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Binaural Reproduction of Finite Difference

Simulations using Spherical Array Processing
Jonathan Sheaffer, Maarten van Walstijn, Boaz Rafaely, Senior Member, IEEE, and Konrad Kowalczyk

Abstract—Due to its efficiency and simplicity, the finite dif-
ference time domain method is becoming a popular choice
for solving wideband, transient problems in various fields of
acoustics. So far, the issue of extracting a binaural response from
finite difference simulations has only been discussed in the context
of embedding a listener geometry in the grid. In this paper we
propose and study a method for binaural response rendering
based on a spatial decomposition of the sound field. The finite
difference grid is locally sampled using a volumetric array of
receivers, from which a plane wave density function is computed
and integrated with free-field head related transfer functions,
in the spherical harmonics domain. The volumetric array is
studied in terms of numerical robustness and spatial aliasing.
Analytic formulas that predict the performance of the array are
developed, facilitating spatial resolution analysis and numerical
binaural response analysis for a number of finite difference
schemes. Particular emphasis is placed on the effects of numerical
dispersion on array processing and on the resulting binaural
responses. Our method is compared to a binaural simulation
based on the image method. Results indicate good spatial and
temporal agreement between the two methods.

Index Terms—FDTD, simulation, finite difference methods,
room acoustics, binaural processing, microphone arrays, sound
reproduction

I. INTRODUCTION

W ITH the growing availability of computing resources

and recent advances in parallel processing, the Finite

Difference Time Domain (FDTD) method is becoming a

feasible choice for the simulation of room acoustics [1],

environmental acoustics [2] and musical acoustics [3]. Ap-

proximating a solution to the wave equation in the discrete

space/time domain, the FDTD method is advantageous for

solving transient, wave dominated and broadband problems,

many of which may benefit from auralization [4]. In the FDTD

method, auralizations can be created by computing a binaural

output from a grid excited by an audio signal, or by computing

a binaural impulse response and convolving it with free-field

recordings at a post-processing stage. To generalize, in this

paper we shall simply refer to the binaural output of an FDTD

simulation as a binaural response. Such a binaural resonse

can be seen as a superposition of plane waves filtered by

Head Related Transfer Functions (HRTFs), representing the
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frequency and directional characteristics of the human head

(and sometimes torso). In order to render binaural responses

with FDTD simulations, the directional information - usually

in the form of plane waves - must first be extracted from the

grid variables.

One way to obtain a binaural response is by directly

embedding a geometric model of a listener in the grid, in

which case two receivers can be used, placed at the positions

of the left and right ear canals. As a rough approximation,

Murphy and Beeson [5] embedded a circular object in a 2D

finite difference model and evaluated resulting interaural time

difference (ITD) cues. This approach was further extended by

Webb and Bilbao [6], as well as by Sheaffer et al. [7] who

employed a full 3D model of a human head and, additionally,

evaluated interaural level difference (ILD) cues. In these

cases, resulting binaural cues were largely consistent with

those experienced by the human auditory system. Nonetheless,

modeling the fine geometric structure of the pinna [8], [9],

[10] requires a considerably higher grid resolution than for

modeling interaural cues. This imposes a significant com-

putational burden and may also introduce errors when non-

conformal boundary conditions are employed [11]. In addition,

when embedding a listener in the grid, the transfer functions

of the room and the head are jointly computed. Therefore,

the entire simulation needs to be repeated when computing

a sound field for different head-rotations or for personalized

HRTFs. This places a practical limitation on using the method

for applications such as motion-tracked binaural reproduction

[12].

As an alternative to embedding a listener model in the

grid, it is possible to render a binaural response by means

of direct beamforming synthesis [13], or by extracting the

plane-wave components of the soundfield [14] and spatially

integrating them with pre-measured HRTFs. While the former

approach is more computationally efficient, the latter provides

freedom to manipulate the soundfield or the HRTFs at a

post-processing stage. Both approaches have been discussed

in the general context of grid-based simulation methods, but

neither have been directly applied to FDTD as yet. Since the

FDTD method inherently involves numerical dispersion, which

is a frequency- and direction- dependent discrepancy in the

phase velocities of the propagated waves [15], it is important

to understand the role it plays in the synthesis of binaural

responses.

The topic of auralizing FDTD data has also been addressed

for loudspeaker reproduction, see e.g. [16], [17]. Of par-

ticular relevance here is a study by Southern et al. [18],

who suggested to spatially encode an FDTD sound field
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in ambisonics format using a differential receiver array and

demonstrated loudspeaker-based auralizations for 2D grids

using array orders up to 3. However, the literature on finite

difference modeling still does not offer a broadband and robust

method for directly rendering 3D binaural responses using

free-field HRTFs. In addition, the role of numerical dispersion

in binaural response simulation has yet to be established.

In this paper we address the problem of modeling bin-

aural receivers in FDTD using a plane-wave decomposition

approach. We locally sample the soundfield using a volumetric

array of receivers, which can be seen as a special case of the

spherical shell microphone array [19]. By applying a spherical

harmonics transform to the sampled data, we approximate a

plane-wave density function from which a binaural response

is computed. The contributions of this paper are as follows:

1) A method to render binaural responses from modeled

FDTD data and pre-measured HRTFs is presented (Sec.

III). A preliminary formulation of this method has

been proposed in a recent conference publication by

the authors [20]. This work is extended here through

studying numerical robustness, as well as spatial aliasing

for different FDTD design parameters (Sec. IV).

2) Analytic formulas to predict the effects of numerical

dispersion on array directivity and on the resulting

binaural response are developed and validated. Using

these formulas, we study the effects of dispersion on

spatial decomposition and evaluate the overall binaural

reproduction error in different FDTD schemes (Sec. V).

3) For completeness, the applicability of the method to

the rendering of binaural room impulse responses is

demonstrated and validated by comparison with an im-

age source model in a small rectilinear room with rigid

walls (Sec. VI).

II. SOUND FIELD REPRESENTATION

In this section, the governing physical equations in contin-

uous space and time are summarized. These form the basis of

the discrete formulations further described in Sec. III.

A. Binaural Response Model

Consider a sound field governed by the homogeneous acous-

tic wave equation,

∇2p(r, t)− 1

c2
∂2

∂t2
p(r, t) = 0, (1)

where c is the speed of sound, ∇2 is the Laplace operator and

p(r, t) is the field variable, which is here assumed to be sound

pressure. The wave equation can be described in Cartesian

coordinates, in which case r ≡ (x, y, z) ∈ R
3, or in standard

spherical coordinates, in which case r ≡ (r,Ω), where r
denotes radial distance and Ω ≡ (θ,φ) ∈ S

2 denotes direction

in terms of elevation, θ, and azimuth φ. Fundamental solutions

to (1) may have spherical symmetry; however, once waves

have propagated a sufficiently long distance, the resulting

sound field can be seen as a continuum of plane waves,

described by a plane wave density function, a(k,Ω), where

k = 2πf/c is the wavenumber, and f is the frequency. Given

a sound field composed of plane waves, a binaural response

can be synthesized by convolution with free-field HRTFs, as

follows:

pl(k) =

∫

Ω∈S2

a(k,Ω)H l(k,Ω)dΩ, (2)

where H l(k,Ω) is an HRTF catalog for the left-ear, pl(k) is

the sound pressure at the left ear, and
∫

dΩ =
∫ ∫

sin θdθdφ.

The integration in (2) involves a plane wave density function;

therefore, a method is required to estimate a(k,Ω) from the

field variables. In the following section, we propose a method

to extract a(k,Ω) from pressure signals; however, similar tech-

niques can be developed for other field variables occasionally

used in FDTD simulations, such as particle velocity or a

velocity potential.

B. Expansion in Spherical Harmonics

Assuming that a(k,Ω) is square-integrable over Ω, its

spherical Fourier transform, denoted by anm(k, r), and the

corresponding inverse transform are given by [21]

anm(k) =

∫

Ω∈S2

a(k,Ω) [Y m

n (Ω)]
∗

dΩ, (3)

a(k,Ω) =
∞
∑

n=0

n
∑

m=−n

anm(k)Y m

n (Ω), (4)

where the operator [·]∗ denotes complex conjugation. The

spherical harmonics function, Y m
n (·), is given by [21]

Y m

n (Ω) =

√

(2n+ 1)

4π

(n−m)!

(n+m)!
Pm

n (cos θ)eimφ, (5)

where n and m denote order and degree, respectively, and

Pm
n (·) is the associated Legendre function. In a similar

fashion, pnm(k, r) denotes the spherical Fourier transform of

p(k, r,Ω), which is the representation of p(r, t) in the fre-

quency domain. Since pnm(k, r) is related to anm(k) through

a radial function [22], [19], the following expression holds:

pnm(k, r) = bn(kr)

∫

Ω∈S2

a(k,Ω) [Y m

n (Ω)]
∗

dΩ

= bn(kr)anm(k), (6)

where bn(kr) is the radial function, which is given for an

open-sphere (i.e. with no scattering objects) by bn(kr) =
4πinjn(kr) [21], jn(·) is the nth order spherical Bessel

function and i =
√
−1. Accordingly, it can be shown that

the relationship between sound pressure and the plane wave

density function is

p(k, r,Ω) =
∞
∑

n=0

bn(kr)

n
∑

m=−n

anm(k)Y m

n (Ω). (7)

Once the function anm(k) is known, a binaural signal can be

rendered by employing the spherical harmonics transform of

(2), [23]:

pl(k) =

∞
∑

n=0

n
∑

m=−n

ã∗nm(k)H l

nm(k), (8)
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where

ãnm(k) = (−1)m
[

an(−m)(k)
]

∗

(9)

is the representation of a∗(k,Ω) in the spherical harmonics

(SH) domain. The transfer function for the right ear can

be computed in a similar fashion with the right ear HRTF,

Hr(k,Ω). In order to approximate a binaural response from

modeled pressure signals, one needs to solve (7) for anm(k),
which then allows using (8) to compute the sound pressure

at the ear directly in the SH domain. Performing this process

with FDTD data is discussed in detail in Sec. III.

C. Spatial Resolution

The formulation described in Sec. II-B can be seen as a

two-step process. First, the sound field is decomposed into its

plane wave components [22], followed by binaural rendering

in the SH domain [23]. Such a Plane Wave Decomposition

(PWD) process is akin to employing a maximum-directivity

beamformer whose look directions, ΩL ≡ (θL,φL), are tuned

to the directions of the arriving plane waves [22]. Accordingly,

the directivity of the beamformer controls the spatial resolution

with which the sound field is decomposed. In the SH domain,

a sound field consisting of a single plane wave incident at

Ω0 has the density function anm = [Y m
n (Ω0)]

∗

; therefore,

from (6), the directivity of an ideal PWD beamformer can be

described by

y(Ω0,ΩL) =

∞
∑

n=0

n
∑

m=−n

pnm(k, r)

bn(kr)
Y m
n (ΩL)

=

∞
∑

n=0

n
∑

m=−n

bn(kr) [Y
m
n (Ω0)]

∗

bn(kr)
Y m
n (ΩL)

= δ(cos θL − cos θ0)δ(φL − φ0), (10)

where y(Ω0,ΩL) is the beamformer’s output. If (10) is trun-

cated at some finite order N , then it follows from the spherical

harmonics addition theorem and the Christoffel summation

formula that (10) reduces to

y(Ω0,ΩL) =
N + 1

4π(cosΘ− 1)
[PN+1(cosΘ)− PN (cosΘ)] ,

(11)

where Θ is the angle between Ω0 and ΩL. These expressions

are the basis of the numerical directivity formulations further

developed in Sec. V-B.

III. NUMERICAL FORMULATION

In this section, a numerical formulation of binaural response

rendering that is directly applicable to FDTD is proposed.

To simulate wave propagation using the FDTD method, the

sound field is discretized on a Cartesian grid such that

(x, y, z, t) → [dX, fX, gX, uT ], where u and [d, f, g] are

the index positions in discrete time and space, respectively,

and X and T are the spatial and temporal sample periods.

Correspondingly, the wave equation, (1), can be modeled as

[1]

[δ2t − λ2(δ2x + δ2y + δ2z + C1δ
2
xδ

2
y+

C1δ
2
xδ

2
z + C1δ

2
yδ

2
z + C2δ

2
xδ

2
yδ

2
z)]p

∣

∣

u

d,f,g
= 0, (12)

with δ2D denoting a second-order finite difference operator over

the dimension D; for example,

δ2xp
∣

∣

u

d,f,g
≡ p

∣

∣

u

d+1,f,g
− 2p

∣

∣

u

d,f,g
+ p

∣

∣

u

d−1,f,g
. (13)

A detailed discussion on finite difference operators can be

found in recent literature [3]. The Courant number, λ = cT/X ,

and constants C1 and C2, are chosen according to the desired

finite difference scheme, see e.g. Table I in [1]. Consider now

signals captured at Q grid nodes that are arbitrarily distributed

around some point, each having a radial distance, rq = r̃qX ,

and angle, Ωq ≡ (θq,φq), with respect to that point; r̃q is

measured in nodes and the spatial period X is here employed

as a normalization constant. The pressure at each of the

receivers is captured and transformed to the frequency domain,

resulting in a frequency-dependent vector,

p = [p1(k) , p2(k) , · · · , pQ(k)]
T , (14)

where (·)T denotes transposition. Following (7), the pressure

at each receiving node can be approximated by [19]

p(k, r̃q,Ωq) ≈

N
∑

n=0

n
∑

m=−n

anm(k)bn(kr̃qX)Y m
n (Ωq), (15)

with 1 ≤ q ≤ Q. The approximation becomes an equality as

N → ∞ or if the sound field is known to be order-limited

at some finite order N . This relationship can be expressed in

matrix form as follows:

p = Banm, (16)

where anm is a (N + 1)2 × 1 vector representing the plane

wave coefficients of the sound field,

anm =
[

a00, a1(−1), a10, a11, . . . , aNN

]T
, (17)

and the Q× (N + 1)2 matrix B is given by

BT =











b0(kr̃1X)Y 0
0 (Ω1) · · · b0(kr̃QX)Y 0

0 (ΩQ)
b1(kr̃1X)Y −1

1 (Ω1) · · · b1(kr̃QX)Y −1
1 (ΩQ)

...
. . .

...

bN (kr̃1X)Y N
N (Ω1) · · · bN (kr̃QX)Y N

N (ΩQ)











.

(18)

The plane wave density function can be approximated from

the pressure signals by

anm(k) ≈

Q
∑

q=1

cqnm(k)p(k, r̃q,Ωq), (19)

where cqnm are quadrature coefficients transforming sound

pressure into a plane wave density function. If the sound field

is sampled such that Q ≥ (N + 1)2, where N is the highest

SH order to be decomposed, then (16) has a solution in a

least-squares sense [19]. The PWD can then be approximated

numerically as follows:

anm ≈ Cp = B†p, (20)

where C = B† is a (N + 1)2 × Q matrix holding the

coefficients cqnm on row q and column n2 + n+m+ 1. The

matrix B† = (BHB)−1BH is the Moore-Penrose pseudoin-

verse of B, and (·)H denotes the conjugate transpose. All
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matrices are frequency dependent. The notion of employing

quadrature coefficients to perform a numerical PWD, and

hence the definition of the matrix C, are here introduced for

mathematical convenience and shall be further referred to in

Sec. V-B.

An important point is that the magnitude of the radial

function, bn(kr̃X), vanishes as (kr̃X) → 0 for n > 0. This,

in turn, has a direct effect on the numerical robustness of

the system. To ensure that B is well-conditioned, we opt

to regularize the problem by employing soft-limited radial

filters, which have been shown to be nearly free of spatial

and temporal artifacts [24], [25]. In this case it is possible to

construct a regularized matrix B̊ by substituting (21) into (18).

With some notational changes, the modified radial functions

are given as follows [24]:

b̊n(kr̃X) =
injn(kr̃X)

2αΓ(kr̃X)|injn(kr̃X)|
, (21)

where α = 10(∆/20), ∆ is the total allowable at-

tenuation of bn(kr̃X) in decibels and Γ(kr̃X) =
arctan(1/(8α|injn(kr̃X)|)). In practice, such regularization

trades off numerical robustness with spatial resolution, as it

attenuates high-order SH components.

IV. ARRAY DESIGN AND ANALYSIS

Some of the specific properties of the array, namely the

total number of receivers and their spatial distribution, have

a direct effect on the accuracy of PWD and, hence, on

the resulting binaural signals. The array processing literature

portrays a wide range of spatial sampling schemes, as well as

array configurations, which describe the types of sensors and

properties of the array surfaces [26]. One array configuration

particularly relevant to this study is the spherical shell array

[19], in which sound pressure is sampled within a volume

confined by two concentric spheres. Using this type of array,

sampling can be performed using omnidirectional (pressure)

sensors in an open-sphere configuration, while avoiding ro-

bustness issues associated with the zeros of the open-sphere

radial functions [19]. The spherical shell array also provides

significant design freedom, as receiver positions can depend

on both angle and radius and do not need to conform to a

pre-determined sampling scheme. In the context of FDTD

modeling, this has the convenience of allowing one to place

receivers directly at grid nodes, thus avoiding the need to

perform spatial interpolation.

In the original spherical shell design, a genetic algorithm

was employed for minimizing the number of required spatial

samples [19]. Unlike real microphone arrays, such mini-

mization is not critical in a numerical model, as the array

size is only constrained by the available system memory.

Additionally, sampling the sound field at a large number of

nodes, i.e. Q > (N+1)2, results in an over-determined system,

which is beneficial for increasing its robustness [19] and, as

will be discussed shortly, also for decreasing its associated

aliasing error. Therefore, in this study we opt to include all

spatial samples confined within a spherical volume of radius

r = r̃X , as shown in Figure 1. This array design will be

further referred to as a Full-Volume Spherical (FVS) array.

In more memory critical applications (such as processing on a

GPU), one can utilize the techniques reported in [19] to further

reduce memory requirements.

#

!"!#
$

%&'(!)( )*
$

Fig. 1. A 2D section of a volumetric spherical array. The array radius r˜ and
the FDTD spatial period, X , control the total number of the receivers in the
array.

For the specific application of binaural simulation, it is

desired that the array would perform well in broadband. The

spectral bandwidth of the associated PWD is normally limited

at low-frequencies, by numerical robustness, and at high-

frequencies, by spatial aliasing. Accordingly, it is useful to

study the effect of the parameters X and r̃ on the overall

performance of the array. These considerations are discussed

in detail in the remainder of this section.

A. Numerical Robustness

Due to the low magnitude of the spherical Bessel function

at low frequencies and high orders, the matrix B may become

ill conditioned, meaning that any errors present in p will

be significantly amplified. In an FDTD model, such errors

can be attributed to numerical dispersion, as well as to the

finite computation precision. This may appear to be counter-

intuitive, as numerical dispersion vanishes as k → 0 and

precision errors are very low to begin with. However, as will be

further demonstrated in Sec. V, the matrix inversion related to

spherical array processing may indeed give rise to such errors

when B is not appropriately regularized.

One way to evaluate numerical robustness is by computing

the condition number of the matrix B [19]. Figure 2 shows

the 2-norm condition number, κ(B), for a full volumetric

spherical array of r˜ = 10 nodes designed at N = 12, without

regularization (FVS) and a full volumetric spherical array with

regularization (FVS-R), corresponding to ∆ = 40dB. For

comparison purposes, two single sphere arrays of r = 0.1m

(equivalent to r̃ = 10 nodes at X = 0.01m) are designed

using a Lebedev sampling scheme (230 points, corresponding

approximately to N = 12) [26]. The open sphere array (OS)

is an example of a poor broadband design, as the condition

number peaks at frequencies corresponding to zeros of the

spherical Bessel function. In contrast, the rigid sphere array

(RS) avoids these artifacts, thus providing an ideal reference

in terms of robustness [26], albeit at the price of introducing

a scattering object into the sound field.
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2 4 6 8 10 12 14 16 18
10

0

10
2

10
4

10
6

(kr̃X )

κ
(B

)

OS

RS

FVS

FVS−R

Fig. 2. Condition number of a matrix B as a function of (kr̃X) shown for
a number of N = 12 arrays. OS: Open sphere, RS: Rigid sphere, FVS: Full
volumetric sphere, FVS-R: Regularized full volumetric sphere.

In all arrays, the condition number rapidly decreases as

kr approaches zero. However, with the aid of regularization,

robustness can be significantly improved, even at low fre-

quencies, as seen in the FVS-R curve. It is also worthwhile

noting that since r̃ = r/X , these results are directly scalable

to different combinations of sample periods and radii. In

summary, it can be said that the FVS design features a

numerical robustness comparable to that of a RS array, yet

at the same time maintains a sound field free of artificial

scattering.

B. Spatial Aliasing

While numerical robustness limits the bandwidth of the FVS

array at low frequencies, it may be constrained at high fre-

quencies by spatial aliasing. In non-volumetric configurations,

a spherical array is normally designed such that the highest

frequency of interest complies with kr ≤ N , where r is

the radius of the sphere [27]. The FVS array, however, does

not feature a single radius and, therefore, the contribution of

spatial aliasing needs to be evaluated numerically. Drawing

from [27], [28], we consider an array designed to operate up to

some arbitrary order N . The goal of the following analysis is

to quantify the amount of spatial aliasing that will contaminate

the array output, based on the structure of the array. For a

sound field limited to an order N , and sampled such that

Q ≥ (N + 1)2, one can expect that B†B = I, where I is

the identity matrix. Consider now the same array at some

higher sound field order, N̂ , resulting in a system characterized

by p = B̂ânm. To quantify aliasing error in the process of

computing a PWD for the equations related to N̂ , we further

define a matrix D = B†B̂, such that

D = (BHB)−1BHB̂. (22)

For the special case of N = N̂ , we expect D to reduce to

the identity matrix. Accordingly, for N < N̂ , the matrix D

will also contain the contribution of spatial aliasing in the

frequency range N < (kr̃X) ≤ N̂ . Setting N̂ to some very

high (yet finite) order, the total contribution of spatial aliasing

can then be quantified as

ǫ = ||D− I||2, (23)

where I may be a non-square (zero padded) version of the

unit matrix corresponding to the dimensions of D.

To study the effects of modifying the FDTD sample period,

the aliasing error, ǫ, was calculated at N = 12 for FVS arrays

of radii r̃ = 5 , 7 and 10 nodes. For reference, a single

RS array of radius r = 0.1m was designed using a Lebedev

scheme matching N = 12 (230 samples only on the surface of

the sphere). Figure 3 shows the aliasing errors for these four

cases.

4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0.4

0.5

0.6

(kr̃X)

ε

RS
r̃ = 5
r̃ = 7
r̃ = 10

Fig. 3. Aliasing error, ǫ, for three N = 12 FVS arrays of radius r̃ (in nodes).
The reference is a rigid sphere (RS) array, designed with an N = 12 Lebedev
scheme, r = 0.1m corresponding to r̃ = 5, 6 and 10 nodes, at X = 0.02m,
0.0143m and 0.01m, respectively.

For the RS array, the aliasing error rapidly increases with

kr, where at (kr̃X) = N the error is about ǫ = 0.5. For

the r̃ = 5 nodes FVS array, the aliasing is comparable to

that of the RS reference up to (kr̃X) ≈ N , and is slightly

lower than the RS at higher spatial frequencies. In contrast, the

r̃ = 7 and r̃ = 10 arrays feature considerably lower aliasing

even for (kr̃X) ≥ N , and remain within ǫ ≤ 0.1 even up to

(kr̃X) = 1.5N . This serves to emphasize the significance of a

substantially oversampled array, as is achieved by the concept

of the FVS array.

C. Array Size

For a volumetric spherical array defined over a rectilinear

grid, the total number of nodes is approximately (4/3)πr˜3.
Since there exists no pre-defined sampling scheme for a

volumetric array, it is useful to propose a rule of thumb,

relating the array volume to a desired order and operating

frequency. Assuming an array designed to operate ideally at

(k˜rX) = N, the total number of nodes would be:

Q≈
1

6π2

(

Nλ
fc

)3

, (24)

where fc is the normalized lower cutoff frequency of the array.

This results in a significantly oversampled array, ensuring a

robust decomposition with minimal aliasing. In order to reduce

the computational cost of array processing, the number of the

array nodes can be further reduced by confining the array from

a full volumetric shape to a shell defined by two concentric

spheres with a radii ratio of β, resulting in

Q≈
1

6π2

(

1−
β

1
3

)(

Nλ
fc

)3

. (25)
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As a rule-of-thumb, a value of β = 1 .2 is near-optimal for a

wide range of arrays [29]. For example, designing the N = 12
array described in preceding sections using this rule of thumb,

results in a reduction of over 50% in the total number of nodes,

with a relatively small increase of the condition number at k˜rx
= N, ( κ = 4 .346 compared to κ = 3 .666), but a more

significant increase in aliasing error at k˜rx = N, ( ǫ = 0 .12
compared to ǫ = 0 .043 ). In some cases, it may be possible to

further reduce the total number of array nodes down to the

lower bound of Q = ( N + 1)2, by selecting samples equally

spaced on the radial dimension [19]. This process would,

however, require numerical optimization and possibly also

performing spatial interpolation over the grid nodes.

V. THE EFFECTS OF DISPERSION

A. Mathematical Formulation

A fundamental drawback of the FDTD method is numer-

ical dispersion, which contaminates modeled signals with

frequency- and direction- dependent errors. For the general

family of compact explicit FDTD schemes used in this study,

the dispersion relation is given by [1]

sin2 (πfT ) = λ2[(sx + sy + sz)−

4C1(sxsy + sxsz + sysz) + 16C2sxsysz], (26)

with

sx = sin2
(

1
2 k̃X cosφ sin θ

)

, (27)

sy = sin2
(

1
2 k̃X sinφ sin θ

)

,

sz = sin2
(

1
2 k̃X sin θ

)

,

where k̃ ≡ k̃(θ,φ, f) is the numerical wavenumber in the

direction (θ,φ) at frequency f . It is also worthwhile noting

that if a nearly-isotropic FDTD scheme is used, then it is

possible to employ frequency warping to further reduce the

overall effects of dispersion [30]. This can be modeled using a

post-warped numerical wavenumber, k̃w = k̃c̃w/c, where c̃w
is the numerical wave velocity in either the diagonal or the

axial directions. Accordingly, in this paper such post-warping

is applied to all results involving the Interpolated Isotropic

(IISO2) finite difference scheme, with c̃w chosen in the axial

direction.

To better understand the possible effects of dispersion, we

consider a single unit amplitude plane wave propagating in

a dispersive medium and impinging on the surface of an

open sphere of radius r. At this point a continuous sphere is

assumed, providing a focus on dispersion without the effects of

spatial sampling. Since the sound field is composed of a single

plane wave, it can be said that the numerical wave propagation

velocity c̃ is homogeneous across the entire physical domain

(although it differs from its analytic counterpart, c). Accord-

ingly, it is possible to express the pressure on the surface of

the sphere as follows:

pnm(k̃) = bn(k̃r) [Y
m
n (Ω0)]

∗

, (28)

where Ω0 ≡ (θ0,φ0) is the plane wave angle of incidence

and k̃ is the numerical wavenumber which can be computed

from (26). Substituting pnm(k̃) into the numerator of (10),

the output of a PWD beamformer in a dispersive medium

becomes,

ỹ(k,ΩL) =

∞∑

n=0

n∑

m=−n

pnm(k̃, r)

bn(kr)
Y m
n (ΩL)

=

∞∑

n=0

n∑

m=−n

bn(k̃r)

bn(kr)
︸ ︷︷ ︸

[Y m
n (Ω0)]

∗

Y m
n (ΩL). (29)

Compared to (10), the under-braced term in (29) cannot cancel

out, as the radial functions for the analytic and numerical

wavenumbers are different in most cases. Accordingly, a

spatial delta function is fully recovered in a dispersive medium

only at directions and frequencies for which k̃ = k. We

therefore expect the behaviour of the PWD beamformer to

be dependent on the chosen finite difference scheme.

B. Numerical Directivity Analysis

To further study how PWD is affected by the FDTD design

parameters, it is useful to develop a closed-form representation

of the directivity of an FVS array embedded in a finite

difference grid. This mathematical formulation will be further

referred to as a Numerical Directivity Analysis (NDA). Unlike

(29), which was formulated for a continuous sphere, the output

of a sampled, order-limited PWD beamformer can be written

as follows [19]:

y(k,ΩL) =
4π

(N + 1)2

N∑

n=0

n∑

m=−n

anm(k)Y m
n (ΩL). (30)

For a plane wave propagating in an FDTD grid, the pressure

at the qth receiver can be calculated using

p(k̃, r̃q,Ωq,Ω0) = eik̃r̃qX cos(Θq), (31)

where Θq is the angle between Ωq and Ω0. Substituting (31)

into (19), the plane wave density function in an FDTD grid is

given by

anm(k̃) ≈

Q
∑

q=1

cqnm(k)ejk̃r̃qX cos(Θq), (32)

Finally, substituting anm(k̃) into (30), the following NDA

formula is obtained:

y(k̃,ΩL) =

Q
∑

q=1

eik̃r̃qX cosΘq (33)

×

4π

(N + 1)2

N∑

n=0

n∑

m=−n

cqnm(k)Y m
n (ΩL)

︸ ︷︷ ︸
wq

.

Observe that the weighting term wq in (33) is dependent on k
but independent of k̃, thus indicating that numerical dispersion

manifests itself as an input error. Also note that, unlike ideal

beampatterns, here, directivity is formulated as a function of

the beamformer’s look direction and, due to the existence of

dispersion, also as a function of k̃. Since the values of cqnm
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Fig. 4. Directivity patterns of a 12
th order array at kr̃X = N for waves incident at (a) axial and (b) side-diagonal directions. For the same array, results are

shown at the side-diagonal direction for (c) kr̃X = 4 and (d) kr = 4, with radial filter limiting of ∆ = 10dB. FDTD - finite difference simulation, NDA -
numerical directivity analysis, Continuous - closed form solution. All data are normalized for visual clarity.

are generally unknown, it is convenient to solve (33) in matrix

form. Defining a vector,

Y =
[

Y 0
0 (ΩL), Y

−1
1 (ΩL), · · · , Y

N
N (ΩL)

]T
(34)

denoting the array’s look direction, the weighting term can

be written as w = CY, where C is as defined in Sec. III.

Accordingly, (33) can be computed as follows:

y =

[

4π

(N + 1)2
B†Y

]T

p̃(k̃), (35)

where

p(k̃) =
[

eik̃r̃1X cos(Θ1), · · · , eik̃r̃qX cos(Θq)
]T

. (36)

To validate the NDA formula, an FDTD simulation was

executed using the Interpolated Wideband (IWB) scheme

(X = 0.01m) for a source situated 150 nodes (1.5m) from the

center of an FVS array of radius r̃ = 10 nodes. The simulation

was repeated for axial (Ω0 ≡ (π/2, 0)) and side-diagonal

(Ω0 ≡ (π/2,π/4)) source incidence angles. For comparison

with an ideal PWD beamformer, results were also generated

in closed form using (11). To exclude any artefacts caused

by spatial sampling, all arrays are studied below their aliasing

limit.

Figures 4(a) and 4(b) show directivity patterns for a 12th

order array at kr̃X = N . Good visual agreement between

the FDTD simulation and the NDA formula can be seen,

indicating that the effects of dispersion on directivity are

negligible at the studied frequency. This is attributed to the

high numerical robustness at kr̃X = N (see Fig. 2). For

comparison, Figure 4(c) shows results for the same array at

kr̃X = 4, where the numerical robustness is considerably

lower. It is evident that the directivity patterns of both the

FDTD and the NDA arrays no longer feature a dominant

main lobe. Since all arrays are evaluated below their aliasing

limit, differences between the NDA/FDTD results and the ideal

(continuous) beamformer can be attributed only to numerical

dispersion or to numerical precision errors. In double-precision

arithmetic, precision errors are in the order of minus hundreds

of decibels. Therefore, it can be postulated that the differences

in beampatterns are caused by amplification of numerical

dispersion, even though it is relatively low at the corresponding

frequency (f/fs = 0.065). This was verified by computing

(33) with an ideal wavenumber and comparing to the results

of (10). Figure 4(d) shows results for kr̃X = 4, with a radial

function limit of ∆ = 10dB. It can be seen that, due to

the improved robustness, the main lobe of both the FDTD

and NDA arrays point to the look direction. However, as

previously suggested, this comes at the expense of a lower

spatial resolution, which is evident in the increased width of

the beamformer’s main lobe.

C. Numerical HRTF Analysis

It is possible to further extend the NDA formula to predict

the final sound pressure at the ear. Such a procedure, herein

termed a Numerical HRTF Analysis (NHA), is useful for

investigating the effects of dispersion on binaural response

synthesis without needing to execute lengthy FDTD simula-

tions. In particular, this is beneficial for studying the spatial

effects of dispersion, in which case one needs to take samples

from a relatively large number of incident directions. Similar

to the NDA, we consider a single plane wave with a numerical

propagation wavenumber, k̃, incident at Ω0. Following (8), the

pressure at the left ear is

pl(k) =
N
∑

n=0

n
∑

m=−n

ã∗nm(k̃)H l
nm(k). (37)

Note the difference in k̃ and k for the plane wave density

and HRTF terms, respectively. Substituting (32) into (37) and

considering the SH permutation defined in (9), the pressure at

the left ear can be written as follows:

pl(k) =
N
∑

n=0

n
∑

m=−n

Q
∑

q=1

c̃qnm(k)ejk̃r̃qX cos(Θq)H l
nm(k)

=

Q
∑

q=1

ejk̃r̃qX cos(Θq)
N
∑

n=0

n
∑

m=−n

(−1)mcq
n(−m)(k)H

l
nm(k).

(38)

Defining now a vector denoting the SH coefficients for the

left-ear HRTF at wavenumber k,

hl(k) =
[

H l
00(k), H

l
1(−1)(k), · · · , H

l
NN (k)

]T

, (39)
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Eqn. (38) can be expressed in matrix form as follows:

pl(k) =
[

B†Rhl(k)
]T

p(k̃), (40)

where R is a (N + 1)2 × (N + 1)2 permutation matrix

converting cqnm(k) into c̃qnm(k) through (9).
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Fig. 5. Magnitude of modeled HRTFs as a function of normalized frequency.
RHRTF - Reduced order HRTF (reference), NHA - Numerical HRTF analysis,
FDTD - HRTF modeled in a finite difference simulation. The finite difference
scheme is IWB, fs = 34350Hz, X = 0.01m, r̃ = 10 nodes, N = 12.

Figure 5 shows the left-ear HRTF magnitude for a single

diagonally-incident wave, modeled in an FDTD simulation

with the same parameters as in Sec. V-B (dashed black line).

The simulation result is plotted against a numerical HRTF

analysis (NHA - light gray line) and against a free-field

HRTF measurement reduced to the SH order of the sound

field decomposition, N = 12 (RHRTF - dark gray line).

It can be seen that the HRTF and NHA curves are gener-

ally in agreement throughout the entire frequency spectrum,

providing experimental validation of the NHA formula. All

curves are in agreement up to f/fs = 0.3, where the RHRTF

curve begins to diverge due to the effects of dispersion, which

are the strongest in the diagonal direction for the employed

IWB scheme. For the sample rate of fs = 34350Hz this

corresponds to about 10kHz, which is considerably higher than

other objective and subjective dispersion limits reported in the

literature [1], [31]. Perceptually, the artificial spectral notches

at f/fs > 0.3 may introduce conflicting monaural cues; these

are directly related to sound localization in elevation and to

the ability to resolve front-back confusion [32].

In Figure 6, an NHA was employed to predict modeled

HRTFs at 338 incidence directions, spherically distributed

around the listener in an equi-angle distribution. Each 3D plot

shows the HRTF magnitude as a function of the incidence

direction for a single frequency. For reference, an NHA was

computed with an ideal wavenumber, k, hence ensuring that

differences between the plots can occur only due to numerical

dispersion. None of the computations employ regularization

of the matrix B. At (kr̃X) = 1, numerical robustness is

extremely poor. The radial function b1,2(1) indicates ampli-

fication of over 118dB and hence gives rise to numerical

dispersion errors, even though they are relatively low at the

corresponding normalized frequency, e.g. f/fs = 0.0159 for

the IWB scheme. Note the visual difference between the

reference and the IWB and SRL cases, showing that errors

TABLE I
HRTF REPRODUCTION ERROR (IN DECIBELS) FOR A VOLUMETRIC ARRAY

OF r̃ = 10 NODES DESIGNED ON A GRID OF X = 0.01m.

(kr̃X) 1 N/4 N/2 N 1.5N 2N 2.5N
Non-regularized

IWB 38.9 7.2 -4.3 -13.8 -7.1 -2.2 0.3
SRL 41.9 9.4 -1.7 -11.3 -4.1 -0.3 0.5
IISO 41.5 12 -9.3 -12.7 -13.3 -3.9 26.3

Regularized, ∆ = 10dB

IWB -17.5 -15.3 -19.2 -14.3 -5.1 -0.6 0.1
SRL -18.5 -14.7 -17.1 -11.9 -4.3 -0.2 0.5
IISO -17.4 -17.7 -15.3 -15.3 -7.6 -3.6 27.1

are due to dispersion. In contrast, at (kr̃X) = 6 the system is

robust and even though dispersion is considerably higher, there

is good visual agreement between IWB and the reference, as

expected.

D. Reproduction Error

To quantify the effect of dispersion on the final sound

pressure at the ear, a measure of total reproduction error can

be formulated as follows:

ǫd(k) =
||pl

− p̃l||2
||pl||2

, (41)

where || · ||2 denotes the 2-norm and

pl = [pl(k,Ω1), p
l(k,Ω2), · · · , p

l(k,ΩS)]
T (42)

denotes a frequency dependent vector of left-ear NHA pre-

dictions for S incidence directions at wavenumber k. In a

similar fashion, p̃l is constructed using NHA with a numerical

wavenumber, k̃. Table I shows the overall reproduction error,

ǫd(k), in decibels, for a number of characteristic frequencies

and schemes. For the non-regularized cases, the error decreases

up to (kr̃X) = N , due to the low robustness of the array1.

Above (kr̃X) = N , the error rises again because of numerical

dispersion, which begins to play a prominent role at high

frequencies. The contribution of spatial aliasing must be

marginal compared to dispersion (see Fig. 3), as otherwise

one would not expect such high variance in the reproduction

error between the FDTD schemes at (kr̃X) > N .

For the regularized cases, the reproduction error becomes

unacceptable only above (kr̃X) > 2N , which corresponds to

f/fs = 0.38 in Fig. 5. This suggests that with the aid of

regularization, bandwidth constraints are largely imposed by

the existence of numerical dispersion, and not by the array

structure or processing algorithms.

VI. SIMULATION STUDY

So far, results have been presented for situations in which

the sound field was assumed to be composed of a single plane

wave. While these situations are useful for systematically

studying the performance of the proposed array, they are not

representative of realistic acoustic scenarios, most of which

involve a continuum of plane waves. In a dispersive medium,

1This is equivalent to f/fs = 0.19, 0.11 and 0.15 for the IWB, SRL and
IISO schemes, respectively, since at (kr̃X) = N the frequency is f/fs =
Nλ/(2πr̃).
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(a) REF, (kr̃X) = 1 (b) IWB, (kr̃X) = 1 (c) SRL, (kr̃X) = 1 (d) REF, (kr̃X) = 6 (e) IWB, (kr̃X) = 6

Fig. 6. Numerical HRTF analysis of 338 incidence directions at different frequencies and finite difference schemes. (a) the reference condition (REF) that has an
ideal propagation wavenumber for (k˜rX) = 1 , (b) the interpolated wideband scheme (IWB) for (k˜rX) = 1 , (c) the standard rectilinear scheme (SRL) for
(krX) = 1 , (d) the reference condition (REF) for (k˜rX) = 6 , and (e) the interpolated wideband scheme (IWB) for (k˜rX) = 6 . All volumetric arrays have
a radius of r˜ = 1 0 nodes and are decomposed at N= 1 2 .

each of these waves will propagate in accordance with their

direction- and frequency- dependent phase velocities and will,

therefore, have a different contribution to the overall input

error at the array. Thus, for completeness, it is useful to

perform a simulation study for a sound field that is composed

of a number of reflections.

A domain of 3×3×3m was discretized in a grid resolution

of X = 10mm, corresponding to a total of 27× 106 nodes. A

sound source was positioned at a radial distance of 150 nodes

(1.5m) from a FVS array of r̃ = 10 nodes. An IWB finite

difference scheme was employed, in which the walls were

modeled using frequency-independent boundary conditions, in

accordance with [1], with a boundary impedance matching

a wall absorption coefficient of α = 0.1. The FDTD model

was excited using a physically-constrained source based on an

impulse response of a 32nd order maximally-flat lowpass filter

[33], with a cutoff frequency of f/fs = 0.186 (corresponding

to 6300Hz) at the 2% dispersion error limit for the IWB

scheme [1].

Additionally, the plane wave density function of a similar

simulation setup was computed using the image source method

(ISM) [34], [35]. For a simple rectilinear room with reflective

boundaries, the ISM approaches an exact solution to the wave

equation, and as such, serves as an ideal basis for comparison.

Further, as directional information is inherently available in the

ISM, it is straightforward to compute a plane wave density

function without the need to explicitly simulate an array in the

room [35], [36]. This avoids any errors related to array

processing, and is the main reason for choosing the ISM here as

a reference model. Since the array processing method described

in this paper does not modify the core FDTD algorithm, its

applicability to more complex acoustic scenarios can be

directly inferred from the validation results.

Room impulse responses from both simulations were com-

puted for the direct wave and for first order reflections of

the sound field. In the case of the FDTD simulation, this

was accomplished by choosing a simulation length such that

only the direct wave and first-order reflections are included

in the obtained data. Figure 7 shows the results of a PWD

for FDTD and ISM sound fields at kr̃X = N = 12. In both

cases, the directions of the direct component and the six first-

order reflections of the sound field are clearly visible. Some

additional scattered energy can be seen in the PWD of the

FDTD model. This is attributed to the early part of second-

order reflections, which could not be entirely windowed-

out from the modeled FDTD signals, but are otherwise not

computed by the ISM model.

Fig. 7. Magnitude of the plane wave density function, a(k,Ω), at kr̃X = N ,
shown for a rectangular room solved with (a) the image source method (ISM)
and (b) the FDTD method. The true direction of the modeled reflections
are marked with a ”+” symbol. For readibility, the angle axes are shown in
degrees.

Next, a Binaural Room Impulse Response (BRIR) was com-

puted from the resulting plane wave densities, by employing

(37). The ISM-based BRIR was additionally convolved with

the FDTD excitation signal, to enable a clear comparison

between the two methods. Figure 8 shows the reference ISM

BRIR (solid line) against the modeled FDTD BRIR (dashed

line) for incidence angles of Ω0 = (π/2, 0) (upper pane) and

Ω0 = (π/2,π/4) (lower pane). For axial incidence, the two

curves are in complete agreement, whereas for φ = π/4 some

small discrepancies are evident. These discrepancies may be

attributed to the angle-dependency of the deviation between

the Discrete Green’s Function [37], which the source signal is

effectively convolved with for the FDTD result, and its theo-

retical counterpart, with which it is convolved when employing

the ISM. For the direct component of the sound field, this was

verified by visually inspecting the raw (unprocessed) signals

at the receivers, which also did not feature the small ripple

evident in the ISM results. This phenomenon can largely be

considered as a source excitation issue and, as such, is not

a measure of the array processing. Other deviations could

be related to sub-optimal processing of the array input data

at (kr̃X) ≪ N (see Fig. 4c), which effectively impacts the

directivity pattern of the underlying PWD beamformer.
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Fig. 8. Left-ear Binaural Room Impulse Responses (BRIRs) for the ISM
simulation (solid line) and FDTD simulation (dashed line), shown for (a)
Ω0 = ( π/2, 0) and (b) Ω0 = ( π/2, π / 4). Responses are normalized for
visual clarity. Note that the peak of the pulses are delayed compared to an ideal
arrival time corresponding to a distance of 1.5m. This is due to the shape of the
excitation signal itself, in which the peak of the pulse is time-shifted due to
causal FIR filtering [33], and to additional delays inherent in the HRTFs with
which the signals are filtered. To enable a clear visual comparison, results of
the ISM were convolved with the same excitation signal used in the FDTD
simulation.

VII. CONCLUSION

In this paper, a method for rendering a binaural response

from an FDTD simulation was presented. A volumetric spher-

ical array was employed for performing a PWD, followed

by binaural synthesis in the SH domain. While the spherical

array paradigm has been shown to be a suitable choice for

performing a PWD, obtaining plane-wave components from an

FDTD grid could also be accomplished by other means, such

as virtual speaker arrays [14], convolution with directional

derivatives [38], or by employing the Kirchhoff-Helmholtz

integral equation [39]. Many of such methods would benefit

from higher-order spatial interpolation on the pressure grid, but

the literature is unclear yet as to how this would help to address

the issue of proper regularization in the subsequent processing,

which invariably is one of the key challenges in performing a

broadband PWD. As such, a comprehensive study of different

methods for applying a PWD to an FDTD grid remains an

interesting topic for future research.

The volumetric array proposed in this paper can be seen

as a special case of a spherical shell array [19], in which the

entire array volume is utilized. Tools for analyzing such arrays

in terms of robustness, aliasing and numerical dispersion

were introduced and validated. In the current study, the SH

decomposition order was limited to N = 12, although, in

theory, it is only constrained by spatial aliasing and the desired

frequency bandwidth. In practice, this bandwidth will also be

determined by the amount of dispersion that is numerically or

perceptually acceptable.

The method proposed in this paper operates in the SH

domain. It can therefore potentially pave the way to modeling

other types of receivers, e.g. directional microphones [38],

through spherical beamforming techniques. This also has the

added benefit of making sound field transformations more

convenient. For example, to render signals for motion-tracked

binaural auralizations, it is required to compute the binaural

response at a large number of head rotations. When the plane-

wave density function is known, this can be simply achieved

by multiplying with a Wigner-D function [40] in the spherical

harmonics domain.

For loudspeaker-based auralization, the plane wave density

function can be used to render signals for sound reproduction

using higher order ambisonics and wavefield synthesis. Con-

version of the plane-wave density function into 3D ambisonic

signals only requires a translation of nomenclature. This can

be accomplished simply by multiplication of anm with a

transformation matrix, converting coefficients of the complex

spherical harmonics into those of real spherical harmonics, as

typically used in the ambisonics literature. If a 2D representa-

tion is desired, then conversion into cylindrical harmonics is

required (see, for example [14]). Obtaining signals for wave-

field synthesis can also be accomplished through Rayleigh’s

first integral. However, this may require a projection of the

sound field onto the horizontal plane, as formulated in [41].

Examples of binaural auralizations generated using the

method presented in this paper are available online:

http://www.ee.bgu.ac.il/∼sheaffer/binaural.html
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