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Abstract

For languages with fast vocabulary growth and limited resources, data sparsity leads to challenges

in training a language model. One strategy for addressing this problem is to leverage morphological

structure as features in the model. This paper explores different uses of unsupervised morphological

features in both the history and prediction space for three word-based exponential models (maximum

entropy, logbilinear, and recurrent neural net (RNN)). Multi-task training is introduced as a regularizing

mechanism to improve performance in the continuous-space approaches. The models are compared to

non-parametric baselines. From using the RNN with morphological features and multi-task learning,

experiments with conversational speech from four languages show we can obtain consistent gains of

7–11% in perplexity reduction in a limited-resource scenario (10 hrs speech), and 12–18% when the

training size is increased (80 hrs). Results are mixed for all other approaches, compared to a modified

Kneser-Ney baseline, but morphology is useful in continuous-space models compared to their word-only

baseline. Multi-task learning improves both continuous-space models.
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I. INTRODUCTION

Languages with rich morphological structure have high vocabulary growth which leads to data sparsity

and makes it difficult to train a high-order n-gram language model (LM). The problem is particularly

challenging for low-resource languages. The resulting weak LMs pose challenges for applications such

as automatic speech recognition and machine translation, where LMs have a significant impact on

performance.

In speech recognition, one approach to deal with n-gram sparsity in morphologically rich languages is

to use subword vocabularies, such as syllables, morphologically-based subwords, or data-driven units such

as graphones [1]. While some work has obtained good results by basing the vocabulary entirely on morphs

(see [2]–[5] and references therein), in most scenarios better transcription performance is obtained with

word-based vocabularies or with a combination of words and subwords, e.g. [6]–[10], since the shorter

subwords are more acoustically confusable. In this work, we focus on word-based vocabularies, but the

findings are relevant for mixed word/subword systems.

Given a word-based vocabulary in a limited resource scenario, data sparsity is a major challenge for

the language model. Different methods have been developed for addressing the problem of data sparsity,

including class LMs, n-gram and grammar-based LMs using sublexical units, and feature-based LMs.

Class-based LMs (e.g. [11]–[13]) reduce the number of parameters via grouping words into classes for

representing the history. LMs that expand words into a sequence of sublexical units (e.g. [2], [14]) reduce

the number of free parameters by effectively reducing the vocabulary size. Feature-based models, which

is the approach taken in this work, reduce the number of free parameters by using a feature vector to

characterize a word that leverages advantages of the sublexical representation (when the features of a

word are indicators of its sublexical components) in a factored rather than sequential representation. The

features effectively associate a word with multiple classes. There are several variants of feature-based

models, as described in the next section. For all three types of models, the classes/units can be defined in

terms of linguistic categories or derived using data-driven unsupervised learning. For the limited resource

scenario, our focus is on unsupervised learning.

This paper studies the use of unsupervised morphological features (or, “morphs”) in the maximum-

entropy (ME) LM [15], the log-bilinear (LBL) LM [16] and the recurrent neural network (RNN) LM

[17], all of which share a similar exponential model form involving a mapping of the conditioning

context (word history) to a vector space, either discrete or continuous. In addition to comparing these

different model forms, we investigate the impact of using the morphological features only in the context

September 21, 2015 DRAFT



3

conditioning space vs. also in the word prediction (output) space as proposed in [18], [19], and the impact

of using maximum log probability of the morph sequence together with word sequence log likelihood in

the objective function (multi-task learning) as a form of regularization in training.

Experimental results are based on a standard limited resource training paradigm (transcripts for 10 hours

of conversational speech), particularly aiming at languages with rich morphology and large vocabulary

growth (Turkish, Bengali, Tamil and Zulu). We also show results on a less sparse data, i.e., transcripts with

80 hours of conversational speech. It is observed that while the morphological features do not improve

the ME LM, they are beneficial to the LBL LM and the RNN LM, both of which use continuous-space

context representations. Multi-task learning further improves the LBL LM and the RNN LM, and is

shown to be more effective than output word factorization. In all four languages, the best performance

is obtained using the RNN with morph features only for the context, in combination with multi-task

learning. The various comparisons lead to insights into useful modeling assumptions for exponential

LMs, particularly for the limited resource scenario.

The rest of the paper is organized as follows. In Section II, we review related work and outline the

key differences in our approach. Details of the proposed neural network architecture with morphological

features and the multi-task learning mechanism are provided in Section III. Experimental results and

analysis are presented in Section IV, including details on the implementation of morphology learning

and LM training. We conclude in Section V with a discussion of open questions and future directions

for research.

II. PRIOR WORK

In statistical language modeling, the morphological features of words can be leveraged in various ways

to obtain more robust word predictions when n-gram coverage is sparse. The first and most widely used

approach is the factored LM [20], [21], which addresses the problem of data sparsity by leveraging

sublexical features of words in the backoff algorithm, providing more flexibility than the standard n-

gram approach of sequential word backoff. Factored LMs are often used with morphological features,

which have the potential advantage of introducing powerful constraints in language modeling [2], [20].

Stream-based, class-based and factored n-gram LMs are compared in [14] for Arabic speech recognition,

where the best performance is obtained with the factored LM.

Features can also be incorporated in discriminative LMs, which use a perceptron or a ME framework in

N-best rescoring. While the original work used only n-gram features [22], the framework has been used to

combine morphological and syntactic features [5]. One can also think of word classes as features, which
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have also been used with success in ME LMs [23], [24]. The ME framework is well-suited to incorporating

different types of features and avoids the problems of more complex backoff strategies to leverage the

features. A relative of the (loglinear) ME model is the logbilinear (LBL) model, introduced in [16] with a

factored, low-rank representation of history and in [25], [26] with a combination of low-rank and sparse

weights. A feature-based version of the factored LBL is described in [18] and shown to outperform a

standard n-gram using the modified Kneser-Ney (mKN) backoff for six different languages on datasets

with 1M tokens, including two high vocabulary growth languages (Russian, Czech). A feature-based

version of the sparse-plus-low-rank model is explored for Turkish in [27], showing better performance

than the factored n-gram.

The LBL LM can also be viewed as a neural network model but without a non-linear transforma-

tion; the low-rank transformation provides a continuous-space representation of words. Early work with

continuous-space LMs was based on a feedforward neural network structure [28], [29], as are the feature-

based models used in [30]. The factored (feature-based) neural model is shown to outperform the factored

n-gram LM for Turkish in [30]. A word-character hybrid neural network LM outperforms the 4-gram

LM for the Mandarin large vocabulary continuous speech recognition in [31]. More recently, deep [32]

and recurrent [17] neural networks have been applied to language modeling with promising results. In

particular, the RNN LM developed by Mikolov and colleagues has been shown to be the state-of-the-art

LM by a large margin compared to other LMs when there are enough training data [17], [33]. However,

as we shall see here, there is only a small gain from the RNN LM over the mKN smoothed n-gram

LM in the low-resource scenario, which we hypothesize is due to the data sparsity problem. In [34],

the authors propose an RNN LM using subword units, which addresses the data sparsity problem, but

the subword-only vocabulary is not as effective for speech recognition. Sublexical features have been

successfully used in word-based RNN models in [35] for a Dutch multi-style corpus (with part-of-speech

tags and lemmas used as features in context words), in [36] for English news text (with part-of-speech

tags, lemmas, and stems as features in context words), and in [19] for Chinese Twitter (with syllables

used as features for both context and prediction words).

The use of features in [18], [19], [35], [36] all correspond to additive adjustments to the base continuous-

space representation of a word (embedding). In [19], a word-dependent scaling factor is incorporated to

weight the adjustments depending on the frequency of the word, further improving perplexity (PPL).

Many of the models using features include them only in representations of context (word history), e.g.

[30], [32], [35], [36]. Alternatively, the features may also be used in the word prediction space, as in

[18], [19].
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To summarize, in the various approaches to leveraging morphology features in word-based language

modeling, a number of different dimensions have been explored, but most of the comparisons consider

only a small number of options. In addition, the issue of sparse training data (for which the morphological

features are particularly relevant) has not been a primary focus. In this work, we explore multiple

dimensions within the general framework of exponential models, leveraging ME, LBL and RNN models,

and comparing these to a non-parametric factored n-gram LM baseline. Specifically, we compare

• joint and discrete (ME) vs. additive and continuous (LBL, RNN) morphological adjustment terms;

• fixed (ME, LBL) vs. recurrent histories (RNN); and

• use of morphological features in the history (+c) vs. also in the prediction space (++).

Of particular importance, we further studied the use of combining the additive word representation (LBL,

RNN) and multi-task learning, which we find has a greater impact than all these variants on successful

use of morphological features. The focus on the limited resource scenario and conversational speech also

differentiates our work from most prior continuous-space language modeling studies. For example, the

work here leverages limited training sets of less than 100k words or full training sets of less than 600k

words, compared to 1M words for the limited training case in [18], and 4M words in [19].

III. MODEL DESCRIPTION

A. Model Structures Without Morphological Features

We are interested in three different LM structures, i.e., the ME LM [15], the LBL LM [16], and the

RNN LM [17]. All three kinds of LMs estimate the probability of a word w conditioned on the context

words h as follows,

Pr(w|h) = exp(rTw · qh + bw + b0)∑
v∈V exp(r

T
v · qh + bv + b0)

(1)

where V denotes the vocabulary, rTw ∈ RD is the weight vector for word w being predicted, qh ∈ RD is

the feature vector for context words (or history) h, bw’s are the bias terms encoding the prior unigram

distribution, and b0 is a global bias term shared by all words.

The three models differ in the representation of context (word history). Specifically, using qi to represent

the history hi at time i

qME
i = I(hi) (2)

qLBL
i =

n−1∑
j=1

Cjswi−j
(3)

qRNN
i = f(swi−1

+Uqwi−2
1

) (4)
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where I(·) is a concatenation of binary indicator vectors (e.g., one-hot vectors for n-grams of different

length), swi−j
is a D-dimensional continuous-space representation of the j-th word in the history, Cj

and U are automatically-learned matrix transformations, and f(·) is a nonlinearity. For the ME model,

the context representation is very high dimensional and very sparse. The LBL and RNN models use

a relatively low-dimensional continuous-space context representation (also referred to as a distributed

representation or embedding), which incorporates a matrix transformation from a one-hot indicator vector

representation of words v in the vocabulary sv = SI(v). Both the ME and LBL models use a fixed-

length context window hi = wi−n+1, . . . , wi−1, while the RNN represents the full sentence history

hi = w1, . . . , wi−1, by using a recursive update of the context state. The two fixed-length context models

differ in that the ME representation uses indicators for specific n-grams, whereas the LBL represents n-

grams by concatenating context-dependent unigram indicators. A difference between the two continuous-

space models explored here is the use of multiple position-dependent transformations {Cj ∈ RD×D; j =

1, . . . , n − 1} for the n − 1 different words in the context history for LBL vs. a single transformation

U ∈ RD×D of the previous context history in the RNN. (Cj can be thought of as the transformation of

the embedding of the j-th word in the history that makes it more useful for word prediction.) Since we

tune the dimension D of the continuous space representation for each model based on a development

set, this is not so much a difference in the number of parameters as it is in the explicit representation of

relative word position in the LBL case. In addition, the RNN uses a nonlinear transformation on each

element of the context vector (unlike the LBL), specifically the Sigmoid function:

Sigmoid(x) =
1

1 + exp (−x)
. (5)

The three different models are illustrated with a neural network style representation in Figs. 1–3 to

contrast the structures. In all cases, the initial representation of word context takes a binary form, and

the normalization in equation (1) corresponds to a softmax output layer:

Softmax(x) =
exp(x)∑

x′∈X exp(x′)
(6)

where the denominator sums over all neurons of the output layer and ensures the activations of the output

layer form a probability distribution.

In the experiments here, we use two different implementations of the ME LM: the SRILM [38] and the

hash-based implementation of ME LM as described in [39]. We implemented the hash-based ME LM,

the LBL LM, and the RNN LM for our experiments following the same design on most implementation

details but incorporating noise contrastive estimation (NCE) [37] in training and modifications described

in subsequent sections.
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R

qh

Pr(w|h)

Fig. 1: Structure of the ME LM: The binary input layer is directly connected to the softmax output layer

using the weight matrix R.

S

R

qh

Pr(w|h)

S S

C1 C2 Cn-1

Fig. 2: Structure of the LBL LM: The input layers use a one-hot encoding for each context word, each of

which is connected to the projection layers using the same projection matrix S, and the projection layers

are connected to the hidden layer using position-dependent weight matrices Cj . Finally, the hidden layer

is connected to the softmax output layer using the weight matrix R. The projection layers and the hidden

layer usually have the same size, i.e., Cj’s are square matrices [37].

B. Model Structures With Morphological Features

For each word, we can obtain a morph decomposition via unsupervised learning. For example, the

morph decomposition learned for the Turkish word “dizgelerimde” (meaning “on my lists”) is “diz ge

ler im de”, i.e., “arrange - Der.Noun - Plural - 1SG.Possessive - Locative”. Details about the morphology

learning are provided in Subsection IV-B.

Two methods are used to incorporate morphological features into the three different LMs. The first set

of LMs (ME+c, LBL+c, and RNN+c) exploit morphological decomposition for the context words only;
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S

R

Uqh

Pr(w|h)

Fig. 3: Structure of the RNN LM: The input layer uses a one-hot encoding for the closest context word,

which is connected to the hidden layer using the weight matrix S, and the hidden layer is recurrently

connected to the last hidden layer using the weight U. A Sigmoid transformation is applied to the hidden

layer, which is then connected to the softmax output layer using the weight matrix R.

R S

Fig. 4: Left: input layer for ME+c LM, a binary feature vector representing all possible combinations

of word and/or individual morphs to characterize the word history. Right: input layer for LBL+c and

RNN+c LMs, a binary vector of length V1 + V2 representing a context word (dimension V1) and its

morphs (dimension V2). Horizontal lines and vertical lines represent words and morphs, respectively.

Mixed horizontal and vertical lines represent mixed-word-morph features.

the word being predicted is kept in the word form. As shown in Fig. 4, they augment the input word

index by encoding the morphs for the context words at the input layer(s). The models in the second

set of LMs (ME++, LBL++, RNN++) additionally utilize the morph decomposition for the word being

predicted. Fig. 5 illustrates this method by adding an itermediate factor hidden layer between the layer

representing qh and the output layer. The weight matrix G between qh and the factor hidden layer needs

to be learned, whereas the dictionary-specific weight matrix F between the factor hidden layer and the

output layer is determined by the morph decomposition of the word.

ME+c LM: With the morph decomposition available, there are multiple ways to factor the word-only
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R

qh

Pr(w|h)

G

F

Fig. 5: Additional factor hidden layer between the layer representing qh and the output layer. The factor

hidden layer is a linear layer with no transformation. It is connected to the softmax output layer with a

dictionary-specified weight matrix F representing the mapping from the word to its morphs.

n-gram into mixed-word-morph n-gram: the j-th unit of the n-gram can be associated with any one of the

morphological decomposed units of the j-th word or the word itself. For example, if there are 3 morphs

for each of the two context words in a trigram, we can have 16 (42) ways to factor the 4 features (the 3

morphs and the word) of each of these two words. The resulting binary vector qh has 16 non-zero entries

for the trigram, as well as additional (analogous) non-zero entries for the bigram and unigram contexts.

Therefore, many more features are obtained. This way of constructing ME features is inspired by the

factored LM [20], [21], where for each word n-gram, it considers multiple backoff paths according to

different ways to factor the context words.

LBL+c and RNN+c LMs: Instead of using binary vectors of length V1 for context words, the input

layers are now vectors of length V1 + V2 where V1 and V2 are the vocabulary (inventory) sizes of words

and morphs, respectively. For each word w, the entry representing the word is set to 1, and the entries

representing the morphs are set to the their occurrence in the morph decomposition of the word. In this

way, the continuous representation of a context word becomes the sum of its word-form representation

and its morph-form representations, which is called an additive word representation in [18]. For the LBL

case, the model structure is identical to the LBL+c LM described in [18].

ME++ LM: The ME+c LM only decomposes the context words. The word being predicted can be

decomposed into morphs as well. The ME++ LM utilizes this additional information by adding ME

features that represent the resulting mixed-word-morph n-grams. Considering the trigram example, this

time with a word to be predicted with 2 morphs, there are 3 ways to factor the predicted word, combined

with the 16 ways to factor the context words, giving 48 (16 × 3) mixed-word-morph features for this
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word triple. This is equivalent to inserting an additional factor hidden layer of size V2 between the input

layer and the softmax output layer. Each entry of the factor hidden layer represents a morph in the morph

vocabulary. No transformation is done on the factor hidden layer. The weight matrix F between the factor

hidden layer and the softmax output layer is not learned, but rather is defined by the mapping from words

to their morphs.

LBL++ and RNN++ LMs: As discussed in [18], the additive word representation can be used on

the word being predicted as well as the context words. This leads to the LBL++ LM described in [18].

Compared with the LBL+c LM, there is an additional factor hidden layer of size V2 between the hidden

layer and the softmax output layer. Here, we apply the same idea to the RNN to obtain the RNN++

model. As for the ME++ LM, each entry of the factor hidden layer represents a morph in the morph

vocabulary, and no transformation is done on the factor hidden layer. The weight matrix F between the

factor hidden layer and the softmax output layer is simply defined by the mapping from words to their

morphs.

C. Multi-task Learning Objective

The LBL++ LM and the RNN++ LM utilize the morph decomposition for the word being predicted by

the additional factor hidden layer. In this subsection, we study another way to utilize such information via

multi-task learning. To train the LBL+c LM and the RNN+c LM, the objective function can be modified

to the log-likelihood of the word sequences plus the weighted log-likelihood of the morph sequences,

i.e.,
T∑
t=1

[
log Pr(wt|wt−1

1 )+µ log Pr(m
(t)
K(t) , . . . ,m

(t)
1 |w

t−1
1 )

]

=

T∑
t=1

log Pr(wt|wt−1
1 ) + µ

K(t)∑
k=1

log Pr(m
(t)
k |w

t−1
1 )

 (7)

where wt is the word at time t, m(t)
k is the k-th morph in the morph sequence of wt, K(t) is the length of

the morph sequence of wt, and µ is the weight on the log-likelihood of morph sequences in the training

objective function. As reflected in the multi-task learning objective (7), the morphs of the predicted word

are assumed to be independent with each other conditioned on context words. Note if two words share

the same morph units but have different ordering of the morph sequences, the training objective will be

different due to the term Pr(wt|wt−1
t ).

To train the LBL+c LM and the RNN+c LM with the multi-task learning objective, the models need to

have an additional softmax output layer for morphs of the predicted word, as shown in Fig. 6. In this way,
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R

qh

Pr(w|h)

G

Pr(m|h)

Fig. 6: Additional softmax output layer for factors when using multi-task learning. The hidden layer

is connected to the softmax output layers for words and morphs via the weight matrices R and G,

respectively.

additional error signals are obtained from the softmax output layer for morphs and are back-propogated to

the hidden layer and other layers. Note that it does not make sense to train the ME+c LM with multi-task

learning since the input layer is directly connected to the softmax output layer.

IV. EXPERIMENTS

We conduct multiple experiments in order to assess the impact of different model structures and

the multi-task learning mechanism on PPL. In this section, we first describe the corpora used in the

experiments, the morphology learning approach, and the training protocol. Then we present a series of

baseline LM experiments on four different languages to compare the word-based exponential models to

the standard n-gram and factored n-gram models. Finally, we present a series of LM experiments on four

different languages to compare the X LMs (X is ME, LBL, or RNN), the X+c LMs, the X++ LMs and

the X+c LMs with multi-task learning.

A. Corpora

Our experiments use the transcriptions of the IARPA Babel conversational speech data. Specifically, we

investigate four languages: Turkish (IARPA-babel105b-v0.4), Benagli (IARPA-babel103b-v0.4b), Tamil

(IARPA-babel204b-v1.1b), and Zulu (IARPA-babel206b-v0.1e) [40]. The transcribed data are post-processed

by using a common special token to replace all tokens of speech events and non-speech events such

as mispronounced words, background noise, etc., except <hes> and <laugh> which represent verbal

hesitations (filled pauses) and laughter, respectively. For each language, the LMs are trained on two

versions of training set, i.e., the 10-hour limited language pack (LLP) and the 80-hour full language

pack (FLP). For each language, another 10-hour of speech data is split into a development (dev) set for
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Statistics Turkish Bengali Tamil Zulu

LLP

vocabulary size 10k 8k 14k 14k

# tokens 71k 76k 74k 61k

% OOV tokens (dev) 16.2 11.7 19.3 23.6

% OOV tokens (test) 15.4 11.7 19.8 24.0

FLP

vocabulary size 38k 24k 52k 54k

# tokens 554k 464k 438k 362k

% OOV tokens (dev) 8.9 6.7 12.2 14.3

% OOV tokens (test) 8.1 6.7 12.7 15.2

# dev tokens 23k 25k 25k 19k

# test tokens 48k 49k 49k 41k

TABLE I: Statistics of Babel data with a word-based vocabulary.

Statistics Turkish Bengali Tamil Zulu

LLP

vocabulary size 3k 1k 2k 4k

# tokens 122k 164k 176k 119k

% OOV tokens (dev) 2.5 1.4 1.2 1.7

% OOV tokens (test) 2.2 1.4 1.5 1.8

# dev tokens 41k 54k 59k 39k

# test tokens 85k 108k 117k 85k

FLP

vocabulary size 9k 2k 4k 10k

# tokens 879k 871k 842k 631k

% OOV tokens (dev) 2.4 1.6 1.5 1.5

% OOV tokens (test) 2.1 1.6 1.8 1.5

# dev tokens 37k 47k 48k 33k

# test tokens 76k 93k 94k 73k

TABLE II: Statistics of Babel data with a morph-based vocabulary.

parameter tuning during the training, and a test set used for PPL evaluation.1 The statistics of the data

before morph decomposition are summarized in Table I. All four languages in the LLP case have OOV

token rates higher than 10%, as well as Tamil and Zulu in the FLP case (see rows “% OOV tokens” in

Table I). In addition, a large fraction of the word types in the LLP training data occur only once or twice

– roughly 70-80% for these languages, as explored further in the next section. This severe data sparsity

1The test set is an internal test set, not the official BABEL eval set.
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Turkish Bengali Tamil Zulu

% w tail types in training 72.6 67.1 78.7 80.9

% w+m tail types in training 3.5 0.8 0.9 4.5

% w tail tokens in training 12.7 8.7 17.9 21.5

% w+m tail tokens in training 0.7 0.1 0.2 1.3

% w tail types in dev 19.8 17.6 16.9 16.6

% w+m tail types in dev 0.9 0.2 0.1 0.9

% w tail tokens in dev 6.3 4.8 6.5 7.9

% w+m tail tokens in dev 0.3 0.1 0.0 0.5

% w tail types in test 19.3 19.3 17.0 16.0

% w+m tail types in test 0.9 0.2 0.2 0.9

% w tail tokens in test 6.2 5.0 6.8 7.5

% w+m tail tokens in test 0.4 0.1 0.1 0.5

TABLE III: Statistics of Babel LLP data tail word coverage, defined with and without consideration of

morph coverage. w: word; w+m: word+morph.

problem makes it difficult to train a robust LM for those words.

B. Morphology Learning

The morph features were learned in a fully unsupervised manner using the state-of-the-art morphologi-

cal segmentation toolkit Morfessor Categories-MAP [41], which is a standard used in many other studies.

To obtain word-internal segmentations, Morfessor recursively splits words into morphs, and tries to find

a lexicon of morphs that is both accurate and minimal given the corpus by maximizing the posteriori

probability

argmaxlexicon Pr(lexicon|corpus)

= argmaxlexicon Pr(corpus|lexicon)Pr(lexicon), (8)

which is a variant of the minimum-description-length principle. The learned morphs are labeled as prefixes

(PRE), stems (STM) or suffixes (SUF) using a hidden Markov model and are restricted to represent words

of the form (PRE∗ STM SUF∗)+, where ∗ and + represent the Kleene star and Kleene plus, respectively.

The degree of segmentation can be manipulated via Morfessor’s PPL threshold parameter τ , which

controls the likelihood of a given morph being a prefix or suffix in the context of a word. The optimal

value of this parameter is usually determined using a labeled development set [41], as its effect strongly
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depends on the morphological structure of the language and the size of the training set. Since we do not

have any labeled data, we used an extensive search over τ to find a value that minimizes the percentage

of rare morphs in the lexicon while still providing high coverage of the corpus.

For all four languages under the LLP and FLP conditions, we trained Morfessor on the transcriptions of

the corresponding training data, i.e. the words in their standard orthography or grapheme representation

were used as training data. The learned models were then used to obtain a morphological segmentation

of the entire development set.

The statistics of the data after morph decomposition based on the learned segmentation are shown in

Table II. Note the number of dev and test tokens are less under the FLP condition than that under the

LLP condition, since the morphs learned under the FLP condition are longer in average. Compared with

Table I, it can be observed that the morph-only vocabulary is much smaller than the word-only vocabulary,

and the morph OOV rate is lower – all of which we would expect from a good morph decomposition.

This motivates the use of morphs for alleviating the data sparsity problem.

For a word-based LM, we are interested in how well the observed words are covered in terms of

their component morphs. Table III shows how morph features of a word can improve coverage in the

LLP case. We define word “tail” types as words that occurred only once or twice in the training text,2

and word+morph tail types as words for which all morphs in the word occur once or twice in the

morph-expanded training data. The table shows that the use of morphs introduces features that allow

generalization of a large fraction of these tail word type: 73-81% of the tail words in the different

languages have more frequent representation of their component morphs. The precentage of tokens

represented by these tail tokens is sizable in the training data (9–21%). In the dev and test sets, these

tokens are less frequent (5–8%) but still non-trivial. The tail rate is reduced to less than 1% when morphs

are used as features, so improved estimation of these rare words can have an impact.

C. LM Training and Tuning

When training the neural network LMs, computing the denominator in (1) is very expensive. In our

experiments, noise-contrastive estimation (NCE) is used to avoid normalization during training [37]. For

each word/morph, 50 noise samples are used for all experiments. In other words, for the multi-task

2Another reasonable definition of tail words can include OOV words. However, since the vocabulary includes all the words

in the training data, there are no OOVs in the training data; hence, the LMs cannot learn anything for OOV words. Thus, we

do not include OOV words as tail words in the statistics here.
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learning, if there are K morphs for the word being predicted, then 50K noise samples for the morphs

are used in addition to the 50 noise samples for the word.

All weight matrices except the weight matrices in the ME structures are initialized randomly according

to a sharp, zero-mean Gaussian distribution. Bias terms and the weight matrices for the ME LM, the

ME+c LM and the ME++ LM are initialized as zeros.

The standard back-propagation algorithm with stochastic gradient descent is used. For RNN strucutres,

the truncated back-propagation through time (BPTT) algorithm is used [17]. The BPTT unfold level is

set to 1 in our experiments; we found that a larger BPTT unfold level does not improve the LMs using

the studied corpora and it has higher computation cost. No regularization is applied. The training data are

randomly shuffled at the sentence level, i.e. changing the order that sentences are presented during each

epoch of training. By doing so, the PPL can be reduced by around 3-4% compared to using non-shuffled

training data [39]. The learning rate is initialized as some value α0. Once the PPL of the dev set increases,

it restores the model parameters in the last epoch and the learning rate is halved at each new epoch. The

training is terminated when the PPL of the dev set increases for the second time.

The initial learning rate α0, the weight µ in the multi-task learning objective (7), and the dimension D

of the feature vector for LBL and RNN structures are separately tuned for each model based on the PPL

on the dev set. For ME and LBL structures, the order of the n-gram is 3 throughout the experiments in

the paper. No benefit was found from higher-order n-grams in early experiments due to limited amount

of training data. To train the ME LMs, we use a hash array of length 108 to store the feature weights for

word n-grams; to train the ME+c LMs and ME++ LMs, an additional hash array of length 109 is used

to store the feature weights for the mixed-word-morph n-grams and morph n-grams.

D. Baselines

Several baseline LMs are implemented, including:

• mKN smoothed tri-gram LM. This model is trained using SRILM [42] and does not use morpho-

logical features.

• Non-hash-based ME tri-gram LM. This is non-hash-based ME LM and is trained using SRILM [42].

No morphological features are used. No `2 regularization is used.

• Non-hash-based ME tri-gram LM + `2. This ME LM is trained with `2 regularization. It is effective

in reducing the PPL of the ME LMs. The `2 regularization parameter is tuned according to the PPL

on the validation data.
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Language Model Turkish Bengali Tamil Zulu

mKN backoff LM 242.8 255.1 395.6 275.7

Non-hash-based ME LM 256.6 272.5 425.5 287.0

Non-hash-based ME LM + `2 234.0 244.4 386.1 262.7

Hash-based ME LM 239.5 252.5 389.1 265.2

LBL LM 277.2 267.0 438.0 309.1

RNN LM 243.5 248.0 407.3 278.4

Factored LM 254.3 259.1 443.8 277.4

TABLE IV: PPL of different baseline trigram LMs on the test sets under the LLP condition. Bold numbers

indicate the lowest PPL of all baseline LMs, whereas numbers with underline indicate lower PPL than

the mKN backoff LM.

Language Model Turkish Bengali Tamil Zulu

mKN backoff LM 293.8 275.1 501.5 410.5

Non-hash-based ME LM 309.4 293.7 533.2 427.1

Non-hash-based ME LM + `2 282.0 263.7 483.5 391.8

Hash-based ME LM 296.7 279.4 498.0 396.4

LBL LM 303.1 276.4 522.5 442.2

RNN LM 277.9 253.4 455.7 394.2

Factored LM 307.4 288.9 547.1 418.1

TABLE V: PPL of different baseline trigram LMs on the test sets under the FLP condition. Bold numbers

indicate the lowest PPL of all baseline LMs, whereas numbers with underline indicate lower PPL than

the mKN backoff LM.

• Factored tri-gram LM. This model uses the morphological features. It is trained using SRILM [42]

and is tuned based on the PPL on the validation set using a genetic algorithm to learn the back-

off strategy [43] with the publicly-available tool at http://ssli.ee.washington.edu/people/duh/research/

gaflm.html.

Tables IV (LLP) and V (FLP) summarize the PPL of the different baseline trigram LMs for the four

languages explored here, with the word-based results for three exponential models (hash-based ME, LBL

and RNN) for comparison. The PPL under the FLP condition is higher than that under the LLP condition

as the vocabulary covers more words. The only method that consistently beats the baseline mKN LMs

for both LLP and FLP is the non-hash-based ME LM with regularization. This gives the best result

September 21, 2015 DRAFT



17

for the LLP condition, but the RNN has better results for the FLP condition. Besides the mechanism

for storing the feature weights, the training of the hash-based ME LMs differs from the training of the

non-hash-based ME LMs, and some preliminary experiments show no improvement on the hash-based

LM can be gained via `2 regularization. Also, when training the hash-based ME LMs, a validation set

is used for early stopping, which should avoid overffiting. This explains why the hash-based ME LMs

are better than the non-hash based ME LMs without `2 regularization.

The LBL and RNN word-based models have very different performance, with the RNN model coming

close to or beating the mKN baseline, but the LBL is usually among the worst performing models. This

may be due to overtraining for the LBL given the large number of free parameters associated with the

position-dependent weight matrices, although performance is poor for both LLP and FLP conditions and

the results in [37] with diagonal matrices do not beat the mKN baselines until using a longer context

window.

Although the factored LM utilizes the morphological features, no gain can be obtained over the mKN

baseline for any of the four languages for both LLP and FLP cases. It is not simply a matter of overtraining

the genetic algorithm, however, since performance degrades on both the tuning and evaluation sets. In

the remaining experiments, comparisons will only be with the mKN and best case ME baselines.

E. Main Results

Tables VI–IX provide the complete set of results for the different exponential LMs for the four

languages. The X+c and X++ LMs use morphological features (X is ME, LBL, or RNN), whereas

all other LMs do not use morphological features. In Figs. 7 and 8, we show under the LLP condition,

the relative reduction in PPL associated with the different uses of morph features for the LBL and RNN

models repectively, comparing to the model-specific baseline. (The ME models degrade with the use of

morphology, so that figure is omitted.) In the discussion to follow, we highlight comparisons related to

different modeling assumptions. While the discussion emphasizes the LLP results, the main findings hold

for the FLP condition and the relative improvements for the best case models are larger.

Morph Features in ME vs. Continuous-Space Models

For the LMs with ME structures implemented using the one-dimensional hash array, using morph

features of context words (ME+c) often degrades performance and only benefits performance in the Zulu

FLP condition. For the ME model, using morph features for both context and prediction words (ME++)

degrades performance relative to the word-only model for all conditions. For the LBL and RNN models,
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Language Model LLP FLP

mKN tri-gram LM 242.8 293.8

Non-hash-based ME tri-gram LM + `2 234.0 282.0

ME LM 239.5 296.7

ME+c LM 242.7 296.3

ME++ LM 256.3 308.3

LBL LM 277.2 303.1

LBL+c LM 257.7 289.1

LBL++ LM 257.4 291.9

LBL+c LM (multi-task) 250.4 279.6

RNN LM 243.5 277.9

RNN+c LM 232.1 262.3

RNN++ LM 237.1 262.9

RNN+c LM (multi-task) 224.6 250.8

TABLE VI: PPL of different LMs on test set for Turkish.

Language Model LLP FLP

mKN tri-gram LM 255.1 275.1

Non-hash-based ME tri-gram LM + `2 244.4 263.7

ME LM 252.5 279.4

ME+c LM 256.9 276.4

ME++ LM 269.6 290.3

LBL LM 267.0 276.4

LBL+c LM 249.2 261.0

LBL++ LM 249.5 258.6

LBL+c LM (multi-task) 241.0 256.6

RNN LM 248.0 253.4

RNN+c LM 234.5 243.6

RNN++ LM 234.7 241.2

RNN+c LM (multi-task) 227.1 237.3

TABLE VII: PPL of different LMs on test set for Bengali.

on the other hand, using morphs with context words (LBL+c, RNN+c) always leads to improvement over

the baseline for that model. We hypothesize that the ME LMs with morphological features overfit to the

training data very quickly since there are too many features due to the joint n-gram indicators. Thus,
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Language Model LLP FLP

mKN tri-gram LM 395.6 501.5

Non-hash-based ME tri-gram LM + `2 386.1 483.5

ME LM 389.1 498.0

ME+c LM 403.9 498.6

ME++ LM 431.1 535.5

LBL LM 438.0 522.5

LBL+c LM 413.0 477.4

LBL++ LM 404.5 472.2

LBL+c LM (multi-task) 396.2 462.4

RNN LM 407.3 455.7

RNN+c LM 375.8 428.9

RNN++ LM 372.8 434.4

RNN+c LM (multi-task) 355.0 412.7

TABLE VIII: PPL of different LMs on test set for Tamil.

Language Model LLP FLP

mKN tri-gram LM 275.7 410.5

Non-hash-based ME tri-gram LM + `2 262.7 391.8

ME LM 263.1 396.4

ME+c LM 265.2 386.0

ME++ LM 279.3 401.5

LBL LM 309.1 442.2

LBL+c LM 288.4 398.3

LBL++ LM 284.5 388.2

LBL+c LM (multi-task) 280.8 384.6

RNN LM 278.4 394.2

RNN+c LM 261.2 354.8

RNN++ LM 259.7 354.0

RNN+c LM (multi-task) 250.5 339.5

TABLE IX: PPL of different LMs on test set for Zulu.

early stopping of the stochastic gradient descent is not very effective to avoid overfitting. The initial

position-independent dimension reduction transformation S used in the continuous-space models helps

to prevent this problem. For the LBL LMs, we find that using the additive continuous representation for
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Fig. 7: Relative PPL (on test) reduction of LBL+c LMs and LBL++ LMs over LBL LMs for the LLP

condition.

history words helps to reduce the PPL of the LMs by around 6%3. For the RNN LMs, the impact varies

from 4% to 8%.

Morph Features in the Prediction Space vs. Multi-task Learning

For LBL and RNN LMs, using morphs in the prediction space (X++) does not consistently help

under either the LLP condition or the FLP condition, but multi-task training always helps. As shown in

Figs. 7–8, both the LBL+c and RNN+c models with multi-task learning outperform their counterparts with

prediction word factorization, reducing the PPL by around 7–11% compared to the respective baseline

for the LLP condition and 12–18% for the FLP condition.

Best Case Exponential Models

In the figures above, we compared the impact of various uses of morph features to a word-only baseline

for the same model structure in order understand what strategies for using morph features are useful in

3In [18] the reduction ranges from -2% to 6%. The difference can be caused by the language differences and the low-resource

condition.
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Fig. 8: Relative PPL (on test) reduction of RNN+c LMs and RNN++ LMs over RNN LMs for the LLP

condition.

general. However, as presented in Section IV-D, the word-based LBL and RNN models mostly do not beat

the mKN baseline. In order to determine which model structures are most useful for the low resource

languages explored here, we compare the best configuration for each of the three exponential model

forms to the regularized non-hash ME LM baseline. Figs. 9 and 10 show the relative PPL reduction (or

increase) of the different models over the mKN trigram LMs for the LLP and FLP conditions, respectively.

Most of the time, the ME LMs are slightly better than the mKN trigram LMs, but not as good as their

unregularized counterparts. (Recall that for the ME LMs, it is best to not use morph features.) The RNN+c

LMs with multi-task learning outperform all other models across all four studied languages in terms of

PPL in both the LLP and FLP conditions. Although multi-task training gives a substantial boost to the

LBL+c configuration, the resulting model only improves over mKN for one language (Bengali) under the

LLP condition. As noted earlier, the LBL starts with a baseline PPL that is substantially higher than the

mKN baseline, and the improvements due to the use of morph features and multi-task training cannot

overcome this disadvantage. Under the FLP condition, the LBL+c with multi-task training improves over

mKN baselinse for all languages, though not as significant as RNN+c with multi-task training.
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Fig. 9: Relative PPL (on test) reduction of different LMs over mKN tri-gram LMs for the LLP condition.

There are several differences between the LBL and RNN models, including a fixed-length context

history for the LBL vs. the recurrent RNN word history, the sigmoid non-linearity in the RNN, and the

position-dependent weight matrices (larger number of free parameters for a fixed embedding dimension)

in the LBL. The extra parameters associated with the position-dependent matrices are likely driving the

optimization of the LBL model to a lower dimension, as discussed further below. The consistently better

performance in the FLP condition suggests that the LBL model is better suited to scenarios with large

amounts of training data, as suggested by the good results from leveraging morphology in [18]. The use of

diagonal transformation matrices or tied parameters may be worth exploring in the LBL for low-resource

scenarios.

Impact of Morph Configurations on the Embedding Dimension

The size of the continuous space representation (embedding dimension) is tuned separately for each

model and each language; it ranges from 10-90 for the LBL models and 20-100 for the RNN models.

The learned dimension is typically larger for the FLP model than the corresponding LLP model, as would

be expected with the larger amount of training data. Similarly, it tends to be larger for the models that

September 21, 2015 DRAFT



23

-20%

-15%

-10%

-5%

0%

5%

Turkish Bengali Tamil Zulu

non-hash ME + l2 ME LBL+c multi-task RNN+c multi-task

Fig. 10: Relative PPL (on test) reduction of different LMs over mKN tri-gram LMs for the FLP condition.

use morph features and larger for the RNNs than the corresponding LBL model. While these model/data

changes are also associated with trends of improvements to PPL, the exceptions to the trends in embedding

size do not correspond to exceptions in PPL improvements. In fact, for Turkish, adding morph features

in the LLP case is associated with a reduction in the embedding dimension for both the LBL and RNN

models, but an improved PPL in both cases. The morph features lead to a more efficient representation.

The dimensions tend to be more stable across languages for the models that use morph features: 30-60

for most of the LBL models, and 70-100 for all but one of the RNN models. Neither multi-task training

nor adding morph features to the output lead to a substantial or consistent difference in the embedding

dimensionality.

PPL Reductions By Token Frequency

Following the PPL reduction analysis done in [18], we partition the tokens in test data into bins

according to the token frequency in the training set under the LLP condition. Specially for the best case

system, we study the PPL reduction from the RNN LMs to the RNN+c LMs using multi-task training, as

shown in Figure 11. PPL reduction is most significant for words that occur less than 100 times but more
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Fig. 11: Relative PPL (on test) reduction of RNN+c LMs using multi-task training over RNN LMs.

The X-axis is labelled with the number b, which indicatest the number of tokens in test set that occur

c ∈ [10b−1, 10b) times in the LLP training data.

than 10 times in the LLP training data. An exception is for Bengali, where a large benefit is observed

for words that occur more than 1000 times. Since there are only 4–5 words in this category for each

language, and frequent words are more likely to be irregular, we are reluctant to attach significance to

this exception.
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V. CONCLUSION

In summary, this paper has explored strategies for leveraging unsupervised morphological features

in exponential language models for limited resource scenarios, including ME, LBL, and RNN models,

in comparison to standard discrete (non-parametric) baselines. An important innovation is the use of

multi-task training to improve performance in the continuous-space approaches. As observed from our

experiments with conversational speech on four limited-resource languages, 7-11% relative reduction in

PPL compared to an mKN baseline can be gained from using RNN with morphological features and multi-

task learning, with larger gains (12-18%) obtained when training data is increased. Also we observe that,

for all languages and both training set sizes, morphology is useful in continuous-space models compared

to their word-only baselines, and multi-task learning improves all continuous-space models.

By contrasting these different forms of exponential language models, and including comparisons

to a discrete factored LM, we can examine the usefulness of morphs for discrete vs. continuous-

space representations of context and in different continuous-space modeling frameworks. In experiments

with four high-vocabulary-growth languages, we find that the morph features are much more useful in

continuous-space than discrete representations, and that they lead to more stable embedding dimensions

across languages. Finally, we find that the RNN model leads to the best performance in this low-resource

scenario. With more data, the findings still hold and the resulting benefits can be even greater.

Experiments with the ME model show the importance of regularization for this scenario, and multi-task

learning can be seen as a form of regularization. This raises the question of whether additional benefit

can be obtained by combining `2 regularization with morphological features in the ME model or with

multi-task learning with the continuous-space models. In exploratory experiments, we found no gain from

`2 regularization in either context, and the training cost is much higher because of the need to run full

experiments in tuning the `2 hyperparameter.

In this work, we have only considered word-based LMs, using unsupervised morphological analysis

to provide features that improve learning in limited resource scenarios. In speech recognition under

such scenarios, it is useful to have mixed word and subword vocabularies, where subwords may be

morphological units, syllables (as in [19]), or other data-driven sublexical units. Any of these subword

representations could be incorporated in the framework described here, and the use of multi-task training

may be beneficial in learning language models for mixed word-subword systems. Finally, data sparsity

can be a problem even with much more training data than was available for our task, either because the

language has a high vocabulary growth rate or because higher level features (e.g. supertags) are used to
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provide context information. It is possible that gains may be had from multi-task training of word and

morph predictors even with much more training data, when these features are augmented by higher level

features.

While this paper focused on language modeling, it is worth noting that there is a growing body of

work using continuous-space models in a variety of language processing tasks, particularly for deriving

semantic representations of words. Of particular relevance here is the method described in [18]. Another

related method is described in [44] for word similarity tasks, which uses morphological features as input

to a recursive neural network,4 which provides a continuous-space word representation that can be used

as the input to a feedforward neural network. The continuous-space representation developed here with

multi-task learning can similarly be used as a semantic representation in other applications.
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