt voices.

I(C;Mi)
H(C)

bdl slt
pi ei pi, ei pi ei pi, ei

C = Ca 10.1 8.2 16.7 10.8 8.6 16.7
C = Cs 10.9 7.4 18.3 11.8 8.7 18.3
C = Ca∧s 11.4 9.6 17.9 11.8 9.7 17.9
C = Ca|s 12.4 8.5 20.6 13.7 10.0 20.6

From the normalised MI values we see that (a) pi is more
informative than ei which is more evident in the female
speaker, and (b) individual pi and ei values are less predictive
than their combination. The best predicted syllables using the
signal-based labels are those which are either accented or
stressed, i.e., those represented by the conventional stress or
accent label class Ca|s. From this analysis we can conclude
that the proposed syllabic Mi labels have enough predictability
power to replace the conventional text-based stress and accent
labels. In that way we do not explicitly model stress and
accent. Rather, we hypothesise that the context clustering
does the job in a data-driven manner, and selected contextual
questions about Mi values will reflect the information about
actual conventional stress and accent features.

The signal-based labels were generated for all the training
speech data as described above. All log F0 measurements
of the training set were extracted using the TEMPO method
exploiting a 5 ms frame shift, and the log energy values
were calculated using the tracter signal-processing tool. The
syllable boundaries were extracted from the contextual labels
provided by the CMU-ARCTIC database; average values were
calculated per syllable. The log F0 quantization code-books,
created per speaker, were linearly spaced between the µ− 3σ
and µ + 3σ boundaries, where µ is the mean and σ is the
standard deviation of all the measurements belonging to the
training data of a particular speaker. The order of energies

of accented/stressed syllables was 10. In order to compress
the range of less important lower energies for estimation of
quantization boundaries, we considered only energies above 1.
This resulted in more values of log energies slightly above 0,
and compressing the left quantization boundary from µ− 3σ
to µ− 2σ.

An average model was built using five speakers, including
3 males (bdl, jmk and rms) and 2 females (clb and slt).
Each utterance with unique id was assign to:
• the training set, if 0 ≤ id ≤ 450,
• the test set, if 450 < id ≤ 500, and
• the adaptation set, if id > 500.

In this way, the training set of the average model comprised
of 4493 sentences (some corrupted utterances were excluded
from the training). The bdl and slt speakers were selected as
testing speakers. The bdl and slt adaptation sets of 131 sen-
tences each were used for a constrained structural maximum
a posteriori linear regression (CSMAPLR) adaptation [44] of
the average model. Finally the bdl and slt test sets of 100
sentences each were used for evaluating the two systems.

B. Decoder with oracle encoder

Figure 3a shows an experimental setup to evaluate the
decoder. We first evaluate incremental speech decoding with
HTS models trained only with the first 10 contextual factors,
listed in Table III. Then we continue with evaluation of the
last 4 contextual factors of the table – the syllabic accent and
stress parameters.

We abstracted here the encoder side, and used the true input
to the decoder, i.e., the phoneme sequence from the syllable
context labels. The phoneme labels of the test set were aligned
with the speech samples, and the original pitch was transmitted
to the decoder.

1) Incremental speech decoding: The overall quality of the
re-synthesised speech was evaluated subjectively using the
Degradation Category Rating (DCR) procedure [45] quanti-
fying the Degradation Mean Opinion Score (DMOS). This
method provides a quality scale of high resolution, due to
comparison of a distorted (synthesized) signal with a (natu-
ral/original) reference. The aim was to capture speech encod-
ing quality variations based on the different speech parameter
generation and re-synthesis methods.

The test consisted of 6 sentences (3 from male bdl and
3 from female slt) randomly chosen from the ARCTIC
database, with length of at least 2 seconds. Listeners rated
the following 4 versions of the synthesis systems:

1) offline-HTS: HTS v.2.1 speech parameter generation
– from transmitted parameters to the cepstral coeffi-
cients, using the hts_engine API v.1.06, with offline
STRAIGHT re-synthesis – from cepstral coefficients to
the speech samples.

2) online-HTS: HTS v.2.1 speech parameter generation
with online STRAIGHT re-synthesis.

3) A-PDEC: asynchronous incremental phoneme-based
speech parameter generation using the performative HTS
system with online STRAIGHT.
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Fig. 3. Speech coding experimental setups: (a) abstracting the encoder
for evaluation of incremental speech decoding and the syllabic prosody
parameters, and (b) integrated speech encoder and A-PDEC decoder for
evaluation of overall speech quality.

4) S-PDEC: synchronous incremental syllabic speech pa-
rameter generation with online STRAIGHT.

Eight listeners were asked to rate the degradation of re-
synthesised signals compared with reference signals based on
their overall perception. According to the DCR procedure, it is
not fair to build a pair associating two synthetic signals since
it would have implied that the first synthetic signal outclasses
perception of the second one. Therefore natural speech was
selected as a reference signal in the test. Listeners had to
describe degradation within the following five categories:

1) Very annoying,
2) Annoying,
3) Slightly annoying,
4) Audible but not annoying,
5) Inaudible.
We evaluated two tests based on the two hypotheses pre-

sented above: (a) whether online STRAIGHT degrades the
generated speech compared to the offline STRAIGHT (i.e.,
comparing the performance of the first and second systems),
and (b) whether real-time speech parameter generation further
degrades the speech quality (i.e., comparing the second and
last two evaluated systems).

Figure 4 shows the subjective evaluation results. A t-test
confirmed that the differences of the first test (a) is not
statistically significant (p > 0.05), so we can conclude that

offline-HTS online-HTS A-PDEC S-PDEC
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
e
g
ra

d
a
ti

o
n
 M

O
S 2.00 1.98

2.23

2.06

bdl
slt

Fig. 4. Subjective evaluation results for different HTS re-synthesis systems.
The numbers above the bars are the averages for both speakers together.

online STRAIGHT re-synthesis works reasonably well. In the
second test (b), the difference between the online-HTS system
and asynchronous A-PDEC is significant (p < 0.05), and the
difference between the two incremental systems is statistically
insignificant. We chose the A-PDEC decoding for integrated
encoder and decoder experiments.

2) Syllabic accent and stress parameters: This evaluation
follows our previous work [21]. Here, we extended the testing
set that now consists of one male and one female speaker.
We trained two HTS systems, (i) proposed — with all 14
contextual factors as listed in Table III, and (ii) conventional
— where we replaced last 4 contextual factors by stress and
accent features inferred from the text.

To evaluate syllabic accent and stress encoding, an ABX
test was conducted. The motivation for the ABX test was to
see whether the use of stress and accent information based on
the speech signal on the encoder’s part (rather than based on
textual labels), will affect the overall quality of the synthetic
speech on the decoder’s side.

According to [46], the ABX test is suitable for rating small
degradation using a continuous impairment scale, and expert
(trained) listeners should be used. The listeners were asked to
choose between speech samples produced from the conven-
tional and the proposed systems. 17 listeners for evaluation of
the bdl samples and 10 listeners for evaluation of those of
slt participated in the listening tests. In each test, the listeners
were asked to listen for each pair of sentences to the two
samples (as many times as they wanted), and choose between
the two samples in terms of the overall quality. Additionally,
the listeners could choose a third option, “both samples sound
the same”, if they had no preference between them. For both
tests, the same 10 sentences from the test set were used.

Figure 5 presents the results of the listening test. The
proposed system, i.e., the system with the syllabic stress and
accent speech signal-based labels, achieves similar perfor-
mance to the conventional system, i.e., the system with the
conventional stress and accent text-based contextual factors.
These results clearly validate our hypothesis that speech
signal-based stress and accent features can perform as well
as text-based contextual factors.
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Fig. 5. ABX subjective evaluation test results (in percentages) for the
comparison between the conventional and proposed systems, for (a) bdl and
(b) slt speakers.
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Fig. 6. Impact of incremental ASR with time delay τ and A-SOD syllabi-
fication on cepstral distortion of encoded speech, for male bdl and female
slt test speakers.

C. Integrated encoder and decoder

Having evaluated the HTS re-synthesis and syllabic prosody
transmission components, we integrated all the speech coding
modules to a full speech coding system. Figure 3b shows the
experimental setup.

First, we objectively evaluated the impact of incremental
ASR on encoded speech. The incremental phoneme ASR was
done by parsing the best partial hypothesis on regular time
intervals τ . Asynchronous syllabification (A-SOD system) is
then done incrementally with each ASR label, based on the
sonority sequencing principle and the syllable onset maximi-
sation [25]. Smaller τ impacts intelligibility of the encoded
speech, while larger τ increases the encoding delay.

Mel Cepstral Distortion (MCD) [47] on the test set is used
as an objective metric for evaluating the impact of incremental
speech recognition on quality of speech coding. Figure 6
shows MCD scores on mel-cepstral vectors of original and
asynchronously incrementally encoded speech for different
τ = 60, 80, 100, . . . , 220 ms. In the synchronous S-SOD
system, τ = τk1 , with an average syllable duration about
200ms. The encoding delay τ = 200ms was selected for
further stimuli generation in subjective evaluation of quality.

Higher MCD scores are caused by phonetic misalignment
as the speech is re-synthesized from phonetic ASR labels.
The phonetic ASR was the WFST system, where due to
the label pushing algorithm during WFST composition and
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Fig. 7. Subjective evaluation of the encoded speech quality for A-PDEC
speech decoder. Asynchronous encoding uses the A-SOD system while
synchronous encoding uses the S-SOD system.

minimisation, phoneme boundaries are estimated less accu-
rately. However, this does not have a significant impact on
perceived speech quality, as we show in the next evaluation
test. This test was performed again as a DMOS subjective
test to quantify overall speech degradation. The aim was to
capture overall speech encoding quality variations based on
the different incremental syllable onset detection methods.

11 listeners were asked to rate the degradation of encoded
signals compared with reference signals based on their overall
perception. The test consisted of 17 sentences (10 from
male bdl and 7 from female slt) randomly chosen from
the ARCTIC database, with length of at least 2 seconds.
Figure 7 shows the scores. A relative improvement of 22%
was obtained by asynchronous incremental coding. In addition,
we performed also Perceptual Evaluation of Speech Quality
test [48], where we obtained an average 1.45 PESQ MOS for
the asynchronous coding and an average 0.88 PESQ MOS
for the synchronous coding, with the relative improvement of
40% for the asynchronous coding. The lower PESQ absolute
values can be explained by the implicit quality expectations of
the PESQ method. The PESQ MOS corresponds to absolute
category ratings like “good”, “fair”, etc. (defined in ITU-T
Rec. P.800, sec. B.4.5), so the meaning of what is considered
“good” depends on the expectation of the listener. The vast
majority of databases with which PESQ were trained contain
speech that was processed with commercial codecs, which
operate at much higher bit rates. So the quality expectation
is completely different from that of a user of military com-
munication equipment we work on. In other words, the PESQ
MOS reflects the opinion of an average listener who is used
to commercial telephony services, and such a user would
surely think that a VLBR codec sounds “poor” or even “bad”
compared to what he or she is used to.

A t-test of both subjective and objective tests confirmed that
the differences between the synchronous and asynchronous
incremental encoding are significant (p < 0.01).

To better understand differences in the overall speech coding
quality, we conducted an intelligibility test based on the
objective Speech Intelligibility Index (SII) test [49], with no
background noise. All recordings from the listening test were
analyzed by a one-third-octave filterbank with band center
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TABLE V
ASYNCHRONOUS SYLLABLE-CONTEXT PHONETIC VOCODER BIT

ALLOCATION.

Parameter Bits/unit Unit bps

Phoneme 6 Phoneme 68.6
Duration 5 Phoneme 57.2
Energy 3 Syllable 12.3
Average pitch 3 Syllable 12.3
DLOP ai(,a2) 8(16) Syllable 62.4(124.8)

Total 212.8(275.2)

frequencies given in Hertz [160, 200, 250, 315, 400, 500, 630,
800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300,
8000]. For the range from 160 Hz to 1250 Hz, a multirate
filter implementation was used. Then we normalised power
to 83 dB SPL, and calculated speech intelligibility indexes
0.90, 0.91 and 0.92, for the synchronous encoding setup, the
asynchronous encoding setup, and original human recordings,
respectively. Though the differences are relatively small, they
are statistical significant (two-tailed t-test, p < 0.05), and
partially explain lower degradation and PESQ MOS of the
synchronous encoding setup. Indeed, we observed in syn-
chronous encoding more mismatches between the phonetic and
prosodic information, for example in the form of malformed
syllables. That impacts intelligibility and also pitch and accent
transmission, which are based on syllable-boundaries.

The asynchronous system that combined the A-SOD and
A-PDEC modules performed significantly better in terms of
overall speech quality degradation than the synchronous one
that combined the S-SOD and S-PDEC modules. By compar-
ing encoded speech quality with oracle transmitted parameters
in Figure 4 and asynchronously encoded speech quality in
Figure 7, we notice an improvement from 2.23 DMOS to 2.35.
This might be an impact of quantized prosody transmission
that was included in the second system. This also confirms that
the phonetic ASR classified broad phonetic classes correctly
and intelligibility was maintained.

D. Bit rate and algorithmic delay

The test set contained 2437 syllables with 6759 phonemes
in 592 seconds of speech including silences. On average,
there were 11.43 phonemes/sec and 4.11 of syllables/sec.
Encoding of 40 unique phonemes required 6 bits/phoneme,
and their duration encoded as a number of 10ms frames
required 5 bits/phoneme (setting 320ms as maximal duration
of a phoneme was sufficient). The transmission of the syl-
labic context required 6 bits/syllable for accent and stress
parameters, and 2 bytes/syllable for pitch parameters. The first
Legendre parameter a0 represents the mean of the contour
since φ0 = 1. Therefore a0 does not have to be transmitted as
it can be reconstructed from the syllabic pitch parameter pi.

The bit allocation for the asynchronous syllable-context
phonetic vocoder is shown in Table V. We showed in [16] that
by using the second order DLOP instead of the third order,
parametrisation does not impact the quality of the encoded
speech. This option is shown in the table as well.

The average syllable duration, including leading, trailing
and short pause silences, was 243 ms. As both speech en-
coding and decoding processing were faster than real-time,
we consider the average syllable duration as an algorithmic
latency of 243 ms of the proposed coder. According to the
G.114, the users are “very satisfied” as long as latency does
not exceed 200 ms, and “satisfied” as long as latency does not
exceed 280 ms [18].

V. CONCLUSION

We have shown that phonetic vocoding can be extended
with syllabic prosody transmission. We have investigated how
the communicability requirement for speech coding affects the
design and implementation of a coder that is based on cascaded
ASR and TTS. We have thus studied the incremental versions
of both modules, which leads to synchronisation issues of
phonetic and syllabic information transmission.

We found that both incremental synchronous modules per-
formed worse than their asynchronous versions. Synchronous
incremental speech decoding (re-synthesis), performed worse
than asynchronous decoding. This is because inter-syllable
context, that was beyond transmitted information in the syn-
chronous system, but still recovered from phonetic informa-
tion in the asynchronous system, seems to be important for
smoothed speech re-synthesis. We found that synchronous in-
cremental speech encoding also performed significantly worse
than the asynchronous one in terms of intelligibility and speech
quality degradation.

Our experiments confirmed that the asynchronous syllable-
context phonetic vocoder that combined both asynchronous
A-SOD and A-PDEC systems achieved the best overall intelli-
gibility and speech quality. We believe that it may be related to
the fact that human speech communication is asynchronous as
well. Our results support findings that syllable-rate information
is less synchronised to phoneme-rate information, as observed
in infant and adult-oriented speech [50]. We trust that the pre-
sented speech coding framework could partially contribute to
better understanding of hierarchical phase-nesting of auditory
cortical oscillations by allowing further simulations.

According to the evaluation of the proposed speech coder,
we can conclude that it is (i) effective in terms of very low bit
rates, and (ii) incremental encoding speech with an acceptable
communication delay. The codec uses an old-fashioned ASR
front-end; its reasonably good achieved performance may
provide us some proof of usability of the proposed architecture
for incremental low bit rate speech coding. We also evaluated
syllabic prosody packaging/transmission within a full speech
codec experimental setup, and confirmed its usability. Quanti-
zation was speaker-dependent in this work; we currently work
on speaker-independent quantization schemes. Developing a
more robust and language independent phonetic vocoder is
also one aspect of our future work.

The codec is prototyped in C++, and demonstrated by the
recordings included with this submission3. We plan to make
the code open-source at https://github.com/idiap.

3http://www.idiap.ch/paper/3107
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