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Abstract—This paper proposes an efficient parameterization
of the Room Transfer Function (RTF). Typically, the RTF
rapidly varies with varying source and receiver positions,hence
requires an impractical number of point to point measurements
to characterize a given room. Therefore, we derive a novel
RTF parameterization that is robust to both receiver and
source variations with the following salient features: (i) The
parameterization is given in terms of a modal expansion of3D
basis functions. (ii) The aforementioned modal expansion can be
truncated at a finite number of modes given that the source and
receiver locations are from two sizeable spatial regions, which are
arbitrarily distributed. (iii) The parameter weights/coe fficients
are independent of the source/receiver positions. Therefore, a
finite set of coefficients is shown to be capable of accurately
calculating the RTF between any two arbitrary points from a pre-
defined spatial region where the source(s) lie and a pre-defined
spatial region where the receiver(s) lie. A practical method
to measure the RTF coefficients is also provided, which only
requires a single microphone unit and a single loudspeaker unit,
given that the room characteristics remain stationary overtime.
The accuracy of the above parameterization is verified using
appropriate simulation examples.

I. I NTRODUCTION

The room transfer function (RTF), demonstrates the col-
lective effect of multipath propagation of sound between a
source and a receiver within a given room enclosure. Accurate
modeling of the RTF is useful in soundfield simulators as
well as many other applications such as sound reproduction,
soundfield equalization, echo cancellation, and speech dere-
verberation. These applications use appropriate RTF decon-
volution methods to cancel the effects of room reflections
(reverberation), and therefore, are highly dependent on the
accuracy of the RTF model.

The theoretical solution to the RTF based on the Green’s
function [1] was derived assuming a strict rectangular room
geometry. It can only be applied to highly idealised cases with
reasonable effort. The rooms with which we are concerned in
our daily life however are more or less irregular in shape and
the formulation of irregular boundary conditions will require
extensive numerical calculations. For this reason, the immedi-
ate application of the classical model to practical problems in
room acoustics is limited.

In practice, RTFs are usually estimated as FIR filters, or as
parametric equations based on the geometrical properties of
the room. In the FIR filter approach, the RTF is assumed to
behave as a linear time-invariant system, and then modeled
as either an all-zero, all-pole, pole-zero [2] or a common
pole-zero [3] system. The coefficients of these models are
estimated as variable parameters of the RTF, and since the

RTF is extremely sensitive to source and receiver variations,
the coefficients too experience a similar sensitivity [3]. This
problem not only requires repetitive parameter calculations
with varying source/receiver positions, but also demands for
adaptive inverse-filters with cumbersome processing algo-
rithms during equalization [4], [5]. Furthermore, in practice,
the time invariant aspect of room acoustics is far from reality
[5], which remains as a fundamental weakness of the time-
invariant filter model.

In contrast, the geometric room acoustics model, heavily
relies on the room geometry and ray optic methods borrowed
from computer graphics. The first geometric model for room
reverberation was introduced by Allen and Berkley [6]. This
work became the basis for many subsequent geometric models
and is based on the notion that reverberation can be represented
as the effect of an infinite number of image sources that are
created by reflecting the true acoustic source in room walls.A
faster algorithm to evaluate the image source method for single
source-multiple receiver applications was later introduced in
[7] using the multipole expansion. Other common geometric
models include ray tracing [8], beam tracing [9], acoustic
radiosity [10], and Finite Difference Time Domain (FDTD)
[11], [12] methods. Even though these techniques have certain
similarities, their theoretical foundations are often unique for
each method. For example, the ray tracing method assumes
high operating frequencies while the FDTD method assumes
a low-mid frequency bandwidth [11]1. Therefore, their appli-
cability to a general room is quite limited. More generalized
geometric models incorporating multiple specialized models
were recently introduced in [13]–[15]. However, due to the
lack of preciseness in reflection methods, and the vast variation
of room geometries available, an exact estimation of the RTF
based on geometrical properties remain unresolved.

Due to the inefficiency of existing RTF models, alternative
equalization techniques tend to measure the RTF at a finite set
of points which are later incorporated to the sound processing
algorithm directly [16]–[18]. However, as explained earlier,
even a small-scale variation in source/receiver positionsresults
in a drastic variation in the RTF [19], and therefore, the above
method only gives accurate results at the design points, while
the performance degradation present elsewhere is too signif-
icant. Additional limitations are caused by the inaccuracies
involved with the point-point RTF measurements. Recent work
on improving the RTF measurement via modified source and

1At high frequencies, the computational cost is too high due to the increased
number of points (small wavelengths).
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receiver directivity patterns include [20]–[23].
A complete equalization solution that is robust to receiver

point variations was first proposed in [24] for2D applications,
which exploits a novel RTF model based on the harmonic
solution to the wave equation. This model parameterizes the
RTF between a fixed source and any arbitrary point within
a source-free receiver region in terms of a weighted sum of
2D basis functions, while the weights need to be separately
measured. Thus, the successful extraction of a finite set of
parameter weights/coefficients enables RTF characterization
between a given source location and any arbitrary point within
a given receiver region. However, these coefficients remain
unique to the source location of interest, and therefore, the
slightest variation in source positioning requires a new set of
RTF parameters to be measured.

In this paper, we introduce an efficient RTF parameterization
in 3D, that is robust to both receiver and source variations so
that the extraction of a finite set of coefficients is sufficient
to characterize an entire room enclosure of interest. In other
words, we derive a3D model, which characterizes the RTF
between any two arbitrary points from a primary spatial region
where the source(s) lie and a secondary spatial region where
the receiver(s) lie. More importantly, we impose no restrictions
on the geometrical configuration of the source and receiver
regions and as a result, the proposed parameterization is valid
for any two arbitrary points from the given room. Following
[24], this parameterization is based on the harmonic solution
to the wave equation, and therefore, is derived in terms of
a weighted sum of3D basis functions. Furthermore, it only
requires a minimum of(Ns + 1)2(Nr + 1)2 coefficients to
characterize the RTF over anN th

s order source region and
an N th

r order receiver region2. We also provide a practical
method to extract the aforementioned coefficients, which only
requires RTF measurements over a finite set of source-receiver
combinations and associated numerical processing. Given the
room characteristics remain stationary over time, these mea-
surements can be obtained using a single microphone unit and
a single loudspeaker unit.

The paper is structured as follows. In Sec. II, we first
decompose the room response into direct and reverberant com-
ponents where the former is known and the latter is unknown.
The unknown reverberant component is then parameterized in
terms of a weighted sum of3D basis functions. In Sec III,
we describe a robust method to obtain the parameter weights,
which only requires a finite set of RTF measurements. Finally,
in Sec. IV, we demonstrate the accuracy of the proposed
parameterization, by comparing it with a simulated room based
on the image source model. This section also presents an error
analysis performed over a broadband frequency range.

II. PARAMETERIZATION OF THE ROOM TRANSFER

FUNCTION

A. Problem formulation

The main objective of this paper is to have an efficient
parameterization for the RTF such that it is valid for variations

2Section II-B discusses how the order of a spatial soundfield is determined
over a known region and a given frequency.

in the receiver position as well as in the source position.
Therefore, we first define a continuous spatial region where
the source(s) lie(source region)and a continuous spatial
region where the receiver(s) lie(receiver region), and the new
parameterization is expected to deliver the RTF between any
two arbitrary points from these two regions.

For computational simplicity, we assume the receiver region
namedη to be a sphere of radiusRr centered at the originO
and the source region namedζ to be another sphere of radius
Rs centered atOs (See Fig. 1). In spherical coordinates, the
receiver point withinη is denoted byx = (x, θx, φx) and the
source location withinζ is denoted byy = (y, θy, φy) where
y = y(s)+Rsr with y(s) = (y(s), θ

(s)
y , φ

(s)
y ) representing the

same source location with respect toOs andRsr representing
the vector connectingO to Os.

In a reverberant environment, the acoustic transfer function
betweenx andy can be decomposed in to a direct path field
and a reflected field as

H(x,y, k) = Hdir(x,y, k) +Hrvb(x,y, k) (1)

wherek = 2πf/c is the wave number,f is the frequency andc
is the speed of sound propagation. The direct field component
due to a unit amplitude point source aty is independent of
the room characteristics and can be given in terms of [25]

Hdir(x,y, k) =
eik‖x−y‖

4π ‖x− y‖
. (2)

However, Hrvb(x,y, k), the corresponding reflected field
incident atη is unknown, and completely dependent on the
room characteristics. Our aim is to parameterize this unknown
field so that a finite set of weights/coefficients unique to the
room will be capable of predictingHrvb(x,y, k) between any
two points fromζ andη.

We base our parameterization approach on the fact that the
unknownHrvb(x,y, k) incident onη is caused by the outward
propagating wavefield fromζ. Since both these incoming and
outgoing soundfields can be represented in terms of modal
decompositions3, Hrvb(x,y, k) could also be represented in
terms of a similar decomposition. The coefficients of such a
decomposition will then enable the user to predict the RTF
between two arbitrary points fromζ and η. Following the
above concept, we first decompose the reverberant field atη
due to an arbitrary outgoing field fromζ and then derive an
exact decomposition for the room transfer function.

B. Modal decomposition of an arbitrary reverberant field

Consider an arbitrary outgoing field fromζ, which can be
represented in terms of a spherical harmonic decomposition4

with respect toOs as

Sout(z
(s), k) =

Ns∑

n=0

n∑

m=−n

β(s)
nm(k)hn(kz

(s))Ynm(θ(s)z , φ(s)
z )

(3)

3A decomposition using the basis functions of the solution tothe wave
equation.

4Other coordinate systems could be used instead of sphericalcoordinates,
resulting in a different set of basis functions.
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wherez(s) = (z(s), θ
(s)
z , φ

(s)
z ) denotes the observation point

outside ofζ, β(s)
nm(k) denotes the coefficients of the outgoing

soundfield caused by the source distribution inζ, Ynm(θ, φ)
denotes the spherical harmonic of ordern and degreem,
hn(·) represents the spherical Hankel function of the first
kind with ordern andNs = ⌈keRs/2⌉ denotes the exterior
field truncation limit for a source distribution with its furthest
source located at a distance ofRs [26]5.

If the resulting reflected field atη due to each unit amplitude
outgoing mode of (3) can be extracted, the total reflected
field caused by an arbitrary outgoing field can be successfully
predicted. To demonstrate the above statement, let’s consider
a unit amplitude outgoing wave of ordern′ and modem′

β(s)
nm(k) =

{
1, n = n′ andm = m′

0, otherwise,
(4)

producing

Sout(z
(s), k) = hn′(kz(s))Yn′m′(θ(s)z , φ(s)

z ). (5)

For this particular outgoing source field, there will be a
resulting reflected field present at the receiver regionη. Ir-
respective of the geometrical configuration ofζ and η, the
mirror images of the sources withinζ are always outside of
η and therefore, the aforementioned reflected field will be a
source free incoming field. Such a soundfield can be given in
terms of a harmonic decomposition of the form

Rn′m′(x, k) =
Nr∑

v=0

v∑

µ=−v

αn′m′

vµ (k)jv(kx)Yvµ(θx, φx) (6)

where αn′m′

vµ (k) denotes the soundfield coefficients of the
reverberant field incident atη caused by an unit amplituden′th

order andm′th mode outgoing soundfield atζ, jn(·) represents
the spherical Bessel function of ordern andNr = ⌈keRr/2⌉
denotes the interior field truncation limit [26]6. If αn′m′

vµ (k) of
(6) can be recorded up to orderNr for each unit amplitude
outgoing mode fromζ, the reverberant field atη due to an
arbitrary outgoing field atζ can be derived using (3), (5) and
(6) as

Prvb(x, k) =
Ns∑

n=0

n∑

m=−n

Nr∑

v=0

v∑

µ=−v

β(s)
nm(k)αnm

vµ (k)jv(kx)

Yvµ(θx, φx).

(7)

5The truncation of a spherical harmonic based soundfield decomposition
was originally derived based on the high pass behavior of Bessel functions.
More precisely, Bessel functions of the formjn(x) at x ≤ kr tend to be
close to zero for orders aboveN = ker/2, and play an insignificant role
in the infinite summation. In case the reader is confused by the absence of
Bessel functions in (3), please note that the modal coefficientsβ(s)

nm(k) of any
arbitrary outgoing soundfield can be represented in terms ofBessel functions
[26].

6Truncation is derived following the same principle discussed earlier.

C. Modal decomposition of the room transfer function

Now consider a unit amplitude point source aty(s) ∈ ζ,
producing outgoing soundfield coefficientsβ(s)

nm(k) of the form
[25]

β(s)
nm(k) = ikjn(ky

(s))Y ∗
nm(θ(s)y , φ(s)

y ). (8)

The corresponding reflected field atη describes the unknown
reverberant componentHrvb(x,y, k) of (1). This can be de-
rived using (7) and (8) as

Hrvb(x,y, k) = ik
Ns∑

n=0

n∑

m=−n

Nr∑

v=0

v∑

µ=−v

αnm
vµ (k)jn(ky

(s))jv(kx)

Y ∗
nm(θ(s)y , φ(s)

y )Yvµ(θx, φx).
(9)

Therefore, the total acoustic transfer function between any two
arbitrary points from the source regionζ and the receiver
region η can be given in terms of the direct field (2) and
reflected field (9) components as

H(x,y, k) =
eik‖x−y‖

4π ‖x− y‖
+ ik

Ns∑

n=0

n∑

m=−n

Nr∑

v=0

v∑

µ=−v

αnm
vµ (k)

jn(ky
(s))jv(kx)Y

∗
nm(θ(s)y , φ(s)

y )Yvµ(θx, φx).
(10)

Comments:

• Based on the above result (10), the RTF can be
parameterized in terms of a spherical harmonic
decomposition. Ifαnm

vµ (k), the weights/coefficients of
this parameterization can be accurately captured, they
can be used to derive the RTF between any two arbitrary
points from a continuous spatial region where the
source(s) lie and a continuous spatial region where the
receiver(s) lie.

• To generalize the RTF over anN th
s order source regionζ,

whereNs = kmaxeRs/2 and anN th
r order receiver region

η, whereNr = kmaxeRr/2, the above parameterization
requires a minimum of(Nr + 1)2(Ns + 1)2 unique
coefficients of the formαnm

vµ (k). For example, when
the maximum frequency of interest isfmax1 kHz and
the source and receiver regions of interest are both
spheres of radius0.2 m with Ns = Nr = 5, a fixed
number of 1296 unique coefficients are required to
calculate the RTF between any two arbitrary points
x and y from η and ζ respectively. In broadband
applications, the total coefficient count will increase with
each frequency samplefo requiring an additional set of
(koeRr/2 + 1)2(koeRs/2 + 1)2 coefficients.

• Due to the decomposition of direct and reverberant
components, this parameterization supports any
configuration of η and ζ. As shown in Fig. 1 they
can be either completely separated from each other
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(a) Non overlapping

(b) Concentric (c) Overlapping

Fig. 1. Different configurations of the source regionζ and the receiver region
η

with ‖Rsr‖ > (Rr + Rs) (Fig. 1(a)), concentric with
‖Rsr‖ = 0 (Fig. 1(b)) or overlapping on each other
with ‖Rsr‖ < (Rr + Rs) (Fig. 1(c)). Therefore, (10)
can be used to either partially or fully characterize the
room according to user requirements.

• Taking all of the above properties into consideration, the
proposed parameterization can be interpreted as a modal
based solution to the wave equation in arbitrary room
environments. Compared to the classical mode solution
to the RTF defined for rectangular rooms [1] , this
parameterization has three main advantages. First, this
method is applicable to any arbitrary room geometry.
Second, practical room environments (having furniture
etc.) with irregular boundary conditions are extremely
difficult to be characterized by the classical solution,
whereas the new method is valid for any arbitrary acoustic
environment. Third, unlike the total mode count (4π

3 V ( f
c
)

whereV denotes room volume) of the classical model,
that of the new model ((Nr + 1)2(Ns + 1)2 ) can be
reduced by defining smallerRs andRI values to improve
the computational efficiency. (This property is specially
advantageous at the Schroeder frequency [27] where the
classical model will require a very large mode count
resulting in a Gaussian distribution.

III. E STIMATION OF ROOM TRANSFER FUNCTION

COEFFICIENTS

In this section, we present the procedure of estimating the
RTF coefficientsαnm

vµ (k) of (10) for a pre-defined source
region and a pre-defined receiver region. As explained earlier,
αnm
vµ (k) represents thevth order andµth mode reverberant field

coefficient withinη caused by an unit amplitudenth order and
mth mode outgoing wavefront originated atζ (5). For each
outgoing mode fromζ, there will be (Nr + 1)2 number of
unique coefficients describing the reverberant field incident at
η, and to generalize anN th

s order source region, a total number
of at least(Ns+1)2(Nr+1)2 coefficients needs to be extracted.

It is important to note that, in practice, the following method
does not require the physical production of unit amplitude out-
going modes fromζ and associated room response recordings,
but only requires the acquisition of room response between a
set of receivers distributed withinη and a set of loudspeakers
distributed withinζ, each transmitting a unit amplitude signal.
Furthermore, given the room characteristics remain stationary
over time, these measurements can be obtained using a single
microphone unit and a single loudspeaker unit. However, for
the purpose of deriving this result, we will discuss a method
to generate unit amplitude modal wavefronts propagating
outward from the source region, and a soundfield recording
technique to extract the corresponding room responses. The-
oretically, these processes are required to be repeated fora
minimum of (Ns + 1)2 number of different cases, but their
physical implementation will be proven to be needless in
sec. III-B1.

A. Synthesis of a unit amplitude outgoing mode originated
from the source region

Let us first consider the problem of producing a unit ampli-
tude outgoing mode fromζ with respect toOs (5). In order to
account for all the significant outgoing modes fromζ, n′ and
m′ from (5) has to be varied from0 to Ns and from−n to n
respectively. This results in a total number of(Ns+1)2 distinct
soundfield production cases and corresponding weight vectors.

For each case, we propose a mode matching approach where
the modal coefficients of the desired outgoing field (4) are
matched with those of the outgoing wavefield produced by an
array of loudspeakers distributed withinζ. ConsiderL number
of point sources arbitrarily distributed withinζ, where theℓth

source(ℓ = 1 · · ·L) is located aty(s)
ℓ = (y

(s)
ℓ , θ

(s)
yℓ , φ

(s)
yℓ )

with respect toOs. The weighted sum of loudspeaker outputs
will produce an outgoing soundfield of the form (3) where
β
(s)
nm(k) is [26]

β(s)
nm(k) =

L∑

ℓ=1

wℓ(k)ikjn(ky
(s)
ℓ )Y ∗

nm(θ
(s)
yℓ , φ

(s)
yℓ ) (11)

with wl(k) representing the weights at each point source. Our
objective is to derive loudspeaker weights that will produce
(4), a unit amplitude outgoing wave of ordern′ and modem′.

This can be achieved by equating (4) to (11), which forms
a set of linear equations of the form

Twn′m′

= βn′m′

(12)

where

T = ik




t00(k,y(s)
1) · · · · · · · · · t00(k,y(s)

L)
...

...
...

...
...

tNsNs
(k,y(s)

1) · · · · · · · · · tNsNs
(k,y(s)

L)




(13)
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is an (Ns + 1)2 × L translation matrix withtnm(k,y(s)
ℓ) =

jn(ky
(s)
ℓ )Y ∗

nm(θ
(s)
yℓ , φ

(s)
yℓ ), w

n′m′

= [wn′m′

1 (k)

· · ·wn′m′

ℓ (k) · · ·wn′m′

L (k)]T is anL long vector of loudspeaker
weights andβn′m′

= [0 · · · 0 1 0 · · · 0]T is an(Ns+1)2 long
vector of desired field coefficients where the(n′2+n′+m′+

1)th element is1 while all others are zero. SinceT andβn′m′

are both known, the required weights at each loudspeaker can
be solved using

wn′m′ = T †βn′m′

(14)

whereT † denotes the pseudoinverse. To avoid spatial aliasing,

L ≥ (Ns + 1)2 (15)

has to be satisfied with (14) yielding the minimum energy
weight solution.

While (14) provides a numerical solution to the required
loudspeaker weights, it is also important to decide upon a ro-
bust array geometry. The spherical geometry has been widely
used for rendering and acquisition of spatial soundfields [28]–
[30] however, its performance in the above task can be
predicted to be less robust due to the Bessel functions present
in T . Whenjn(ky

(s)
ℓ ) of (13) approaches zero crossings, the

condition number ofT increases7, and since the pseudoinverse
of an ill-conditioned matrix is often erroneous, those errors
will be propagated to the weight solution in (14). Similar
issues were experienced in spherical microphone arrays used
for interior field recording [28], which were later overcome
by using rigid arrays [30] or variable radii arrays like the
spherical shell array given in [31] and the dual spherical
array given in [32]. For the loudspeaker array of interest, a
rigid geometry requires the incorporation of scattering effects
and a dual spherical array requires twice the number of
loudspeakers. Therefore, in this paper, we opt for the simplest
geometry of choice, an open spherical shell. A spherical shell
array is equally distributed in the angular space while the
distance to each loudspeakery(s)ℓ randomly varies (with a
uniform distribution) between a virtual spherical shell ofouter
radiusRs and an inner radiusR′

s. For in depth reasoning and
additional solution to the open sphere inverse problem, the
reader may refer to [33]"

An alternate approach for achieving robust loudspeaker
arrays was recently introduced in [34] for2D soundfields,
and in [35] for3D soundfields where the conventional circu-
lar/spherical arrays of monopole loudspeakers were replaced
by those of higher order loudspeakers. A3D higher order
loudspeaker of orderD is capable of producing polar re-
sponses up to theDth order. This solution significantly reduces
the minimum requirement of loudspeaker units by a factor
of 1/(D + 1)2 at the expense of increased complexity at
each loudspeaker unit and therefore, it is more suitable for
sound reproduction in large spatial areas. Since the practical
implementation of higher order loudspeakers are still in the
design stage, the above approach is not used in this paper.
However, the reader is encouraged to refer to [34], [35] for
a detailed description of the array processing involved with
sound rendering using higher order loudspeakers.

7The 2−norm condition number of a matrixT is defined byκ2(T ) =
‖T ‖2 · ‖T †‖2 and for a well conditioned matrix, it will be close to1.

B. Extracting the room response at the receiver region

Once the desired outgoing waves are synthesized atζ, the
next step involves the extraction of resulting room reflections
incident atη. It is important to note that all recordings obtained
at η carry both direct and reflected wavefronts originated atζ,
and since we are only parameterizing the reverberant field, the
direct field component at each sensor output must be removed
prior to further processing.

Furthermore, as the reverberant field of interest (6) is a
source free incoming field, its extraction can be treated as an
interior field recording problem. The conventional approach
to record anN th

r order incoming spatial soundfield requires a
minimum of (Nr + 1)2 omnidirectional microphones equally
distributed on a spherical surface enclosing the region of in-
terest [29]. However, this approach has been proven to be less
robust due to the above mentioned "Bessel zero problem" and
as explained earlier, alternate geometries were later proposed
in [30]–[32] to overcome this issue.

A further improved solution to the interior field recording
problem was recently introduced in [26] where the omnidi-
rectional microphones were replaced by higher order (HO)
microphones. A higher order microphone of orderA is capable
of recording anAth order spatial soundfield with respect to
the microphone’s local origin. Thus, the use ofAth order
microphones in recording anN th

r order soundfield substantially
reduces the minimum requirement of measurements by a factor
of 1/(A+1)2 at the expense of added complexity at each mi-
crophone unit. Compared to the conventional omnidirectional
microphone array, this approach also showed a significant
improvement in the condition number of the translation matrix,
which in turn increased the array’s robustness. Furthermore,
unlike the higher order loudspeakers, the practical implemen-
tation of HO microphones are relatively simple and there
exist a number of different designs that were successfully
implemented in practice [36]. The "Eigenmike" is one such
commercially available fourth order microphone with an active
frequency range of0− 6.5 kHz.

Due to the aforementioned efficiency and availability of HO
microphones, we propose an array ofQ identical Ath order
microphones to be employed in the coefficient extraction
process. For each unit amplitude outgoing wavefield produced
at ζ, there will be anN th

r order soundfield incident atη, and
according to [26], the extraction of such a soundfield requires
a minimum ofQ ≥ (Nr+1)2/(A+1)2 HO microphone units
distributed in any arbitrary geometry enclosing the region
of interest. The translation between the HO microphone
outputs and the desired reverberant soundfield is based on a
coefficient translation theorem developed in [26], which will
be discussed in detail in sec. III-B3.

1) Higher order microphone:Let us now briefly discuss
the functionality of a 3D HO microphone. Consider the
qth(q = 1 · · ·Q) HO microphone located atOq with Rq =
(Rq, θq, φq) representing the vector connectingO to Oq.
For numerical simplicity, we assume it is designed following
the open array geometry given in [29], where anAth order
microphone is composed of an array ofQ′ ≥ (A+1)2 number
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of omnidirectional microphones equally distributed alonga
virtual spherical surface of radiusr = Ac/πefmax where
fmax denotes the maximum frequency of interest in broadband
operation. Theq′th (q′ = 1 · · ·Q′) microphone of this array
will be located atrqq′ = (rqq′ , θqq′ , φqq′ ) with respect toOq

recording

P
(q)
q′ (rqq′ , k) =

A∑

a=0

a∑

b=−a

γ
(q)
ab (k)ja(krqq′ )Yab(θqq′ , φqq′ )

(16)
whererqq′ = r for all q′ andγ(q)

ab (k) represents the soundfield
coefficients with respect toOq . Over the entire array, there
will be a total ofQ′ recordings of the above form, and based
on the orthogonal property of spherical harmonics [29], they
can be collectively combined to extractγ(q)

ab (k) using

γ
(q)
ab (k) =

1

ja(krqq′ )

Q′∑

q′=1

P
(q)
q′ (rqq′ , k)Y ∗

ab(θqq′ , φqq′ ). (17)

When the above microphone is used to record the room
response caused by thenth order andmth mode unit outgoing
wavefield originated fromζ, the incident pressure at theq′th

omnidirectional microphone will be

P
(q)
q′ (n,m, rqq′ , k) =

L∑

ℓ=1

wnm
ℓ (k)H(k,x(q)

q′ ,yℓ) (18)

whereH(k,x(q)
q′ ,yℓ) denotes the RTF between the omnidi-

rectional receiver atx(q)
q′ = Rq+rqq′ and the weighted point

source atyℓ = y
(s)
ℓ +Rsr with respect toO. Substituting for

(17) from (18) we derive the corresponding outputs at theqth

HO microphone as

γ
(q,n,m)
ab (k) =

L∑

ℓ=1

wnm
ℓ (k)

1

ja(krqq′ )

Q′∑

q′=1

H(k,x(q)
q′ ,yℓ)Y

∗
ab(θqq′ , φqq′ )

︸ ︷︷ ︸
γ̃
(q,ℓ)
ab

(k)

(19)

whereγ̃(q,ℓ)
ab (k) denotes the incident soundfield coefficients at

Oq caused by a unit amplitude loudspeaker located atyℓ.

Consequently, if̃γ(q,ℓ)
ab (k), the room response between the

ℓth loudspeaker and theqth HO microphone can be recorded
for all L loudspeakers and allQ HO microphones, then,
γ
(q,n,m)
ab (k) can be easily derived using the linearity property

given in (19). This profound result significantly simplifiesthe
coefficient extraction process by completely eliminating the
requirement for (12)’s physical implementation. Furthermore,
all (Ns + 1)2 distinct cases of (12) can now be synthesized
using the same set of̃γ(q,ℓ)

ab (k) measurements and appropriate
numerical processing.

2) Removal of the direct soundfield:As γ
(q,n,m)
ab (k) are

considered as the HO microphone outputs, it is essential to
remove their direct path components prior to further array
processing. The coefficientsγ(q,n,m)

ab (k) can be decomposed
into direct and reverberant field components as

γ
(q,n,m)
ab (k) = γ

(q,n,m)
ab(dir) (k) + γ

(q,n,m)
ab(rvb) (k) (20)

where the direct field component is known to be [25]

γ
(q,n,m)
ab(dir) (k) =

L∑

ℓ=1

w
(nm)
ℓ (k)ikha(kRqℓ)Y

∗
ab(θqℓ, φqℓ) (21)

with (Rqℓ,, θqℓ, φqℓ) denoting the spherical coordinates of
Rqℓ = yℓ − Rq. Therefore, onceγ(q,n,m)

ab (k) are obtained,
(20) and (21) can be used to eliminate their direct field
components.

3) Array of higher order microphones:The final step in
array processing involves the translation ofγ

(q,n,m)
ab(rvb) (k) to

the desired RTF coefficientsαnm
vµ (k). As mentioned earlier,

this can be done following the coefficient translation theorem
introduced in [35] as

γ
(q,n,m)
ab(rvb) (k) =

Nr∑

v=0

v∑

µ=−v

αnm
vµ (k)Ŝµb

va(Rq) (22)

where

Ŝµb
va = 4πia−v

∑∞
l=0 i

l(−1)2µ−bjl(kRq)Y
∗
l(b−µ)(θq, φq)

×
√
(2v + 1)(2a+ 1)(2l + 1)/4πW1W2, with

W1 =

(
v a l
0 0 0

)
and W2 =

(
v a l
µ −b (b− µ)

)

representing Wigner3 − j symbols. For allQ number of
microphones, (22) can be interpreted in matrix form as,

γ = T ′α (23)

where γ = [γ
(1,n,m)
00 , ..γ

(1,n,m)
AA , ....γ

(Q,n,m)
00 , ...γ

(Q)
AA ]T is a

Q(A+1)2 long vector,α = [α00, ......αNrNr
]T is a (Nr+1)2

long vector, and

T ′ =



Ŝ00
00(R1) · · · · · · · · · ŜNr0

Nr0
(R1)

...
...

...
...

...
Ŝ0A
0A(RQ) · · · · · · · · · ŜNrA

NrA
(RQ)


 (24)

is aQ(A+ 1)2 × (Nr +1)2 matrix. AsT ′ is known, and the
local recordings inγ can be derived from (19), (23) can be
solved to find the desired coefficientsα, using

α = T ′†γ. (25)

To avoid spatial aliasing,

Q ≥ (Nr + 1)2/(A+ 1)2 (26)

has to be satisfied [26] with (25) yielding a least squares
solution.
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C. Summary of the coefficient extraction process

The coefficient extraction process involved with the RTF
parameterization proposed over anN th

s order source region
and anN th

r order receiver region is summarized as follows.
Theoretically, this process requires(Ns + 1)2 number of
distinct outgoing waves created atζ and the same number
of reverberant field extractions simultaneously carried out at
η. Each case requires a minimum of(Ns + 1)2 point sources
or (Ns+1)2/(D+1)2 number ofDth order loudspeakers atζ
to synthesize the outgoing field, and a minimum of(Nr +1)2

omnidirectional microphones or(Nr + 1)2/(A+ 1)2 number
of Ath order microphones to extract the reverberant field atη.
Depending on the size and frequency content of the source and
receiver regions, the user can employ any combination of point
sources, higher order sources, omnidirectional microphones
and higher order microphones. As explained in sections III-A
and III-B, this work illustrates one of the above combinations,
an open spherical shell array of point sources and an open
spherical array of HO microphones.

However, in practice, it is only required to extract the room
response between each loudspeaker and each microphone from
the above arrays, and by incorporating these measurements
with the numerical computations given in (14), (19), (20) and
(25), the desired RTF coefficients can be successfully derived.
Moreover, given the room characteristics remain stationary
over time, the above measurements can be obtained using a
single microphone unit and a single loudspeaker unit moved
along the respective arrays.

Practical limitations of the proposed measurement method
arise with largeRs and Rr values at high frequencies due
to the increased number of modal components required to
describe the spatial soundfield of interest. Common forms
of these limitations include the large requirement of micro-
phone and loudspeaker numbers in non-stationary conditions,
increased demand for high computational power, and the
design and implementation constraints involved with large
spherical/shell geometries. Furthermore, the proposed use of
HO microphones to recordη may not be practically feasible at
present due to the lack of affordable HO microphones that are
commercially available. The above constraints may however
be overcome by defining smaller source and receiver regions to
suit the application of interest, and the HO microphone array
can be easily replaced with omnidirectional ones to reduce
costs. In addition to the above constraints, in a real room,
temperature (and to a lesser extent humidity) fluctuations can
cause the room impulse responses to change, especially in the
late reverberant tails and the higher frequency components.
However, the proposed approach is likely to be accurate at
low frequencies and to the modeling the RTF components of
low order reflections.

D. Approximate parameterization error

The total error involved with the proposed RTF parame-
terization has several components that will be encountered
at different stages of the parameterization process. The first
component will appear at the loudspeaker array processing
phase (12), in the forms of truncation error (Ns = ⌈keRs/2⌉)

in (3), and least squares error in (14) related to the geometry
and numbers of loudspeakers. The next component will occur
at each HO microphone, again in the forms of truncation error
(A = ⌈ker/2⌉) in (16), and Bessel-zero error in (17). The final
component will develop in the coefficient translation phase,
once more in the forms of truncation error (Nr = ⌈keRr/2⌉)
in (6), and least squares error in (25). A detailed decomposition
of each of the above components is of least interest in the
current context, thus, we only study the total error. For com-
putational simplicity, we define an approximate error averaged
over a finite number of design points fromζ andη as

E =

G∑
g=1

‖H̃(xg,yg, k)−H(xg,yg, k)‖

G∑
g=1

‖H̃(xg,yg, k)‖

(27)

where G denotes the number of source and receiver point
combinations being considered and̃H denotes the existing
RTF.

IV. SIMULATIONS

In the following simulation examples, we illustrate the
accuracy of the proposed RTF parameterization in broadband
applications. A6×5×2.5 m rectangular room was considered
as the reverberant environment with its center defined as the
originO. The RTF was parameterized over a spherical receiver
region η of radius Rr = 0.4 m centered aboutO and a
spherical source regionζ of radiusRs = 0.4 m centered about
Os. The location ofOs was varied accordingly to simulate a
non-overlapping and an overlapping configuration ofζ andη.
The design frequency range was assumed up tofmax = 1 kHz
producing a tenth order receiver region(Nr(max) = 10) and
a tenth order source region(Ns(max) = 10). For frequencies
below fmax, the truncations limits would drop, and therefore,
when operating with varying frequencies,Ns and Nr were
varied accordingly.

From (15), the synthesis of a unit amplitude outgoing wave
from ζ required a minimum ofL = 121 point sources dis-
tributed in a preferred geometry. As explained in Sec. (III-A),
we opted for a spherical shell geometry, which required the
sources to be equally distributed in the angular space and
randomly varied in the magnitude space. While [37] provided
an approximate solution for the desired angular distribution,
the distance to each source

∥∥y(s)
∥∥ was randomly varied (with

uniform distribution) between a spherical shell of outer radius
of Rs = 0.4 m and an inner radius ofR′

s = 0.3 m.
The reason behind selecting a spherical shell geometry over

the conventional single sphere geometry was to improve the
array robustness, and we validated this decision by comparing
the condition number of the translation matrixκ2(T ) related
to both geometries. As shown in Fig. 2, the condition number
κ2(T ) was plotted against frequency for a spherical shell
geometry with the above parameters and a single sphere
geometry of radiusRs = 0.4 m. The expected ill-conditioning
of the single sphere geometry is very much evident withκ2(T )
reaching a couple of large peaks atf = 420 Hz andf = 850
Hz. In contrast,κ2(T ) of the spherical shell geometry gives
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Fig. 2. Condition number variation ofT in (12).
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Fig. 3. Actual and reconstructed RTF between a fixed source location y
and all points in the receiver region for a non overlapping distribution of η
and ζ with Rsr = (1, 1, 0.5) m. (a) Actual and (b) reconstructed RTF
for y = (1.05, 1.05, 0.5707) m. (c) Actual and (d) reconstructed RTF for
y = (1.15, 1.15, 0.6207) m.

much improved results by avoiding all of the above peaks.
Therefore, we can conclude that a variation of

∥∥y(s)
∥∥ in T

successfully overcomes the Bessel zero problem in solving
(14). The sawtooth characteristic of the condition number
variation may have caused by the frequency-dependent mode
order (Ns).

Once the unit amplitude outgoing wavefields were synthe-
sized atζ, it was required to extract the resulting reverberant
fields incident atη. For this purpose, we opted for a spherical
array geometry of radiusRr = 0.4 m enclosingη, and accord-
ing to (26), a minimum of121 omnidirectional microphones
were required to avoid spatial aliasing. To improve the array
robustness and to reduce the number of measurements, we
replaced the omnidirectional microphones with third order
ones (A = 3), which substantially reduced the minimum
requirement ofQ to (Nr + 1)2/(A+ 1)2 ≈ 9. It is important
to note thatQ was restricted to square numbers in order to
facilitate the spatial distribution given in [37], which provides
an approximate solution to the equal division of a spherical
surface.
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Fig. 4. (a) Actual and (b) reconstructed RTF between a fixed receiver location
at y = (0, 0, 0) m and all points in the source region for a non overlapping
distribution ofη andζ with Rsr = (1, 1, 0.5) m.
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Fig. 5. Approximate parameterization error (27) for4 different
cases. In each case, the error was averaged overG = 7
source and receiver point combinations, where each point was at
[(0, 0, 0), (−R, 0, 0), (R, 0, 0), (0,−R, 0), (0, R, 0), (0, 0,−R), (0, 0, R), ]
with respect toOs andO respectively.

However, in the simulations given below, we assumed the
room acoustics to be stationary which in turn required only
one point source and one third order microphone to measure
the room response between121 × 9 combinations ofyℓ and
Rq. The number of measurements can be further reduced by
an approximate factor of1/(D + 1)2 if the point source was
replaced by a higher order loudspeaker of orderD.

The actual room response measurements were simulated
using the image-source method [6] which defines the RTF
betweenx andy in terms of

H(x,y, k) = h0(k‖x− y‖) +

I∑

i=1

ζih0(k‖x− yi‖) (28)

where yi and ζi are the position and accumulated wall
reflection coefficient of theith image source. In this paper, we
considered image sources up to the second order with wall
reflection coefficients[0.9 0.9 0.9 0.9 0.7 0.7].

We first looked at a non-overlapping distribution ofη andζ
by defining the vector fromO to Os asRsr = (1 1 0.5) m.
Onceγi(q,l)ab (k) of (19) were measured using the simulated en-
vironment given in (28), we calculated the loudspeaker weight
vectorWnm for (Ns + 1)2 distinct cases accounting for all
combinations ofn andm. Afterward, they were incorporated
in (19) to calculateγ(q,n,m)

ab (k) which was later modified using
(20) and (21) to derive the HO microphone recordings of
the reverberant field,γ(q,n,m)

ab(rvb) (k). Finally, γ(q,n,m)
ab(rvb) (k) were

translated to the desired RTF coefficients(αnm
vµ (k)), using the

coefficient translation relationship given in (22).
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Even though the extracted RTF coefficients are capable of
mapping each point in the source region to each point in the
receiver region over0 − 1 kHz, it is not possible to plot
them all at once. Therefore, we first demonstrate the array
robustness to receiver variations by plotting the RTF between
a particular point in the source region and all points in the
receiver region for a single frequency. Next, we generated a
similar plot for a secondary source location to observe the
array robustness to a slight variation in source positioning. In
order to further validate this property, we finally plotted the
RTF between a particular point in the receiver region and all
points in the source region, accounting for all possible source
variations. Please note that all spatial plots were constrained
to a 2D horizontal cross section with zero elevation for ease
of presentation.

Figures 3(a) and 3(b) show the actual and reconstructed RTF
between a source aty = (1.05, 1.05, 0.5707) m and all points
in the receiver region for a frequency off = 900 Hz (the
circle represents the receiver region). Similarly, Figs. 3(c) and
3(d) show the corresponding results for a secondary source
at y = (1.15, 1.15, 0.6207) m. The reconstructed results in
both cases appear almost error-less verifying the accuracyof
the proposed parameterization and its robustness to receiver
variations as well as a slight variation in source positioning.
Demonstrating source variations in a larger scale, Figs. 4(a)
and 4(b) show the actual and reconstructed RTF between a
fixed receiver aty = (0, 0, 0) m and all points in the source
regionζ (the circle represents the source region). As expected,
the reconstructed field is almost the same as the actual one,
verifying the proposed model’s robustness to source variations.

Analyzing the broadband performance of the proposed
parameterization, we plotted the reproduction error (27)
of the recorded RTF against frequency over a range of
200− 1700 Hz. In order to average the error, we considered
a sample set of7 points from the source region and7 points
from the receiver region resulting inG = 7 one-to-one
combinations8. The source and receiver points were located at
[(0, 0, 0), (−R, 0, 0), (R, 0, 0), (0,−R, 0), (0, R, 0), (0, 0,−R),
(0, 0, R), ] with respect toOs and O respectively. Figure 5
shows the results for different values ofR. The error remains
very low up to the maximum frequency of interest1 kHz,
beyond which it slowly builds up. The increasing error
present from1 kHz onwards is due to spatial aliasing in
both reproduction and recording phases. The low amplitude
errors present within the active frequency range (0.2 − 1
kHz) are possibly stemmed from the HO microphone
simulations. When a fixedAth order microphone with a
maximum recordable frequencyfmax is employed to record
low frequencies (f < fmax), γab mode will be successfully
recorded only iff < f

(ab)
act wheref (ab)

act denotes the activation
frequency of theath order bth mode component of the
soundfield of interest. In other words, at low frequencies, the
soundfield modes that are actually present or activated are
only up to the orderA′ = πfer/C, and all modes produced

8One-to-one combinations meaning, the first source locationpaired with
the first receiver location, the second source location paired with the second
receiver location etc.
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Fig. 6. Actual and reconstructed RTF between a fixed source location y
and all points in the receiver region for an overlapping distribution of η and
ζ with Rsr = (0.3 0.3 0.3) m. (a) Actual and (b) reconstructed RTF for
y = (0.35, 0.35, 0.3707) m. (c) Actual and (d) reconstructed RTF fory =
(0.45, 0.45, 0.4207) m.

beyondA′ will be erroneous due to the1/ja(·) term in (17).
In order to minimize these errors, the higher order modes
can be discarded as they are simply absent in the actual
soundfield. The same technique can be applied to the larger
microphone array when calculating the soundfield atη. When
the inactive modes are discarded as explained above, the
matrix dimensions of (24) will vary with varying frequency.
An extensive study on this solution and the resulting
improvement in array robustness to noise is presented in [38]
for the 2D case.

In order to verify the geometrical flexibility of the proposed
parameterization, we repeated the same process for a different
configuration ofη and ζ. This was done by re-defining the
vector from O to Os as Rsr = (0.3 0.3 0.3) m which
resulted inη andζ to overlap on each other. However, all other
design parameters were remained the same, which added no
changes to the loudspeaker and microphone array parameters.
Figures 6(a) and 6(b) show the actual and reconstructed RTF
between a source aty = (0.35, 0.35, 0.3707) m and all points
in the receiver region for a frequency off = 900 Hz (the
circle represents the receiver region). Similarly, Figs. 6(c) and
6(d) shows the corresponding results for a secondary source
at y = (0.45, 0.45, 0.4207) m. The reconstructed results in
both cases appear almost error-less verifying the geometrical
flexibility of the proposed parameterization. However, when
η and ζ overlap on each other, extra caution should be
taken to avoid potential conflicts between the loudspeaker and
microphone locations. Furthermore, when a loudspeaker is too
near to a microphone, there will be potential errors stemmed
from nearfield truncation [39].
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V. CONCLUSION

We have introduced a novel method to parameterize the
three dimensional RTF between two arbitrary points from a
sizeable spatial region where the source(s) lie and a sizeable
spatial region where the receiver(s) lie. The modal based
parameterization only requires a finite number of RTF coeffi-
cients to describe an infinite number of RTFs between the two
regions and therefore, it can also be used to characterize an
entire room at once. However, when an arbitrary shaped room
is being measured for RTF parameterization, the corresponding
microphone and loudspeaker array geometries may be altered
to a similar geometry along (or close to) the room walls.
We also presented a practical method of extracting the RTF
coefficients which only requires a single loudspeaker and
a single microphone, provided the room acoustics remain
stationary. This result substantially simplifies the problem of
room equalization by simplifying the RTF measurements. It
also has the added advantage of providing robustness to both
source variations as well as receiver variations.
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