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A Time-frequency Masking Based Random

Finite Set Particle Filtering Method for

Multiple Acoustic Source Detection and

Tracking
Xionghu Zhong, Member, IEEE, and James R. Hopgood, Member, IEEE

Abstract

Considering that multiple talkers may appear simultaneously, a time-frequency (TF) masking based random finite

set (RFS) particle filtering (PF) method is developed for multiple acoustic source detection and tracking. The time-

delay of arrival (TDOA) measurements of multiple sources are extracted by using a time-frequency masking technique,

by which each source’s TF bins are clustered and separated in a joint gain-ratio and time-delay histogram. Since a

joint detection and tracking problem is considered, both source positions and source numbers are time-varying and

need to be estimated. The tracker is built within a RFS Bayesian filtering framework. Essentially, an RFS process

is used to characterize the source dynamics that include source appearance/dissappearance and motion trajectories.

Latent variables are also introduced to indicate source dynamics and measurement-source associations. Subsequently,

a Rao-Blackwellization PF technique is employed so that the source position state can be marginalized and only the

latent variables are estimated by using the PF. The main advantage of the proposed approach is that hypothesis-pruning

is formulated in a full probabilblackense. The performance of the proposed approach is demonstrated in real speech

recordings as well as in simulated room environments.

Index Terms

Acoustic source tracking, room reverberation, time-delay of arrival, particle filtering, random finite set.

I. INTRODUCTION

Acoustic source localization and tracking in a room environment plays an important role in many speech and audio

applications such as multimedia, hearing aids, hands-free speech communication, and teleconferencing systems. Once

the source or talker is localized and tracked, the position information can be fed into a higher processing stage
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for high-quality speech acquisition, enhancement of a specific speech signal in the presence of other competing

talkers, or keeping a camera focused on the talker in a video-conferencing scenario [1]–[6]. Usually, a distributed

system equipped with a number of microphone pairs or arrays is employed to localize or track the source [7]–[12].

However, it is difficult to provide an accurate position estimate since the received audio signal can be significantly

distorted and its statistical properties can be changed drastically due to room reverberation. The difficulty is further

increased when multiple simultaneously active speakers are considered in the tracking scene.

In the past, time-delay of arrival (TDOA) measurements were extensively employed and studied for room acoustic

source localization or tracking [8]–[10], [13]–[19] due to their simplicity and ease of access in many applications.

TDOA measurements can be extracted, for example, by employing the generalized cross-correlation (GCC) function

[20] or adaptive eigenvalue decomposition (AED) algorithm [21]. Since each TDOA yields half a hyperholoid of

two sheets which, in the far field, can be approximated by an angular segment, multiple TDOA measurements from

distributed microphone arrays are usually employed to triangulate a target position [22], [23]. Such a triangulation

can be approximated by either using a linear intersection (LI) algorithm [7] or an extended Kalman filter (EKF)

[9], [17]. However, in the presence of noise and room reverberation, ghost peaks may present in the GCC function

and spurious TDOA measurements may be collected and the subsequent triangulation methods can be seriously

degraded. In [10], [23], [23]–[25], a reverberant measurement model which consists of the TDOAs measurements

from real detections as well as false alarms was introduced and the sequential importance resampling based particle

filter (SIR-PF) approaches were employed to track the source. In essence, a bi-model hypothesis likelihood was

employed to reduce the estimation error due to false TDOA measurements: a Gaussian distribution for real TDOA

measurement hypothesis and a uniform distribution for false alarm hypothesis. Generally, the probability of detection

can be enhanced due to incorporating multiple TDOA measurement, and the SIR-PF is more robust than the EKF

approach in noisy and reverberant environments.

In a real conversation, multiple talkers can be simultaneously active and, under such a scenario, the received

signal is a mixture of different speech sounds. This significantly increases the complexity of the tracking problem

since: i) TDOAs for different sources are no longer easily available; and ii) given the TDOA measurements for

multiple sources, the measurement-source assignment is unknown. In this paper, a novel approach is proposed to

jointly detect and track an unknown and time-varying number of acoustic sources in the room environment. Knowing

that traditional GCC methods may not yield sharp peaks for TDOAs of multiple sources, a degenerate unmixing

estimation technique (DUET) [26], [27] based GCC (DUET-GCC) method is proposed for TDOA estimation. DUET

assumes that the source signals are window-disjoint-orthogonal (WDO) on the time-frequency (TF) domain. Hence,

the source’s TF spectrum can be separated by clustering all TF bins in a two dimensional (2-D) histogram over

time-delay (TD) and gain-ratio (GR) axes. The GCC method is then applied to each source spectrum and the TDOA

for each source is obtained. The authors in [28] developed a WDO based KF to localize the DOAs of multiple

sources. Although the TDOA measurement extraction approach is similar to the DUET-GCC method developed

in this paper, it did not take the phase ambiguity problem into account and can only be applied for arrays with

small microphone separations (maximum 4cm in [28]). Mandel et al [29] also built a probabilistic models for
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TD and GR information and used an expectation-maximization (EM) algorithm to find the TDOAs of multiple

sources. However, the EM algorithm needs a burn-in period to converge to the final estimates, and is thus more

appropriate for the localization problem. Other multi-source TDOA estimation methods based on signal separation

for localization problem can also be found in [30]–[36].

In the past, various multisensor multitarget tracking techniques were introduced to the multiple talker tracking

problem. In [37], [38], direction of arrivals (DOAs) from distributed microphone arrays were obtained and an

interacting multiple model (IMM) based probabilistic data association (PDA) technique was developed to fuse the

DOAs and estimate the source positions. These approaches assume a perfect detection of the sources and cannot

be applied to scenarios where the number of sources are changing and unknown. In [39]–[42], a random finite set

(RFS) based Bayesian filtering approach was presented, by which jointly detecting and tracking an unknown and

time-varying number of sources is possible. However, these approaches simply exploit the GCC method for TDOA

measurement extraction while the GCC method assumes a single source wavefront impinging on a microphone

array [20]. More recently [43], an independent component analysis (ICA) based approach was introduced to demix

the speech mixtures from multiple sources and a probability hypothesis density (PHD) filter was employed to track

the direction of arrivals (DOAs) of the sources. However, such an approach concentrates on DOA estimation using

a single microphone array and cannot localize the source exactly in a real room environment. In addition, all these

multi-source tracking approaches are neither tested in a broad range of noisy and reverberant environments, nor

in a real room experiment. Nonparametric Bayesian approaches were introduced to multiple source localization

and separation in [44], [45]. However, the sources considered therein are assumed to be static. In [46], binaural

cues (interaural time and intensity differences) were extracted from a microphone pair, and these observations are

compared with predicted reference values obtained from simulations using prior knowledge of a catalogue head-

related transfer functions (HRTFs). These reference values are obtained based on the binaural response of a KEMAR

dummy head. Moreover, a HMM framework is proposed to model the change in the number of active speakers

probabilistically. The target space is modeled as a set of subspaces and switches among them with predefined jump

probabilities. Again, the method focuses on the DoA tracking rather than tracking of the exact Cartesian (x − y)

positions of the sources.

Since the number of sources as well as their respective positions is unknown and time-varying, the source

dynamics include source birth (new source activated), source death (existing source nonactivated), and motion of

survival sources. In this paper, a RFS particle filter (RFS-PF) [47], [48] is used to detect and track multiple acoustic

sources based on TDOA measurements. Following the idea in [47], latent variables are incorporated to identify the

motion models and the associations between the TDOAs and the sources. The measurement function is linearized to

form an EKF, by which the likelihood can be obtained and the source positions can be marginalized out. The birth

model is given as a prior probability and the source death is determined by modelling the expected track length or

lifetime using a Gamma distribution [49]. Such a death model assigns higher death probability to the source which

is unassociated for a longer time.

The PF implementation of the proposed tracking approach is able to determine the hypotheses in a full probabilistic
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sense. The performance of the proposed approach is studied using real speech recordings as well as simulated room

environments. Whereas the RFS-PF in [47] simply assumes the source death probability as a constant, we model the

length of the source track so that the miss detection due to reverberation has been taken care of. Generally, the larger

period the source track is not associated with TDOA measurements, the higher the source death probability. The

proposed tracking method is implemented under both DUET-GCC and traditional GCC based TDOA measurements.

These two implementations are labeled as DUET proposed and GCC proposed respectively.

The core contributions of this paper are: 1) developing a method to improve high-frequency channel assignment

in a TF masking based TDOA estimation method; 2) introducing the Gamma distribution to obtain a controllable

death rate in the proposed tracking algorithm such that the algorithm is more robust to the missing detection

and speech pauses; and 3) comprehensively studying the performance of the environment as well as a range of

simulated reverberant environments. These contributions are detailed in Section II-C, Section IV-A and Section V

respectively. The advantage of the proposed DUET-GCC method in TDOA estimation is demonstrated by comparing

the performance with that of the PHAT-GCC method. The RFS approach in [41] is also implemented and its

performance is compared with the performance of the proposed tracking method. The rest of this paper is organized

as follows: in Section II, the DUET-GCC based TDOA measurement extraction is introduced; in Section III,

the multiple source tracking problem is formulated; the RFS-PF tracking algorithm is proposed in IV; and the

performance of the proposed approach is studied under both simulated and real room environments in Section V.

Finally, conclusions are drawn and directions for future work are addressed in Section VI. A table of notations is

summarized in table I to illustrate the meaning of variables and symbols in the TDOA estimation method and the

tracking algorithm.

II. MULTIPLE SOURCE TDOA ESTIMATION

In this section, a DUET-GCC method is proposed to estimate the TDOAs for multiple sources.The DUET is used

to separate the source in the TF domain and the GCC function is then applied to each source’s TF bins to obtain

the TDOAs. In particular, the method to improve the TDOA estimation in a high frequency region is explained in

Section II-C.

A. TDOA estimation via DUET

Assume that L microphone pairs are deployed to receive the speech signals emitted by Mk speakers at a discrete

time step k. Let Ξ = (k, ω) be a TF bin index and Sm,Ξ denote the short time Fourier transform (STFT) of the

mth source signal. Ignoring the effect of noise and reverberation, the signal model in the TF domain for the ith

microphone of the `th pair is

ZΞ(`, i) =

Mk∑
m=1

am,k(`, i)e−jωτm,k(`,i)Sm,Ξ, (1)

where am,k(`, i) = 1/4πrm,k(`, i) and τm,k(`, i) represent the attenuation and the time-delay of the mth source

signal at the ith microphone of `th microphone pair respectively, with rm,k(`, i) denoting the corresponding distance.
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TABLE I

NOTATIONS

Algorithm DUET-GCC

input L× 2 received microphone signals

output TDOAs ∪L`=1{τ̂1,k(`), n = 1, . . . , nk(`)}
hyper par. A,D

Ξ = (k, ω) TF bin index at the kth time step and frequency ω

`, L microphone pair index `; totally L pairs

m,Mk source index m; totally Mk sources

n, nk(`) measurement index n; totally nk(`) measurements

A, D GR and TD resolution parameters

ân,k`, τ̂n,k(`) amplitude estimate and TDOA estimate

Rn,k(`, τ) GCC function due to the nth 2-D histogram peak

Algorithm proposed RFS-PF tracking algorithm

input Zk = ∪L`=1{τ̂1,k(`), n = 1, . . . , nk(`)}
output estimated source state set X̂k

hyper par. (v, ρ), (α, β), στ

Xm,k , Xk the mth state vector Xm,k and the state set Xk
zn,k , Zk single measurement zn,k and the TDOA set Zk
Z1:k measurements from the start to the time step k

z1:n,k measurements from 1 to n at time step k

γn,k TDOA assignment indicator

(i) particle index, i = 1, . . . , N

bk , dk birth and death indicators

θk latent variable including

the assignment, birth and death indicators

(v, ρ) Langevin motion model parameters

(α, β) Gamma distribution parameters

στ measurement (TDOA) noise variance

According to the WDO assumption [26], the TF bins are disjoint. Hence, each TF bin either carries information

regarding one of the sources, or has no meaningful information. The ratio of the TF bins across a microphone pair

can be defined as

RΞ(`) =
ZΞ(`, 1)

ZΞ(`, 2)
= aΞ(`)e−jωτΞ(`), (2)

where aΞ(`) and τΞ(`) are the gain-ratio (GR) and time-delay (TD) estimates for TF bin Ξ respectively. Suppose

that the mth source is active on Ξ (the contribution of other sources on this TF bin is thus nil), the GR and TD

are given respectively as

aΞ(`) = |RΞ(`)| = am,k(`, 1)

am,k(`, 2)
, am,k(`),

τΞ(`) =
∠RΞ(`)

−ω
= τm,k(`, 1)− τm,k(`, 2) , τm,k(`), (3)
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with | · | and ∠· denoting the amplitude and the phase of the estimates respectively, and am,k(`) and τm,k(`) are

the GR and TD information of the mth source separately. Note that the TF bin index Ξ can be omitted in (3) as the

GRs and TDs for each source’s TF bins are the same. Next, the histogram of all TF bins will be generated based

on the GR and TD information and each source’s TF bins can thus be clustered and separated in the TF domain.

Given a GR resolution parameter A and a TD resolution parameter D, define an indicator function such that

ΛΞ(ζ, η, `) =

1, |aΞ(`)− ζA| ≤ A and |τΞ(`)− ηD| ≤ D;

0, otherwise,

where ζ and η are any integers which lead (ζA, ηD) to cover a GR and TD range completely. The function Λ

indicates whether the GR and TD of a TF bin are within the neighborhood of the given parameter pair (ζA, ηD).

Based on this indicator, a 2-D histogram for different integers ζ and η can be constructed as

hk(ζ, η, `) =
∑

Ξ

ΛΞ(ζ, η, `) |ZΞ(`, 1)ZΞ(`, 2)|γ , (4)

where |ZΞ(`, 1)ZΞ(`, 2)|γ is a weighting term for some γ. For a source with GR and TD parameters (ζA, ηD),

a large portion of the source TF bins will carry such GR and TD information and can be clustered in the 2-D

histogram. Detailed discussion about the different choices of γ can be found in [26]. Here γ = 0 is picked to

equalize the importance of all TF bins, by which the effect of signal energy is reduced.

Assume that nk(`) peaks (ān,k(`), τ̄n,k(`)), for n = 1, . . . , nk(`) above a given threshold can be detected from

the 2-D histogram. The indicator function of the TF bins corresponding to the nth peak can be given as

InΞ(`) =

1, |aΞ(`)− ān,k(`)| < A, |τΞ(`)− τ̄n,k(`)| < D;

0, otherwise,
(5)

The TDOA for the nth peak in the 2-D histogram, hk(ζ, η, `), can thus be estimated as

τ̂n,k(`) = EΞ

(
InΞ(`)τΞ(`)

)
, (6)

where EΞ(·) denotes the expectation over Ξ. The DUET based TDOA measurement extraction is a speech separation

based approach. Unlike the traditional GCC function which is unable to differentiate source signals, the TDOAs

obtained by DUET are estimated from the TF bins of each source signal. It is thus able to give the TDOAs

for multiple sources, even when these sources are simultaneously active. However, in the presence of noise and

reverberation, the spectrogram is smeared and blurred. The WDO assumption is thus violated and the TDOA

estimation will be degraded. In particular, the expectation step in equation (6) is very sensitive to the TD and

GR parameters (A,D). All these factors can make the TDOA estimation diverge from the ground truth, i.e.,

τ̂n,k(`) 6= τm,k(`), ∀m = 1, . . . ,Mk. In the next section, a DUET based GCC method will be developed to obtain

robust TDOA estimation.

B. DUET-GCC method

Since the GCC method is found robust in noisy and reverberant environments [20], [50], it is expected that

a combination of GCC and the TF bins of each source extracted by DUET to provide reliable TDOA estimates
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Fig. 1. Flow diagram of the DUET-GCC approach.

for multiple sources. Suppose that nk(`) peaks can be enumerated from a 2-D histogram, and each peak has the

indicator InΞ(`) defined by (5). The TF bins corresponding to the nth peak, n = 1, . . . , nk(`) can be given by

ẐnΞ(`, i) = InΞ(`)ZΞ(`, i). (7)

The GCC function for the TF bin set can thus be written as

Rn,k(`, τ) =

∫
Ω

Φ̂nΞ(`)ẐnΞ(`, 1)Ẑn∗Ξ (`, 2)ejωτdω, (8)

where Ω is the frequency range over which the integral is implemented. In this paper, we have limited the frequency

range over [300, 3700]Hz to improve the TDOA estimation. The phase transform (PHAT) weighting term is defined

as

Φ̂nΞ(`) =

∣∣∣∣ẐnΞ(`, 1)Ẑn∗Ξ (`, 2)

∣∣∣∣−1

, (9)

where the superscript ∗ denotes the complex conjugate. The TDOA for each source is thus obtained by exploring

an one-dimensional search over the TDOA range, given as

τ̂n,k(`) = arg max
τ∈[−τmax,τmax]

Rn,k(`, τ). (10)

The TDOA estimation for multiple sources is thus achieved. It is worth pointing out that the DUET-GCC estimation

steps (8) to (10) are the same as the traditional GCC estimation procedure, but the spectrogram of each source is

employed to replace the spectrogram of whole speech mixtures in the traditional GCC approach.

Figure 1 gives a flow diagram of the DUET-GCC approach. The speech mixtures are separated by using DUET,

and the GCC method is then employed for the spectrogram of each source to estimate the TDOAs. Since the TDOA

estimation of the speech sources are handled separately, the interference between the source signals is naturally

decreased. The DUET-GCC method is thus more appropriate for the TDOA estimation of multiple simultaneously

active sources than the traditional GCC method. Also due to the capability of suppressing the reverberation and

noise by the PHAT weighting, the TDOA estimation performance via DUET-GCC approach is better than simply

taking the expectation of the TDOA information from all the TF bins in equation (6) [25]. Fig. 2 shows the GCC

function extracted from DUET-GCC method and traditional PHAT-GCC method respectively. The two largest local

September 2, 2015 DRAFT



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. ∗∗, NO. ∗∗, MONTH 2015 8

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−3

−0.5

0

0.5

1

TDOA/sec.

G
C

C
 f

u
n

c
ti
o

n
PHAT−GCC

DUET−GCC, 1st peak

DUET−GCC, 2nd peak

ground truth
TDOA 1

ground truth
TDOA 2

Fig. 2. DUET-GCC function and traditional GCC function via PHAT weighting. Two sources are located at (1.4, 1.2)m and (1.4, 2.8)m

respectively. The GCC function is estimated from the first microphone pair (microphone 1 and microphone 2), as shown, in Fig. 3. The ground

truth TDOAs are ±0.95ms.

peaks in DUET 2-D histogram are used to obtain TF masks, and thus two GCC functions are available. The DUET-

GCC method presents accurate TDOA estimates for two sources, while the traditional PHAT-GCC is only able to

present one source accurately, and fails to produce a sharp peak for the other one.

C. Practical issues arising from DUET

The microphone separation d by which the phase term will not be wrapped is

d < dmax =
c

2fmax
=

c

fs
, (11)

where fmax and fs indicate maximum frequency component and sampling frequency of the signal respectively, where

c is the sound speed in the air. In many real applications, since the microphone separation will be larger than dmax, a

phase unwrapping method is needed to unwrap the phase term at the higher frequency band f > c/(2dmax). Several

approaches have been proposed for this purpose, and a typical one is found in Tribolet’s work [51]. Normally

the phase estimates are very unlikely to be unwrapped at the low frequency band. Let φΞ(`) = ∠RΞ(`) represent

the phase of the TF bin ratio at Ξ. First, the phase extracted from the TF bins at the lower frequency band,

i.e., ω/(2π) < c/(2dmax), are used to build a histogram to obtain initial TDOA estimates τ̂n,k(`) for multiple

sources by using DUET. The estimated TDOAs given by equation (6) are then used to predict the phase term at

the higher frequency band. The phase at the higher frequency band can be obtained by using linear prediction as

φpred
Ξ (`) = ωτ̂n,k(`) + 2κπ for ω/(2π) > c/(2dmax). The integer κ is determined by

κ̂ = arg min
κ
|φΞ(`)− φpred

Ξ (`) + 2κπ| (12)
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for all ω/(2π) > c/(2dmax). The unwrapped phase estimates are thus φ̂Ξ(`) = φΞ(`)−2κ̂π. After phase unwrapping,

the estimated phase φ̂Ξ(`) at the higher frequency band together with the phase φΞ(`) at the lower frequency band

are employed to form the indicator function in equation (5).

In practice, the ideal TD and GR histogram can rarely be achieved due to: i) the outliers of the GR aΞ(`), which

may present in the GR features and make the corresponding TD features not be clustered even though these TD

features are correct; and ii) different bins of the TD and GR features, for the TD feature, it is very small compared

to the GR feature and thus very difficult to give a meaningful parameter D to cluster them. The detailed studying

of TD and GR features can be found in [52]. One way to solve this problem is normalizing these two features [52],

and thus make the parameter studying of (A,D) more controllable. Such a normalization is given by

τ̃Ξ(`) =
τΞ(`)

2τmax
, and, ãΞ(`) =

|ZΞ(`, 1)|√∑2
i=1 |ZΞ(`, i)|2

. (13)

Hence, the TD feature is within the range τ̃Ξ(`) ∈ [−1/2, 1/2] and GR feature ãΞ(`) ∈ (0, 1). The TD feature is

regarded as a correct estimation of the real TDOA if it is located in the admissible range of anomaly error ε. The

spacing parameter D is thus picked as a normalized version of anomaly error ε, given as

D =
ε

2τmax
=

cTc
4dref

, (14)

where dref is a reference distance that can be chosen as 1m, and Tc is the correlation time defined as the time period

that the highest peak of the cross correlation function drops off by 3dB. It has been shown that the cross correlation

time is about two samples time interval under a sampling frequency of fs = 8kHz [25]. It is worth mentioning

that the TD spacing parameter obtained from (14) is normalized and such a spacing parameter can be applied to

microphone pairs with different microphone separations. For a sampling frequency of 8kHz, the normalised TD

spacing parameter is thus about 0.02. Since the GR feature is also normalised within a range of one, we can simply

set the GR parameter the same as TD parameter, i.e., A = D = 0.02. According to our experimental study, slightly

changing these parameters will not result in significant variation in the performance of the TDOA estimation.

III. RFS BASED TRACKING FRAMEWORK

The RFS has been shown to be an efficient framework for multiple source tracking since it naturally depicts the

randomness of the source number as well as the source positions. In this section, the RFS framework for multiple

acoustic source detection and tracking is formulated. In addition, the state to be estimated is decomposed to the

source state and the data association variables so that the former can be marginalized out by using the EKF [22]

and only the later needs to be estimated by using the PF.

A. RFS framework formulation

Assume that at the `th (` = 1, . . . , L) microphone pair, a set of TDOAs τ̂ k(`) = {τ̂1,k(`), . . . , τ̂nk(`),k(`)} is

obtained by using the DUET-GCC method at time step k. Such a TDOA set contains the source generated TDOAs

September 2, 2015 DRAFT



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. ∗∗, NO. ∗∗, MONTH 2015 10

as well as TDOAs due to reverberation and noise. The complete measurement set Zk over all microphone pairs

can be stated as

Zk =

L⋃
`=1

{τ̂ k(`)} = {τ̂1,k(`), . . . , τ̂ns
k(`),k(`)}︸ ︷︷ ︸

source generated

∪ {τ̂1,k(`), . . . , τ̂nf
k(`),k(`)}︸ ︷︷ ︸

false alarms

, (15)

where ns
k(`) and nf

k(`) represent the number of source generated measurements and the number of false alarms

respectively. The cardinality of the measurement set is thus Nk = |Zk| =
∑
` nk(`) = ns

k(`) + nf
k(`) with | · |

standing for the cardinality. Since the data association is considered, the measurement set from all microphone

pairs are processed sequentially. The measurement set for each step is thus a singleton, given as zn,k = {τ̂n,k}, for

all n = 1, . . . , Nk. Here, the microphone pair index ` is dropped as the TDOA measurements are processed in an

arbitrary order. In the following, the expression Z1:k will refer to all the measurements from the start to the current

time step, and z1:n,k corresponds to the measurements from 1 to n at time step k.

For joint detection and tracking problem, other than modeling the trajectory of each source, more complicated

dynamic models should be incorporated to take the uncertainty of the source appearance and disappearance into

account. Three categories of the source behaviors are considered for the speaker detection and tracking problem:

source survival, source birth and source death. Any kind of source dynamics can thus be modelled by formulating a

combination of these three behaviors. The motion of the sources can assumed to be independent. Hence, the Langevin

model [10] which has been shown to be effective in modeling simple trajectory and slow-paced movements, is

employed to model the trajectory of each source. Let xm,k = [xm,k, ym,k]T and ẋm,k = [ẋm,k, ẏm,k]T denote the

position and velocity of the mth source respectively. The superscript T represents the transpose. The complete state

characterizing the motion of the source is thus Xm,k = [xTm,k, ẋ
T
m,k]T . Let Xk−1 = {X1,k−1, . . . ,XMk−1,k−1}

represent the state set at time step k−1. If there is no birth and death, the state set is Xk|k−1 =
⋃Mk−1

m=1

{
Xm,k|k−1

}
,

in which Xm,k|k−1 is evolved from the previous state Xm,k−1 following the Langevin model, given by

Xm,k|k−1 = AXm,k−1 + Qvk. (16)

The coefficient matrices A and Q are given by

A =

I2 a∆T I2

0 aI2

 ; Q =

b∆T I2 0

0 bI2

 , (17)

where ∆T = T0/fs is the time interval (in seconds) between time step k and k − 1, fs denoting the sampling

frequency, and IM is an M -order identity matrix. The parameters a and b are the position and velocity variance

constants calculated according to a = exp(−ρ∆T ) and b = v
√

1− a2, in which v and ρ are the velocity

parameter and the rate constant respectively. The model parameters v = 1ms−1 and ρ = 10s−1 used in [10], [24],

[41] are found to be adequate for room acoustic source tracking are employed here. Since there is no source birth

or death, the number of the sources remains Mk−1, i.e., |Xk|k−1| = |Xk−1|.
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The birth process happens when a new speaker becomes active in the tracking scene. Let Bk be the set of new

born sources. To simplify the problem, only one source is allowed to be born at each time step. Assume that the

new source is born with an initial state X0. The birth process is then Bk = {X0}. The total number of the sources

at time step k is thus Mk = Mk−1 + 1. When an existing source becomes silent, the death process is formulated

by removing the corresponding state from the existing set. As with the birth process, we assume that maximum

one source is allowed to die at each time step.

B. Tracking via data association

Assume that there are Mk sources at time step k, i.e. |Xk| = Mk. For each singleton measurement set, zn,k, an

assignment hypothesis variable γn,k is defined to identify the association between the measurement and the source:

γn,k = 0 denotes that zn,k is a false alarm; γn,k = m, for m = 1, . . . ,Mk denotes that zn,k is associated to the

mth source; and γn,k = Mk + 1 denotes that zn,k is associated to a new born source labeled as Mk + 1. At each

time step, the assignment variable set is thus γk = {γ1,k, . . . , γNk,k}. Each measurement can only be associated

with one source. Suppose that bk and dk are the variables indicating the birth and the death processes of the source

respectively, with value 1 denoting that the birth and death happen and 0 otherwise. Defining a latent variable

θk = (γk, bk,dk), the complete state set for source dynamics is given as

Yk = Xk|k−1

⋃
{θk}. (18)

where Xk|k−1 is the predicted state given in Section III-A.

The aim here is to estimate the joint posterior distribution p(Yk|Yk−1,Z1:k), which can be decomposed into the

conditional source distribution p(Xk|Xk−1,θk,Z1:k) and the association posterior density p(θk|θk−1,Z1:k), given

by

p(Yk|Yk−1,Z1:k) = p(Xk|Xk−1,θk,Z1:k)︸ ︷︷ ︸
EKF approximation

p(θk|θk−1,Z1:k)︸ ︷︷ ︸
PF

. (19)

Conditional on θk, the position states p(Xk|Xk−1,θk,Z1:k) can be estimated using an EKF [22], and only the latent

variable θk is needed to be handled by a PF. Such a technique is referred as a Rao-Blackwellization PF (RBPF)

and widely used for the state estimation where part of state can be marginalized out analytically [53]. The idea of

the RBPF is marginalizing out some of the variables by using an optimal filter and estimating the rest by using

a particle approximation so that the dimension of the state to be sampled can be reduced. Consequently, using a

smaller number of particles is able to achieve the same accuracy of the state estimation as the PF [54]. Suppose

that N particles θ(i)
k , for i = 1, . . . , N are drawn according to the importance distribution of the latent variable θk

θ
(i)
k ∼ q(θk|θ

(i)
k−1,Z1:k). (20)

where q(·) is the importance function that will be detailed in Section IV.B. Under a RBPF implementation, the

weight of the particles can be updated as [55]

w
(i)
k ∝ w

(i)
k−1

p(Zk|θ(i)
k ,Z1:k−1)p(θ

(i)
k |θ

(i)
k−1,Z1:k−1)

q(θ
(i)
k |θ

(i)
k−1,Z1:k)

, (21)
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Algorithm 1: Top-level procedure of the RBPF.

Initialization: w(1:N)
0 ← 1/N ; X (1:N)

0 ← ∅.

for k ← 1 to K do
1) predict the state X̂ 1:N

k|k−1according to (16).

for n← 1 to Nk do

for i← 1 to N do
2) generate different hypothesis θ(i)

k ;

3) evaluate the importance function w(i)
k according to (21); see Algorithm 2 for details.

end

4) weight normalization: w(i)
k = w

(i)
k /

∑N
i=1 w

(i)
k .

end

5) Output the estimates.

6) Resample (Xk, wk) if necessary.
end

where p(zk|θ(i)
k ,Z1:k−1) is the likelihood of the hypothesis, and p(θ(i)

k |θ
(i)
k−1,Z1:k−1) is the corresponding prior den-

sity. After the resampling step, the association posterior density p(θk|θk−1,Z1:k) is approximated by p(θk|θk−1,Z1:k) =∑N
i=1 w

(i)
k δθ(i)

k

(θk), where δ(·) is a dirac function only with value one when θk = θ
(i)
k and 0 otherwise. The joint

posterior distribution for the whole state can thus be obtained by

p(Xk,θk|Xk−1,θk−1,Z1:k) =

N∑
i=1

w
(i)
k δθ(i)

k

(θk)p(X (i)
k |X

(i)
k−1,θ

(i)
k ,Z1:k), (22)

where X (i)
k , for i = 1, . . . , N are the particle representation of the source states and p(X (i)

k |X
(i)
k−1,θ

(i)
k ,Z1:k) is the

filtered distribution obtained from the EKF step.

The top-level procedure of RBPF is given in Algorithm 1. By using the RBPF, the source states are analytically

marginalized by using the EKF, and the dimension of the state to be processed by using the PF is significantly

reduced. Hence, the same accuracy can be achieved by using a smaller number of particles. The detailed imple-

mentation of each step will be introduced in the next section.

IV. RFS-PF ALGORITHM FOR DETECTION AND TRACKING

This section presents the RFS-PF tracking algorithm. The prior densities of the source birth and death processes

and the measurement-source association are given first. The likelihood and optimal importance function are then

derived. Considering that the TDOA measurements are seriously deteriorated in the heavy reverberant and noisy

environment, it is likely that none of the TDOA measurements will be the real detection when the distance between

the source and the microphone array is large. Further, speech pauses can also result in miss detection. Under such a
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situation, the source actually exists in the tracking scene while the TDOA measurement cannot be detected. To lock

onto the source tracks, a Gamma distribution is employed to model the source death prior such that the longer the

track is not associated with any TDOA measurements, the larger is the death probability. Such a gamma-distributed

lifetime of sound sources is able to flexibly control the death rate and is detailed in Section IV-A.

Several assumptions are made to reduce the exhaustive associations in the variable θ(i)
k : i) at most one source

can be born at a time step k and the source can only be generated within the boundary of the room; ii) at most

one source can die at a time step k; and iii) the total number of sources is bounded at Nmax. The restriction of at

most one source can be born or die at a time step k is to guarantee that the association and the combinations are

always limited. In practice, the number of simultaneously active speakers can be assumed to be small, and thus the

maximum number of the sources is bounded to Nmax to reduce unnecessary associations. This is easily obtained

by set the birth probability as 0 when the maximum number of sources achieves, i.e., |X (i)
k−1| = Nmax. These

assumptions can avoid an exponential increasing of the complexity of the algorithm and thus make the algorithm

computationally affordable.

A. Birth, death and association priors

To calculate the prior of the hypothesis variable p(θ(i)
k |θ

(i)
k−1,Z1:k−1), the relation between the birth, survive,

and death process should be clarified. A source is born with a prior birth probability, and is independent with any

of the existing sources. Generally, the probability of a source death is dependent only on the previous existence of

the source. The measurement to source association is dependent only on the number of sources based on the birth

and death assumptions at current time step k. The prior of the association variable can thus be written as

p(θ
(i)
k |θ

(i)
1:k−1,Z1:k−1) =p(b

(i)
k )p(d

(i)
k |d

(i)
k−1)

× p(γ(i)
k |b

(i)
k ,d

(i)
k ,γ

(i)
k−1), (23)

where p(b(i)
k ) and p(d(i)

k |d
(i)
k−1) are the prior density of the birth and death processes respectively, and p(γ(i)

k |b
(i)
k ,d

(i)
k ,γ

(i)
k−1)

is the prior density of the measurement-source associations. Detailed expressions of these priors are given as follows.

The birth process happens with predefined probability of Pb and independent with any existing sources. The

probability of a birth process can thus be given as

p(b
(i)
k ) =

Pb, b
(i)
k = 1;

1− Pb, b
(i)
k = 0 or |X (i)

k−1| = Nmax.

(24)

In practice, Pb is unknown and is usually determined by experimental study. Generally, increasing the value of the

birth probability Pb is expected to enhance the probability of discovering a new source. However, an overly large

value may increase the risk of overestimation of the source number.

Given an existing source in the tracking scene, its lifetime is modelled to obtain a death prior. In this work,

the lifetime of a source Tm is modeled by a gamma distribution [49]. The gamma probability density function is

widely used in reliability models of lifetimes, and is more flexible than the exponential distribution in that it can
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be regarded as a summation of multiple exponential distributions and can be used to model the variables that seem

to be highly skewed. The probability of the expected track length of the mth source follows a gamma distribution,

given as

Tm ∼ G(Tm|α, β) = Tm
(α−1) β

αe
−Tm
β

Γ(α)
, (25)

where G(·|α, β) is the gamma distribution with α and β denoting the shape parameter and scale parameter

respectively.

Suppose that t0 is the frame length (in seconds) of the processed speech signal and at time step k, the time stamp

is tk = kt0. Further assume that t(i)m is the last time that the source m is associated with a TDOA measurement.

During the period ∆t
(i)
m = tk−1 − t(i)m , the source is not associated but remains in the scene. Given the condition

T
(i)
m ≥ tk−1 − t

(i)
m , we are interested in the probability that the source is dead at current time step tk, with

tk = tk−1 + t0. The probability that the source is dead at current time tk is [49]

p(d
(i)
k |∆t

(i)
m ) = P (T (i)

m ∈
[
∆t(i)m ,∆t(i)m + t0

]
|T (i)
m ≥ ∆t(i)m ). (26)

Given a Gamma distribution, the death probability is determined by the period that it is not associated but still alive

∆t
(i)
m = tk−1 − t(i)m . Normally, the larger is ∆t

(i)
m , the higher possibility the source m dies. The gamma parameter

pair (α, β) controls how fast the source dies.

The source survival are constructed after considering the death process. If the mth source is not dead at current

time step k, it is surviving with a probability of 1 − p(d(i)
k |∆t

(i)
m ). Hence, the density after considering the death

process is

p(d
(i)
k |d

(i)
k−1) =

M
(i)
k∑

m=1

p(d
(i)
k |∆t

(i)
m )

Mk−1∏
m′=1,
m′ 6=m

{
1− p(d(i)

k |∆t
(i)
m′)

}
. (27)

After the birth and death processes, the prior probability of the association indicator can be defined as

p(γ
(i)
k = γ|b(i)

k ,d
(i)
k ,γ

(i)
k−1) =


pf , γ = 0;
1−pf
M

(i)
k

, γ = m,m 6= 0;

0, otherwise.

(28)

where pf is the prior probability of false alarm, and the source number M (i)
k is defined as

M
(i)
k =


|X (i)
k ∪ Bk| = M

(i)
k−1 + 1, b

(i)
k = 1;

|X (i)
k \ Dk| = M

(i)
k−1 − 1, d

(i)
k = 1;

|X (i)
k | = M

(i)
k−1, otherwise.

(29)

Since the probability of false alarm is pf , the probability for all the sources is 1− pf . To keep the summation of

the association prior to be unity, a reasonable choice for setting the probability for each source is thus to distribute

the probability of all the sources equally, i.e., (1− pf )/M
(i)
k .
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B. Optimal importance function

The optimal importance function [56], q(θk|θ(i)
k−1,Z1:k) = p(θk|θ(i)

k−1,Z1:k), has been proved to be able to

minimize the variance of the importance weight w(i)
k conditional upon the previous states and measurements. Since

the position states Xk is marginalized out by the EKF, the measurement is only conditional on the latent variable

θ
(i)
k . The optimal importance distribution can be stated as

θ
(i)
k ∼ q(θk|θ

(i)
k−1,Z1:k)

=
p(Zk|θ(i)

k ,Z1:k−1)p(θ
(i)
k |θ

(i)
k−1,Z1:k−1)

p(Zk|θ(i)
k−1,Z1:k−1)

, (30)

Substituting the optimal importance function (30) into the weight updating equation (21), we can get the new

expression of the weight updating, given as

w
(i)
k ∝ w

(i)
k−1p(Zk|θ

(i)
k−1,Z1:k−1). (31)

where

p(Zk|θ(i)
k−1,Z1:k−1) =

∫
p(Zk,θk|θ(i)

k−1,Z1:k−1)dθk

=
∑

γk,bk,dk

p(Zk|θ(i)
k−1,γk, bk,dk,Z1:k−1)

× p(γk|dk, bk,θ
(i)
k−1)p(dk|d(i)

k−1)p(bk), (32)

where p(bk), p(dk|d(i)
k−1) , and p(γk|dk, bk,θ

(i)
k−1) are given in (24), (27) and (28) respectively.

The TDOA measurements are processed one after another. Assume that the measurement at current process is

zn,k ∈ Zk. Given a latent variable θ(i)
k , the likelihood p(zn,k|θ(i)

k , z1:n−1,k,Z1:k−1) can be calculated as

p(zn,k|θ(i)
k , z1:n−1,k,Z1:k−1) =∫
F
p(zn,k,X|θ(i)

k , z1:n−1,k,Z1:k−1)µ(dX ), (33)

where the subscript F is the collection of all finite subsets of the state space, and µ(dX ) is a measure on F . Note

that in the case that µ is the Lebesgue measure, µ(dX ) is the same as dX . Since this work is from an application

point of view, readers are referred to [57], [58] for a detailed RFS definition and derivation of these PDFs. The

above likelihood (33) can be decomposed as

p(zn,k|θ(i)
k , z1:n−1,k,Z1:k−1) =∫

F
p(zn,k|γ(i)

n,k,X )p(X|θ(i)
k , z1:n−1,k,Z1:k−1)µ(dX ). (34)

If the measurement is associated with a clutter, i.e., γ(i)
k = 0, p(zn,k|γ(i)

n,k,X ) follows a uniform distribution over

the possible TDOA interval is given

p(zn,k|γ(i)
n,k = 0) = U[−τmax,τmax](zn,k) =

1

2τmax
, (35)
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Algorithm 2: Calculate the optimal importance function.

// over all source states in X (i)
k|k−1.

1) calculate the likelihood (38) and the filtered state according to the EKF steps in Appendix A.

2) calculate the likelihood for false alarms from (35).

// over all hypotheses in θ(i)
k .

3) compute the likelihood according to (32).

4) select the hypothesis θ(i)
k , and update the states X (i)

k accordingly;

5) update the particle weight according to (31).

where τmax = ‖p`,1 − p`,2‖/c is the maximum delay which can only happen when the microphone pair and the

source lie exactly on a line. The above expression (34) becomes

p(zn,k|γ(i)
n,k = 0)

∫
F
p(X|θ(i)

k , z1:n−1,k,Z1:k−1)µ(dX ) =
1

2τmax
. (36)

In the case that the measurement zn,k is associated with a source, i.e., γ(i)
k = m ≥ 0, for m = 1, . . . ,Mk, it follows

a nonlinear relationship with the source state given by

τ̂m,k(`) =
‖x̂(i)

m,k − p`,1‖ − ‖x̂
(i)
m,k − p`,2‖

c
. (37)

where p`,i, i ∈ {1, 2} is the position of the ith microphone of the `th pair, and x̂
(i)
m,k the state estimate given by

(49e) after the EKF step in Appendix A. The likelihood is given by

p(zn,k|γ(i)
n,k = m, x̂

(i)
m,k) =N (zn,k; τ̂m,k(`),S

(i)
m,k), (38)

where S
(i)
m,k is given by (49c) in Appendix A. The integral in (33) can be written as∫

p(zn,k|γ(i)
k = m,x

(i)
m,k)p(x

(i)
m,k|θ

(i)
k , z1:n−1,k)dx

(i)
m,k

= p(zn,k|γ(i)
n,k = m). (39)

Further, if the measurement is associated with a new born source, the same EKF implementation will apply. The

formulation of the likelihood follows (38) but using x0 and P0 as the state and variance respectively in the EKF

implementation.

The calculation of the integration in equation (32) is simply the summation of the probabilities of all the

hypotheses. The likelihood can be computed by using equation (35) or equation (38). The EKF also provides

the filtered position state distribution if the measurement is associated to a source. The filtered distribution after

the EKF implementation is given by equation (50) in Appendix A. The algorithm of the importance function

calculation is summarised in Algorithm 2. The advantage of using a PF here is that it allows a random hypothesis

pruning/determing rather than heuristic hypothesis selection in traditional gating based data association.
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C. State estimation and performance evaluation

The posterior distribution obtained by the RBPF is a joint distribution. Extracting a final state estimation is not as

straightforward as that in the single source scenario. The histogram like visualisation of the probability hypothesis

density (PHD) can be obtained as [47]

D(x̂k) =

N∑
i=1

w
(i)
k

M
(i)
k∑

m=1

N (xk; x̂
(i)
m,k, P̂

(i)
m,k), (40)

where M (i)
k is the dimension of the ith particle X (i)

k , and x̂
(i)
m,k and P̂

(i)
m,k) are the state vector and the variance

matrix of the mth source in the ith particle respectively.

The following error metrics are considered to evaluate the estimation performance over many Monte Carlo (MC)

runs: the percentage the tracking algorithm can estimate the right number of sources, and given the correct estimation

of the source number, how far the number and position estimates deviate from the ground truth. Suppose that J MC

runs are implemented. Let X̂j,k, j = 1, . . . , J and Xk represent the state estimates of the jth run and the ground truth

respectively, and M̂j,k = |X̂j,k| is the source number estimation. The probability of the correct number estimation

is defined as

Pk =
1

J

J∑
j=1

δ|Xk|

(
|X̂j,k|

)
× 100%. (41)

The probability of correct number estimation illustrates the percentage that the tracking algorithm reports the number

of the sources correctly. The cardinality error of the source number estimation εk is defined as

εk =

√√√√ J∑
j=1

1

J

∣∣∣M̂j,k −Mk

∣∣∣2. (42)

To evaluate the accuracy of source trajectory estimation, the position deviation under the correct number estimation

is considered. Let |X̂j,k| = |Xk| = Mk. The multiple speaker deviation at the jth MC run can be formulated as

[41]

dj(X̂j,k,Xk) = min
σ

√√√√ 1

Mk

Mk∑
i=1

∥∥∥x̂jσi,k − xi,k

∥∥∥2

, (43)

where the minimum is taken over all permutations on σ. The mean deviation is given by

ξk = E
(
dj(X̂j,k,Xk)

∣∣∣∣|X̂k| = |Xk|) . (44)

In general, equation (41) and (42) are able to give the performance of the source number estimation. Equation (44)

gives the position estimation errors conditioning on the correct number estimation. By using these measures, the

accuracy of both position and number estimation can be evaluated.

V. EXPERIMENTS

In this section, both simulated reverberant environment and real room environment experiments are organized

to evaluate the performance of the proposed algorithm. The parameters v and ρ in the source dynamic model

are given in III-A. Since it is assumed that there is no prior information about the initial source position, this is
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Fig. 3. Simulated room environment. Black dots numbered 1 to 8 denote the microphone positions, the solid lines represent the trajectories.

initialised at the center of the room with a velocity of 0.4m/s in both directions, i.e., x0 = (2.5, 2.0, 0.4, 0.4)T .

The corresponding initial variance is set as P0 = diag([1, 1, 0.1, 0.1]). The variance in the Langevin model is

Σk = diag([1, 1]). The measurement noise variance στ is set to 5× (0.1)9, and 50 particles are employed for the

proposed tracking approach. A small birth prior Pb = 0.1 is used to avoid an overestimation of the source number.

The gamma parameter pair (α, β) = (4, 0.4) are found to be satisfactory in terminating the source track when the

track is not associated with any of the TDOA measurements in a time step. These parameters are optimized by

extensive experimental study and are found to be adequate in following experiments. The tracking performance for

TDOA measurements using both DUET-GCC and traditional PHAT-GCC are demonstrated.

A. Tracking performance under a simulated room environment

Fig. 3 shows a simulated office room with dimensions 5 × 4 × 3m3. Four microphone pairs with a separation

of 0.5m are organized around the center of the walls. The height of the microphones and sources are assumed to

be known as 1.7m. The source motion trajectories follow two diagonal lines: one from bottom left to top right;

the other from top left to bottom right. Two talkers appear at different times to form a time-varying number of
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talkers: one is active from time step 1 to 50, and the other from 30 to 80. The speed of the source is set at 0.5m/s

(1.8km/h), which is one third of a regular pedestrian walking speed, ranging from 5.32km/h to 5.43km/h [59].

Considering that a moving talker within a room is likely to be smooth and slow-paced, this experimental speed is

reasonable and comparable with the source velocities in [10], [41]. The speech signals are processed with a frame

length of 128ms, at a sampling frequency of 8kHz. Different wall reflection coefficients are set to simulate different

reverberant environments. Noise conditions are simulated by adding additive white Gaussian noise (AWGN) with

different variance. The room impulse response (RIR) is simulated by using the imaging method [60]. The received

signal for a single source at each time step is obtained by convolving the clean speech signal with the RIR. These

received signals are then added together to form the received signal for multiple sources. Three different tracking

approaches are considered: 1) the proposed tracking approach using the TDOA measurements from the DUET-GCC

method (DUET proposed); 2) the proposed tracking approach using the TDOAs from the PHAT-GCC method (GCC

proposed); and 3) the RFS approach in [41] using the TDOA measurements from the DUET-GCC method (DUET

RFS). In the implementation, the RFS tracking algorithm is exactly the same as that in [41]. The only difference

is that the TDOA measurements are estimated from the DUET method. Hence, we name it as DUET RFS. The

RFS approach based on the TDOA measurements from the PHAT-GCC method [41] is not implemented here as

the PHAT-GCC TDOA measurements are much worse than the DUET-GCC based TDOA measurements. The GCC

RFS in [41] will perform much worse than the DUET-RFS implemented in this paper. The number of particles for

DUET RFS is set to be 200 and other parameters remain the same as used in [41].

1) Tracking results from a single experiment: In the first experiment, the results from a single experiment are

presented. All the wall reflection coefficients are set to 0.6, which leads to a reverberation time T60 = 0.163s. The

SNR is set to 30dB. To avoid exhaustive data associations, the TDOAs are extracted using the DUET-GCC method

and PHAT-GCC method by setting the threshold values as 0.7 and 0.9 respectively to exclude false alarms. Figure

4 displays the TDOAs obtained from the microphone pair 1 and the microphone pair 2. The proposed DUET-GCC

method presents better TDOA estimation for simultaneously active sources than the traditional PHAT-GCC method.

The probability of detection can be improved and also, the false alarm rate can be reduced by using the DUET-GCC

method. However, due to the reverberation and the interference between the source signals, it is very difficult to

extract the TDOAs for multiple simultaneously active sources, particularly when two sources are closely spaced.

For example, both methods degrade rapidly at microphone pair 2 when two sources are simultaneously active. Since

the false alarm rate for the DUET-GCC and PHAT-GCC based TDOA measurements are different, the prior for

false alarm is set to be different for two methods: pf = 0.05 for the former one and pf = 0.1 for the later.

Figure 5 shows the tracking result of a single trial from different tracking approaches. It shows that the proposed

tracking algorithm with DUET-GCC based TDOA measurements is able to estimate the number of the active

sources as well as the positions accurately. Although there are large measurement missing at the time steps when

two sources are simultaneously active, the algorithm is still able to preserve the tracks, and thus lock onto the

sources. The position tracking results are worse at the time steps when two sources are simultaneously active. The

main reason for this degradation is that the TDOA measurements are not as accurate as those in the nonconcurrent
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Fig. 4. TDOA estimates of (a) microphone pair 1; (b) microphone pair 2 from DUET-GCC and PHAT-GCC methods.

source scenario. The tracking loss likely happens when all or most of the microphone pairs fail to report correct

TDOA measurements. In addition, false source detections are likely presented by using TDOA measurements from

PHAT-GCC method. Given the same TDOA measurements, the RFS-PF approach [41] performs better at the time

steps when only a single source exists in the tracking scene. This is because at these time steps, the TDOA

measurements are estimated accurately. In addition, the RFS-PF algorithm under a single source scenario is similar

to a PF algorithm which has been demonstrated to be robust in noisy and reverberant environment. However, when

two sources are simultaneously active, the RFS-PF algorithm degrades significantly and performs worse than the

proposed tracking approach. The reason is that serious miss detection happens at these time steps and the RFS-PF

simply regarded the source as dead when none of the TDOA measurements is close to the ground truth. Hence, the
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number of sources is underestimated and consequently, the tracking performance is deteriorated, while the proposed

tracking method can still lock onto the sources by incorporating a more appropriate death prior.

To evaluate the performance over many MC runs, the measures defined in Section IV-C, the probability of correct

number estimation Pk, the cardinality error εk, and the global mean deviation ξk are employed. Fig. 6 shows the

average performance over 100 MC runs. The proposed tracking approach using the TDOA measurements based on

the DUET-GCC method is able to provide good detection and tracking accuracy, even when the two sources are

simultaneously active. The large error only presents at the time steps that the number of sources changes, i.e., the

time steps when source birth or death happens. Again, the proposed tracking algorithm using DUET-GCC based

TDOA measurement performs better than that using PHAT-GCC based TDOA measurements. For the PHAT-GCC

method, it is very difficult for the tracking algorithm to detect the source due to large miss detection at some time

steps. For example, at time steps 16, 31 and 71, the probability of correct number estimation is very small and all

other errors are large. In addition, the performance of the proposed tracking algorithm is better than that of the

RFS approach in [41]. It can be observed from Fig. 6(c) that the global mean deviation from DUET RFS is much

larger than that from the DUET based proposed RFS method when multiple sources are simultaneously active.

In general, the performance of the RFS approach [41] is favorably comparable with the proposed RFS approach

when a single source is active, but performs worse when multiple sources are simultaneously active. The overall

performance of the RFS approach is thus worse than that of the proposed RFS approach. It is worth mentioning

that using the global mean deviation only can not fully illustrate the error of the position estimation since it is

calculated based on results from correct cardinality estimation. In some cases, the algorithm can report accurate

source position estimates, however, these position estimates are not counted into the global mean deviation due to

an over-estimation or under-estimation of the source number.

2) Different simulated room environment: The algorithm is further implemented in a number of simulated

experiments to fully study its performance. The experiments are organized based on different SNRs and different

reverberation time T60s. The simulated reverberation time T60s are 0s, 0.163s and 0.289s respectively, and different

noisy environments are 0dB, 10dB and 20dB. For the simulations under different T60s, the SNR is fixed to 30dB;

and for simulations under different SNRs, T60 is set to 0.1s. All the parameters of the tracking algorithm are set the

same as those in the single trial experiment, except that under T60 = 0.289s and SNR=0dB, the priors of the false

alarm are chosen as 0.5 and 0.55 for the DUET-GCC and PHAT-GCC based tracking respectively. Table II gives

the average results over 100 MC runs. The tracking performance degrades as the noise or reverberation become

heavier. This is mainly because the probabilities of detection in TDOA measurements decreases and the false alarm

rate becomes larger. The tracking result based on the DUET-GCC TDOA measurements are better than that based

on PHAT-GCC TDOAs under all experiments since the DUET-GCC method preserves the TDOA detections well

and meanwhile excludes the false TDOA measurements more effective than the PHAT-GCC method. Further, the

proposed tracking method with DUET-GCC TDOA measurements performs better than the DUET RFS method

under different tracking scenarios.
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B. Real recording experiment

The performance of the approaches is examined in a real laboratory located at the University of Edinburgh,

Scotland. The room has carpet floor, concrete block walls and ceiling, one half-open wood door, and glass windows

covered by hard cardboard with a thickness ≈ 0.4cm, as shown in Fig. 7. The measured reverberation time is 0.836s

and the ambient noise level is −40dB [25]. The microphones are mounted on a set of T-bar stands, and the sources

are set at a height of 1.33m. The microphone response is omni-directional within the frequency range 0 to 4kHz.

The acoustic source used for all recordings is an omnidirectional speaker amounted on a small trolley, as shown in

Fig. 7. The source is moved via a pulley mechanism and its position is measured using a laser measuring device,

by which the sampled locations show that it is moving at a fairly constant velocity. The source signal is taken

from the TIMIT database [61]. All measured signals are sampled at fs = 44.1kHz and then downsampled to 8kHz,

which is sufficient for acoustic source localisation and tracking (ASLT). The frame length is set to 1024 samples, or

128msec, and the source velocity is around 0.5m/s. The reverberant signals for two sources are recorded separately

and then added together in the simultaneously active period to produce the received signals for a time-varying

number of sources.

The measurements extracted from the microphone pair 4 (microphone 4 and 5) and the microphone pair 14

(microphone 17 and 18) are presented in Fig. 8. Due to heavy reverberation (the reverberation time T60 is as long

as 0.8s as measured in [25]), the TDOA measurements are seriously deteriorated for both DUET-GCC and PHAT-

GCC methods. The parameters in the tracking algorithm are set the same as in the simulated experiments except the

prior of false alarms. Since the false alarms are heavier in the real audio lab experiments, the priors of false alarm are

set as pf = 0.65 and pf = 0.70 for the DUET-GCC method and the PHAT-GCC method respectively. The tracking

results from a single experiment is shown in Fig. 9. For the DUET-GCC measurement based tracking, the cardinality

TABLE II

TRACKING PERFORMANCE OF THE PROPOSED METHOD BASED ON THE DUET-GCC MEASUREMENT (DUET PROPOSED) AND THE

PROPOSED METHOD BASED ON PHAT-GCC MEASUREMENTS (GCC PROPOSED) AND THE RFS METHOD [41] BASED ON THE DUET-GCC

MEASUREMENT (DUET RFS) UNDER DIFFERENT ADVERSE ENVIRONMENTS.

method
T60 SNR

0s 0.163s 0.289s 0dB 10dB 20dB

P

DUET prop. 0.964 0.969 0.780 0.826 0.951 0.963

GCC prop. 0.920 0.869 0.686 0.641 0.815 0.921

DUET RFS 0.890 0.920 0.672 0.623 0.860 0.890

ε

DUET prop. 0.106 0.102 0.369 0.332 0.132 0.100

GCC prop. 0.159 0.240 0.540 0.534 0.306 0.161

DUET RFS 0.101 0.117 0.452 0.475 0.170 0.134

ξ

DUET prop. 0.086 0.103 0.381 0.256 0.109 0.093

GCC prop. 0.100 0.185 0.494 0.439 0.136 0.112

DUET prop. 0.241 0.234 0.481 0.459 0.248 0.221
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estimation is much better than that based on PHAT-GCC measurement. This is because the TDOA measurements

based on DUET-GCC method are more accurate than those based on the PHAT-GCC method, particularly when the

two sources are simultaneously active, e.g., from time step 46 to time step 65. However, the tracking performance

is worse than that in the simulated experiment due to a strong reverberation. It can also be observed that under the

same TDOA measurements, the proposed tracking approach is able to provide better performance than the RFS

method in [41].

To fully illustrate the average tracking performance for the real recording signals, the errors introduced in Section

IV-C are presented in Fig. 10. The results show that the proposed tracking approach with DUET-GCC TDOA

measurements is able to provide the best performance. The same as in the simulated environment, the performance

is degraded at the time steps where source birth/death occurs. When multiple sources are nonconcurrently appearing,

the tracking performance based on PHAT-GCC TDOA measurements is favorably comparable with that based on

TDOA measurements from DUET-GCC method. The average results over 100 MC runs are given in table III. Under

real lab environment, all these approaches are degraded significantly. However, the proposed tracking approach using

DUET-GCC TDOA measurements performs the best in cardinality estimation as well as in position estimation.

VI. CONCLUSIONS

A TF masking based RFS-PF Method is developed to track an unknown and time-varying number of acoustic

sources. Using the measurements extracted from DUET-GCC and PHAT-GCC methods, the performance of the

tracking approach is fully investigated in the real audio lab as well as in the simulated room environment. The results

from all experiments demonstrate that the proposed tracking approach is able to track multiple sources accurately.

The experiment results also show that the tracking performance based on the DUET-GCC TDOA measurements

are better than that based on the PHAT-GCC TDOA measurements. Also, the proposed tracking approach performs

better than the RFS approach in [41].

However, tracking multiple acoustic sources in the room environment is still a challenge problem due to the

reverberation and the interference among multiple source signals. For the tracking system developed in this paper,

the number of acoustic sources is assumed to be small. An interesting direction for future work is to investigate

the tracking approach for large number (say more than two) of sources. This unfortunately leads to following open

questions. First, it requires more sophisticated approach to extract the TDOA measurements for multiple sources.

TABLE III

TRACKING PERFORMANCE UNDER REAL AUDIO LAB ENVIRONMENT FOR THREE DIFFERENT APPROACHES: DUET PROPOSED, GCC

PROPOSED AND DUET RFS.

error P ε ξ

DUET prop. 0.765 0.390 0.304

GCC prop. 0.686 0.509 0.382

DUET RFS 0.651 0.496 0.379
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This is not a trivial task since a short frame length is required to keep the system locking on the source dynamics,

while extracting the TDOA measurements for multiple sources based on such short frames is very difficult. Further,

assigning different hypotheses between the source states and the measurements will become computationally more

expensive as the number of sources increases. One solution could be incorporating more advanced speech separation

approach into our tracking framework to improve the estimation performance.

APPENDIX

EXTENDED KALMAN FILTERING

Following [22], the first-order Taylor expansion on the measurement function (37) is

τ̂n,k(`) =τ̂m,k−1(`)

+ Cm,k(`) [xm,k − xm,k−1]
T

+ n̄k, (45)

where n̄k = Ox(xm,k) is the higher order error of the time delay expansion, and Cm,k(`) is the coefficient vector

of Taylor expansion

Cm,k(`) =
1

c

[
xm,k − p`,1
‖xm,k − p`,1‖

− xm,k − p`,2
‖xm,k − p`,2‖

]∣∣∣∣
xm,k=x̂m,k−1

. (46)

where x̂m,k−1 is the source position estimated at the previous time step k − 1. Define

τ̄n,k(`) = τ̂n,k(`)− τ̂m,k−1(`) + Cm,k(`)x̂m,k−1, (47)

where τ̂n,k(`) is the TDOA measurement extracted from the largest peak of the DUET-GCC function (10), and

τ̂m,k−1(`) is calculated from (37). The nonlinear measurement is thus approximated by

τ̄n,k(`) ≈ Cm,k(`)xm,k + n̄k. (48)

Hence, the modified measurement τ̄n,k(`) is a linear function of the state xm,k and a standard KF can be applied.

Assume that at the previous time step, the estimated state and variance are x̂m,k−1 and P̂m,k−1 respectively.

Regarding (16) as the state process, the implementation of an EKF can be summarized as [62]

xm,k|k−1 = Ax̂m,k−1; (49a)

Pm,k|k−1 = AP̂m,k−1A
T + QΣkQ

T ; (49b)

Sm,k = στ + Cm,k(`)Pm,k|k−1C
T
m,k(`); (49c)

Km,k = Pm,k|k−1C
T
m,k(`)(Sm,k)−1; (49d)

x̂m,k = xm,k|k−1 + Km,k(τ̂n,k(`)− τ̂m,k(`)); (49e)

P̂m,k = Pm,k|k−1 −Km,kCm,k(`)Pm,k|k−1. (49f)

After the EKF steps, the the posterior distribution is given by

p(xm,k|xm,k−1, τ̂n,k(`)) = N (xm,k; x̂m,k, P̂m,k). (50)
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Fig. 5. Tracking result of a single trial under the reverberant environment (T60 = 0.163s). (a) Estimation of the number of the sources; (b)

estimation results of the x-coordinate; and (c) estimation result of the y-coordinate.
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Fig. 6. Average tracking result of 100 Monte Carlo simulations under the reverberant environment (T60 = 0.163s). (a) Correct number

estimation probability; (b) cardinality error; and (c) mean deviation.
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Fig. 7. Real audio room environment for performance evaluation.
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Fig. 8. TDOA estimates of (a) microphone pair 4; (b) microphone pair 14 from DUET-GCC and PHAT-GCC methods in the real audio lab

environment. Source 1 is active from time step 1 to 65, and then source 2 follows from time step 46 to 103.
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Fig. 9. Tracking result of the real recording signals. (a) Estimation of the number of the sources; (b) estimation results of the x-coordinate;

and (c) estimation result of the y-coordinate.
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Fig. 10. Average tracking result of 100 Monte Carlo implementations in the real audio lab environment. (a) Correct number estimation

probability; (b) cardinality error; and (c) mean deviation.
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