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Abstract—Out-of-vocabulary (OOV) keywords present a chal-
lenge for keyword search (KWS) systems especially in the
low-resource setting. Previous research has centered around
approaches that use a variety of subword units to recover OOV
words. This work systematically investigates morphology-based
subword modeling approaches on seven low-resource languages.
We show that using morphological subword units (morphs)
in speech recognition decoding is substantially better than
expanding word-decoded lattices into subword units including
phones, syllables and morphs. As alternatives to grapheme-
based morphs, we apply unsupervised morphology learning to
sequences of phonemes, graphones and syllables. Using one of
these phone-based morphs is almost always better than using the
grapheme-based morphs, but the particular choice varies with the
language. By combining the different methods, a substantial gain
is obtained over the best single case for all languages, especially
for OOV performance.

Index Terms—Speech Recognition, Keyword Search, Subword
Units, OOV Words, Morphological Analysis, Graphones.

I. INTRODUCTION

VOCABULARY growth is an important issue for auto-
matic speech recognition, resulting in the twin problems

of sparse language model training data and out-of-vocabulary
(OOV) words, i.e., words that appear in the test data but are
not seen in the training set and thus not represented in the
recognizer vocabulary. OOV words are particularly a problem
for highly inflective and agglutinative languages, but they can
pose challenges for any language in the low-resource setting.

There are three types of applications that tend to have
somewhat different approaches to handling OOVs, though all
typically involve the use of sub-lexical or subword items in the
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recognizer vocabulary. For open vocabulary word transcrip-
tion, subword items are chosen and represented in such a way
that orthographic forms can be recovered from the sequence
of recognized subwords. In human-computer interaction and
voice search, subwords are leveraged to facilitate detection of
OOVs and initiate a subdialog for paraphrasing or learning the
new word. In keyword search (KWS) or spoken term detection,
subwords are used to handle search terms that are OOV.
Particularly in the open vocabulary recognition and keyword
search settings, the use of subwords can also help address
the data sparsity problem in language model training. In this
work, we focus on mitigating OOVs in keyword search, using
methods informed by work on open vocabulary recognition.
In particular, the subwords being explored are morphology-
based units, extending our previously proposed work [1]
by introducing alternatives to grapheme-based morphs and
experimentation with seven languages.

A variety of methods have been used for deriving subwords,
which can be broadly classed as being based on phones
or phone n-grams, graphones, syllables, and morphologically
based units (possibly including bundles of morphemes) that we
will refer to as “morphs.” Graphones (orthography coupled
with its corresponding phone sequence) [2] and morphs are
particularly well suited to open vocabulary recognition. While
some work has based the vocabulary entirely on morphs (see
[3], [4], [5] and references therein), other studies obtain better
results using a combination of morphs and words in Arabic
[6] and German [7], [8]. However, a mixed word and syllable
vocabulary outperformed a mixed word and morph vocabulary
for Polish [9]. A mixed word and graphone vocabulary has also
been explored for English [10]. Morphs have the potential ad-
vantage of introducing more powerful constraints in language
modeling, and several studies have investigated novel language
model structures that take advantage of morphological features
in a variety of languages [3], [5], [7], [9], [11], [12], [13], [14].
While these studies motivate our use of morphs in this work,
only standard n-grams are used here since our focus will be
primarily on the keyword search strategies that take advantage
of a mixed word and morph or morph-only vocabulary.

In keyword search, a standard approach for handling OOVs
is to transform a word lattice into a phone lattice when
searching for keywords [15], which can be augmented by
phone confusions [15], [16], [17], [18]. Directly indexing the
output of phone recognition tends to lead to much worse
results [15], but in [19], [20], it is shown that decoding with
phone n-gram units outperforms the word lattice transforma-
tion approach for OOV terms when a flexible segmentation



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. X, XXX XXXX 2

is used to incorporate different order n-grams. Decoding with
longer subword units have also been shown to be effective
including pruned phone n-grams [21], [22], phone or character
multigrams [23], [24], [25], graphones [26], syllables [27],
[28] and morphs. Morphs as subword units are particularly
well suited to morphologically rich languages, which have
been investigated in [29], [30], [31] and our previous work
[1]. In contrast to subword-based approaches, OOV terms can
also be searched from word lattices for in-vocabulary (IV)
proxies that are phonetically close [18], [32], [33].

Unlike other subword units (e.g., phones), some of the
morphs tend to carry meaning and have reasonable average
length, leading to a balance between confusability and OOV
coverage. Morphs can be derived in an unsupervised fashion
from the training corpus for any language using Morfessor
[34], which is beneficial especially in the low-resource setting
where, for example, syllable annotations are not available.1

The majority of previous studies in the literature which
use morphs for ASR and KWS typically derive morphs from
grapheme sequences. However, when morphology learning is
unaware of pronunciations, segmentations may occur mid-
phoneme, e.g. the Zulu word “ithayima” was segmented
by Morfessor as “it/hayi/ma,” which incorrectly divides “t”
and “h” into two separate morphemes and leads incorrect
pronunciations. Even when the segmentation is correct, the
lack of context can lead to morph pronunciation errors or
confusability. Few studies (if any) have investigated the in-
teraction between morphology and pronunciations that affects
ASR and KWS. In this paper we attempt to study whether
word phoneme sequence (pronunciation) information helps
morphology learning for KWS, alone or in combination with
graphemes. To answer that, we implement two different pro-
nunciation extraction approaches for grapheme-based morphs
and introduce methods for integrating phone information into
morphology learning by grouping units that have some pho-
netic basis (specifically phonemes, graphones or syllables)
into a morph instead of grouping grapheme units. To make
this more concrete with an example that we later expand on
in figure 1, we contrast morphology learning for the word
“usiphethe” with sequences comprised of:

graphemes (u s i p h e t h e)
phones (u s i p h 3 t h e)
graphones (u:u s:s i:i p,h:p h e:3 t,h:t h e:e)
syllables (u s=i p h=3 t h=e).

In general, we find a benefit from having the morph pro-
nunciations more tightly coupled to the word pronunciations,
either via the pronunciation extraction process or morphology
learning. Using Morfessor to derive phone-based morphs also
tends to result in a more compact subword vocabulary com-
pared to previous studied phone n-grams [19], [20], due to the
minimum-description-length principle, which forms the basis
of morphology learning.

In our previous pilot study [1], we have shown the effective-
ness of using morphs in mixed word and subword decoding
for Turkish KWS, and confirmed results from open vocabulary

1Morfessor’s approach is language-independent though it is generally most
effective for languages with a concatenative morphology.

recognition [3] that automatically-derived morphs identified
via unsupervised learning using Morfessor can achieve similar
performance of morphs identified by a rule-based system
designed for Turkish. In this work, we continue the work with
unsupervised morphology with the following novel extensions.
First, we do a thorough examination of traditional unsuper-
vised grapheme-based morphs with a comparison on 7 low-
resource languages that have different “richness” of morphol-
ogy. We investigate morph and language characteristics that
affect KWS performance across languages, and analyze the
importance of morph pronunciation and morph length among
other factors. Second, we introduce the use of unsupervised
morphology learning applied to phonetic units, including
phonemes, graphones and syllables as alternative solutions
to grapheme-based morphs. These alternative morphs differ
from the graphone-based morphs introduced in [8], which
aligned grapheme-based morphs to graphones, in that here we
apply the Morfessor algorithm directly to the phone, graphone
or syllable sequence.2 By asking the learned morphological
segmentation to account for the phonetic sequence instead of
or in combination with the grapheme sequence, these variants
achieve significantly better performance on average across
languages for both IV terms and OOV terms than grapheme-
based morphs due to more effective segmentations. Third, we
show that the combination of the output of both types of
systems significantly improves KWS performance especially
for OOV terms, due to the diversity of phonetic-unit-based
morphs and grapheme-based morphs. Lastly, we explore dif-
ferent decoding and KWS strategies, showing that subword
decoding with morphs for OOV terms performs substantially
better than lattice/index transformation from word decoding
(e.g., [15]). In addition, the combination of the word-only
system and the subword-only system performs better than the
individual systems or the staging of them (word-based model
for IV terms, subword model for OOV terms).

In the sections to follow, we will review KWS in Section
II, introduce our methodology in Section III, describe the
experiment setup in Section IV, discuss experiment results in
Sections V and VI, analyze the results in terms of language
differences in Section VII, and conclude in Section VIII.

II. KEYWORD SEARCH OVERVIEW

Keyword search (KWS) is a task to locate all the occur-
rences of given keyword queries in a corpus of untranscribed
speech. We consider in this paper the scenario where the
keywords are in text form and are specified after decoding and
indexing are done on the speech, which is also known as the
task of spoken term detection (STD). KWS has been studied
since the 1980’s, but it has been a more active area of research
in the last decade with a number of competitive evaluations
emphasizing conversational speech. In 2006, the U.S. National
Institute of Standards and Technology (NIST) initiated an
STD Evaluation [35] focused on large-resource languages.
Recently, there have been a number of efforts on low resource

2The idea of learning morphs from phonemes was independently and
concurrently explored by the Babelon IARPA team, as presented in a July
2014 meeting, but is unpublished and did not consider other phonetically
grounded units.
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scenarios and a competitive evaluation associated with the Ba-
bel program.3 Since state-of-the-art LVCSR systems generate
far from perfect transcriptions in low-resource languages on
conversational speech, lattice outputs of recognition systems
are used to improve KWS performance over 1-best outputs,
especially in high WER situations [15], [36], [37]. The state-
of-the-art KWS systems search keywords from the index
of lattices [38], [39], [40] or from the index of confusion
networks converted from lattices [41].

A widely used evaluation metric for KWS is the Actual
Term Weighted Value (ATWV) [35], introduced in the STD
2006 Evaluation and then becoming the official measure in the
Babel program. ATWV is one minus the average loss per term
for the actual decision threshold, where loss is a weighted sum
of the relative frequency of missed and false detection errors.
Since each term contributes equally to the average, the cost
of a miss is much more expensive for a rare term than for a
term that appears several times [42], which drives the desire
for retrieving OOV keyword terms.

Because a global threshold needs to be set across keywords
for ATWV calculation, a variety of scoring normalization tech-
niques have been proposed recently [39], [40], [43], [44], [45].
We use the keyword-specific thresholding (KST) approach
[43] throughout the paper.

III. SUBWORD-BASED DECODING AND KWS

The general framework for our subword modeling approach
is the following. We first segment training words into subwords
and then derive their pronunciations. The resulting subwords
can be used by themselves in a decoding lexicon, or mixed
with the word-based decoding lexicon, in which case the
original word-based pronunciations are used for the full words.
The segmented training transcripts are utilized to estimate
language models for a subword-only vocabulary or a mixed
word and subword vocabulary. At test time, the recognition
system produces subword-only and/or mixed-unit lattices,
from which we search for keywords with their subword and
word representations. In KWS, OOV words are decomposed
into subword components, and IV words use both the full word
and subword decomposition.

The subwords being considered in this paper include vari-
ations of morphs and syllables. In the following subsections,
we will propose our method for designing alternative types
of morphological subword units (Section III-A), and then
describe details of unsupervised morphology learning (Section
III-B), pronunciation derivation (Section III-C), and language
modeling (Section III-D), as well as how morphs are used in
keyword search (Section III-E).

A. Subword Alternatives

Morphological decomposition of words is typically done in
the orthographic form, which means each word is represented
by a sequence of graphemes and split into one or more non-
overlapping morphs, so each morph is also represented by a
sequence of graphemes. As described next, the decomposition

3http://www.iarpa.gov/index.php/research-programs/babel

can be automatically derived from the training corpus in an
unsupervised fashion through Morfessor, and then used in
analyzing new words. The morphology learning algorithm is
quite general, and we can provide it other types of sequences
for representing words, which can lead to different segmen-
tations. Figure 1 shows the analysis of a word in Zulu for
four different variants that we consider: graphemes, phones,
graphones, and syllables. We refer to the morph variants
as grapheme/phone/graphone/syllable bundles throughout the
rest of the paper, where “bundle” refers to a morphological
subword unit (or a pseudo-morph) that groups graphemes,
phones, graphones or syllables. (Note that the graphone bun-
dles here differ from the graphone-based morphs used in [7],
[8] in that our graphone bundles are learned by applying
Morfessor to the graphone representation of words, rather than
merging the morphs learned from grapheme-based words with
the graphone representation of words.) For comparison, we
also use syllables by themselves as subword units without
morphological analysis in the experiment sections.

The derivation of the pronunciation of a morph depends
on symbol sequence it is based on. If the symbol sequence
includes phones, then the pronunciation will be more accurate.
For the case where the morphs are based on graphemes,
there are different options for deriving the pronunciation. The
figure illustrates the particular case where the grapheme-based
morph pronunciation is derived via grapheme-to-phoneme
(G2P) prediction. The example shows that predicting subword
pronunciations from subword-level G2P can be error-prone,
since the context of the subword within the word is lost – e.g.,
the grapheme “e” is predicted as /e/ rather than /3/ given only
the morph context,4 while other bundles preserve the word-
level pronunciation. Examples where context is important in
other languages include: ’s’ word-finally in English as /s/
vs. /z/; insertion of an inherent vowel /o/ or /O/ when two
consonants exist in a row in Assamese or Bengali except
when a hoshonto character is used to suppress the inherent
vowel; and insertion of an inherent vowel /a/ after a word-
final consonant grapheme in Tamil but not a word-internal
consonant.

B. Unsupervised Morphology Learning

The subwords were learned in a fully unsupervised manner
using the morphological segmentation algorithm Morfessor
Categories-MAP [34], which has become a standard for un-
supervised morphological segmentation [46]. To obtain word-
internal segmentations, Morfessor recursively splits words into
subwords, and tries to find a lexicon of subwords that is
both complete and minimal given the corpus according to
a variant of the minimum-description-length principle. The
learned subwords are labeled as prefixes (PRE), stems (STM)
or suffixes (SUF) using a hidden Markov model to ensure
that all words consist of at least one stem with arbitrarily
many optional prefixes and suffixes ((PRE∗ STM SUF∗)+ in
regular-expression notation).

4In this paper phones are written using the X-SAMPA sym-
bols used in the Babel language packs, which can be found at
http://www.phon.ucl.ac.uk/home/sampa/x-sampa.htm.
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Fig. 1. Illustration of alternative morphological subword units for a Zulu OOV word. “bundle” = pseudo-morph = grouping of
graphemes/phones/graphones/syllables. ‘:’ connects graphemes and phonemes as a graphone. ‘=’ connects phonemes as a syllable. ‘/’ separates morphs.
Pronunciations are placed inside ‘[]’. The phones in red font indicate the errors due to the loss of word context in pronunciation prediction for grapheme
bundles. The phones in green font are the corresponding correct ones in other bundles.

The degree of segmentation can be manipulated via Mor-
fessor’s perplexity threshold parameter b, which controls the
likelihood of a given subword being a prefix or suffix in the
context of a word. The optimal value of this parameter is
usually determined using a labeled development set [34], as
its effect strongly depends on the morphological structure of
the language and the size of the training set. Since we do not
have any labeled data, we used an extensive search over b to
find a value that minimizes the percentage of low-frequency
subwords (that occur < 5 times) in the lexicon while still
providing high coverage of the corpus. Note that this threshold
is only used to define a tuning criterion; there are still many
low-frequency subwords in the morphological analyses.

For the grapheme-based morphological segmentations, Mor-
fessor was applied to the raw text in standard orthography. For
the segmentations based on phonetic subword alternatives, the
words were mapped to their phone/graphone/syllable repre-
sentations and the results of these mappings were fed into
Morfessor. The individual phones/graphones/syllables were
marked as atoms so that they could not be segmented.

The inventory learned by Morfessor typically includes some
single symbol units, but it is not constrained to include all such
possible cases and in practice we find that not all are included.

C. Pronunciation Modeling for Subword Units

Pronunciations for subwords are needed both for decoding
within the ASR system and for the keyword search system.
For OOV words, irrespective of the subword approach, we
require a G2P system. We use the lexicon of the training set
to train our grapheme-to-phoneme system to predict word-
level pronunciations for OOV keywords. We follow a joint
multigram approach utilized by the Phonetisaurus G2P toolkit
[47]. This system predicts pronunciations based on a multi-
gram alignment between graphemes and phonemes; we train
the alignment model using the pronunciation lexicon for in-
vocabulary words.

For grapheme-based morphs, we implement two different
methods for deriving pronunciations. First, we use the standard
G2P model trained on words to predict a single pronunciation
for each grapheme morph as would be done for new vocab-
ulary items. A limitation of this approach is the lost context
for short morphs, which can lead to poor pronunciations as
shown in the figure. As an alternative, we align each IV word’s

dictionary pronunciation to its morph sequence to extract
morph pronunciations, which yields multiple pronunciations
for each morph that occurs in different words. In the case of the
example in the figure, the “the” morph would then have both
[d e] and [t h e] as alternative pronunciations, among a total
of 10 variants, which are all added to the subword decoding
lexicon. This approach leads to better coverage of the actual
pronunciation, but potentially more confusability. In either
case, the grapheme-based segmentations pose a challenge
when the segmentation break occurs mid-phoneme.

The phone bundle system uses the trained G2P system on
the OOV word to first predict pronunciations as a sequence of
phones, and then uses this as the representation to Morfessor
for morphological segmentation. An advantage is that pronun-
ciations are immediately readable from the morph identity,
but any graphemic clues to the morphological segmentation
are lost.

By placing additional constraints on the G2P model, we
can also derive graphonic and syllabic representations for
input to Morfessor. The graphone-based system uses the G2P
model to find the best alignment between graphemes and
phonemes; the search is constrained to predict zero or more
phonemes for every grapheme (one-to-many alignment), but
in post processing graphemes with null pronunciation are
combined with the subsequent graphone pair (e.g., “p:- h:p h”
becomes “p,h:p h” in the graphone example in Figure 1).
This effectively annotates the grapheme-based system with
phonetic information. On the other hand, the syllable-based
system constrains the G2P system to produce valid syllable
structures as pronunciations [27], which are then used as the
input representation for Morfessor.

For all but the G2P grapheme-based morphs, we find the
morph sequence for an OOV word by first applying G2P to
obtain the word-level pronunciation, optionally in graphone or
syllable form. Morfessor is used with the grapheme or other
symbol sequence to find the all possible segmentations. For
the grapheme-based models, each morph in a segmentation
is then associated with a pronunciation using one of the two
options above. Note that because the morph inventory does not
include all possible single symbols, there will be some words
that cannot be segmented with a particular morph inventory.
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D. Subword-based Vocabulary and Language Model

In our experiments, we consider different variations on the
vocabulary and language model (LM), including some using
only subword units and some using a mix of subword and word
units. All subword units are marked by % which distinguishes
them from the word tokens, and different types of subword
units, e.g., prefixes, stems, and suffixes, are indicated by the
position of the %. For example, the English word “unbreak-
able” would be segmented to “un%”, “%break%” and “%able”
using this notation. We train trigram, 5-gram and 7-gram LMs
with SRILM [48] using modified-Kneser-Ney smoothing. To
control for model size, we use entropy pruning to reduce the
5-gram and 7-gram LMs to be approximately the same size
as the corresponding trigram LM. However, in Section VI-D
we show that OOV keyword search performance using 5-gram
and 7-gram are comparable in our setting. Therefore, we use
trigrams for the remainder of the paper.

Subword-Only LM
In the subword-only scenario, the training data is fully ex-
panded into subwords using the most likely word-to-subword
decomposition.5 Language models are trained on this ex-
panded text, using a vocabulary that consists only of the
subword tokens in the expansion of the words observed in
the training set.

Mixed-Unit LM
In the mixed-unit scenario, three segmentations of the data
are used to train the language models, including the original
word segmentation, the fully expanded (subword-only) seg-
mentation, and a mixed word-subword segmentation that has
been selectively expanded (details below). In all component
models for the mixed-unit LM for a particular subword type,
the vocabulary is the set of all words observed in the training
set and all subwords in the expanded version of these words.
We produce four mixed-unit language models:

1) A “fully decomposed” model trained on the fully ex-
panded data. Note that this model differs from the
subword-only LM in that this model includes all words
in the vocabulary with a small probability.6

2) A “partially decomposed” model trained on the selec-
tively expanded data.

3) A “2-interp” LM that is an equally weighted interpola-
tion7 of the previous two LMs.

4) A “3-interp” LM that is an equally weighted interpo-
lation of the first two LMs and an LM trained on the

5If a word has multiple pronunciations in the provided dictionary, then each
pronunciation will have a different decomposition for phone, graphone and
syllable bundles. Preliminary experiments suggested that using the decompo-
sition based on the first pronunciation for the purpose of LM training works
as well as determining the pronunciation by forced alignment, and simplifies
the processing chain.

6This model is trained by estimating an n-gram trained on the subwords
with the constraint to match marginals to a unigram distribution that is the
interpolation of the subword unigrams and a uniform distribution over the full
word vocabulary, using a heuristically chosen interpolation weight.

7We notice in our preliminary experiments that the interpolation weights
have minimal impact on the keyword search performance. As it is expensive
to tune the interpolation weights based on the output of the speech recognition
system or the keyword search system, we fix the interpolation weights to be
uniform among LMs.

original text (words without segmentatiaon).
The partially expanded text used in the “partially decom-

posed” model is produced by expanding only a subset of
the words in the text into their subwords, leaving other
words intact. The “expansion set” of words to be decomposed
includes all words w that do not meet any of the following
(tunable) criteria: i) w appears more than θ1 times; ii) one
of w’s subwords would appear fewer than θ2 times in the
expanded text; or iii) one of w’s subwords appears in fewer
than θ3 words. A simple, iterative algorithm is used to find the
expansion set satisfying the above criteria using θ2 = θ3 = 5
(to avoid introducing infrequent subword units) and θ1 = 500
(to ensure that the most frequent words were left intact).

E. Keyword Search

Our keyword search algorithm is based on index lookup:
for a word decoding system, we create a word-based index
from the lattices, tracking all of the words that occur in
the lattice, their start and end times, and their lattice poste-
rior probabilities. We use “lattice-tool” from SRILM [48] to
convert lattices to indices, where the time axis is quantized
into points with T seconds interval and T is optimized to
0.1 in our experiments. Both start and end times of each
hypothesized word are mapped into the closest quantized time
points, where same word occurrences with the same times are
merged by adding the posteriors. The merged index has the
flavor of confusion networks [49] in the sense of summing the
posteriors and providing alternative paths that might not be in
the lattice for a multiword term. For single-word keywords,
we return the list of all keyword occurrences, sorted by their
posterior probabilities. For multiword keywords, we retrieve
the individual words from the index in the correct order with
respect to their start and end times but discard occurrences
where the time gap between adjacent words is non-zero with
respect to the quantized time points.8 We approximate the
multiword posterior with the minimum of the individual word
probabilities as in [40], which we also found slightly better
than the product of the posteriors. All the hypotheses of a
keyword form a posting list. The detection threshold in the list
is determined separately for each keyword using an empirical
estimate of each keyword’s term weighted value (TWV) [42].
The probabilities in each keyword’s posting list are normalized
using KST-normalization [43] to enable a single, keyword-
independent, detection threshold.

For a mixed-unit decoding or subword-only decoding sys-
tem, we follow the same search and thresholding algorithms,
but the index units would be whatever are chosen as the
decoding units, namely mixed words and subwords, or only
subwords. For the case of mixed-unit decoding, we also
augment the index by adding subwords expanded from the
decoded words. During search, each word of a keyword is
represented by the word itself and a subword sequence if it can

8Initial versions of our system [1] allowed for a 0.5 second gap between
keywords, but in later experiments we found after tuning the allowable gap
distance on the development set that no gap reduced the false alarm rate, and
thus improved ATWV. In fact, time quantization already effectively allows a
gap between adjacent words to recover misses.
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be segmented. We consider all possible subword sequences if
there are multiple segmentations from different pronunciations
for a word. For a single-word keyword, we search from the
mixed-unit or subword-only indices for all representations
of the word following the index lookup approach described
above. For a multiword keyword, its representation for search
would be the cross product of all the representations of
each component word. Currently each representation for a
keyword is equally weighted for simplicity. KWS hyper-
parameters (e.g., LM scale and posterior scale) are tuned on
development data separately for each system using the Nelder-
Mead optimization method [50].

Staging or system combination can be used for utilizing
multiple individual KWS systems. For staging/cascade (e.g.,
[15]), keywords that cannot be found with previous systems
are searched using subsequent systems. For example, we
can search IV keywords from word-decoded lattices, then
search OOV keywords from morph-decoded lattices, and fi-
nally search phone lattices for OOV keywords that cannot be
covered by the IV morph inventory. In our initial experiments
on Turkish using grapheme bundle decoding, staging with
phone lattices had minimal impact, likely due to the high OOV
coverage using the morphs and the poor performance of the
word lattice expansion approach. Therefore, we decided not
to do staging for OOVs that cannot be covered. In further
experiments, we found that a system combination strategy
gave better performance than staging. Specifically, we use
an approach that integrates the posting lists from different
systems and combines the scores (e.g., [39], [43]). We tuned
the posterior and language model scaling factors for the best
single system, and applied the same factors to all other systems
to ensure the score ranges are compatible. The posting lists
from each system are merged by averaging the detection
probabilities of overlapping entries. KW-specific detection
thresholds are determined using a decision theoretic criterion
[40]. Detection probabilities are then normalized as in [43],
and a single threshold for all KWs is determined by Maximum
Term Weighted Value (MTWV) [35] on the development data.
For OOV keywords, we also use this strategy for combining
multiple systems based on different types of subword units.

IV. EXPERIMENT PARADIGM

A. Data Description

We evaluate the effectiveness of our proposed methods
to handle OOVs in the keyword search task on seven low-
resource languages provided by the IARPA Babel Program.
We use the conversational telephone speech portion of the
10-hour limited language pack (LimitedLP) training set for
each language, which has word-level transcriptions and a
pronunciation lexicon. The development set for each language
also contains 10 hours of speech with transcriptions. Our
evaluation set is the transcribed “eval-part1” set, which has
about 15 hours of speech for Tamil, and 5 hours for each
of the other languages. The development set is used to tune
parameters, which are applied to the evaluation set. We report
results on both sets. The official evaluation keyword list for
each language is used for all experiments. Table I lists the

versions of the language packs and keyword lists for all the
data we use.

TABLE I
BABEL DATA DESCRIPTION FOR SEVEN LOW-RESOURCE LANGUAGES

INVESTIGATED IN THIS WORK.

Language Version Keyword List

Zulu IARPA-babel206b-v0.1e conv-eval.kwlist4
Turkish IARPA-babel105b-v0.4 conv-eval.kwlist2
Tagalog IARPA-babel106b-v0.2g conv-eval.kwlist2

Haitian-Creole IARPA-babel201b-v0.2b conv-eval.kwlist4
Assamese IARPA-babel102b-v0.5a conv-eval.kwlist4
Bengali IARPA-babel103b-v0.4b conv-eval.kwlist4
Tamil IARPA-babel204b-v1.1b conv-eval.kwlist5

B. ASR System

We use the Kaldi toolkit [51] to build a single automatic
speech recognition system prior to keyword search. Standard
13-dim PLP features combined with 3-dim Kaldi pitch features
[52] are first extracted as input for maximum likelihood GMM-
HMM model training. The features are then transformed by
linear discriminant analysis (LDA) and maximum likelihood
linear transform (MLLT). They are further adapted by feature-
space maximum likelihood linear regression (fMLLR), which
is estimated by speaker adapted training (SAT). The GMM-
HMM models are retrained with the resulting features to pro-
vide the alignment for subsequent DNN-HMM hybrid system
training. A DNN with tanh neurons is trained using the same
speaker-adapted features. The details of the DNN training are
documented in section 2.2 in [53]. The baseline language
model for word decoding is a trigram with modified-Kneser-
Ney smoothing and pruning. We follow the default setup to
train the acoustic model with position-dependent triphones for
word-based decoding. We train another acoustic model with
position-independent triphones for subword-based decoding so
that it can be reused for different types of subword units.9 The
word error rates for the baseline word decoding systems are
reported in Table II.

TABLE II
VOCABULARY SIZE, LM PERPLEXITY (PPL) AND WORD ERROR RATES

(%) FOR DEV AND EVAL SETS WITH WORD DECODING BASELINE SYSTEMS
USING A TRIGRAM LM.

Dev Eval
Language Vocab (k) PPL WER (%) PPL WER (%)

Zulu 13.6 59 70.3 59 72.0
Turkish 10.1 194 65.9 207 65.7
Tagalog 5.5 117 61.6 114 60.5

Haitian-Creole 4.8 130 63.4 126 62.5
Assamese 7.7 61 65.2 64 65.0
Bengali 7.9 66 67.6 73 65.1
Tamil 14.3 250 76.6 235 77.5

9“Position” refers to word position (or subword position for subword de-
coding). Switching from position-dependent to position-independent triphones
modeling for subword decoding has minimal impact on the KWS performance.
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C. KWS Experiments

In the keyword lists, only those keywords that exist in the
data set would be counted towards the ATWV score. We list in
Table III the number of keywords that exist in either set. The
OOV keyword rates range from 8.6% to 37.5%. Note that the
term “keyword” in this paper refers to a query term, each of
which could be a word or a phrase. A keyword is considered
an OOV keyword when it has at least one OOV word in it.
To handle OOVs, we decode with the components and search
strategy described in Section III.

TABLE III
KEYWORD STATISTICS (IV AND OOV) IN THE DEVELOPMENT AND

EVALUATION SETS.

Language
Keywords in Dev Keywords in Eval

IV OOV %OOV IV OOV %OOV

Zulu 1067 310 22.5 1031 380 26.9
Turkish 1298 387 22.9 1173 452 27.8
Tagalog 1228 510 29.3 1084 651 37.5

Haitian-Creole 1308 124 8.6 1248 287 18.6
Assamese 1185 176 12.9 1349 259 16.1
Bengali 1298 206 13.6 1311 283 17.7
Tamil 1213 267 18.0 1682 499 22.8

We present the KWS results in the next two sections. In Sec-
tion V, we describe a set of experiments using the grapheme
bundle morphs for subword decoding and keyword search. In
these experiments, we explore different decoding and indexing
alternatives and show the benefit of explicit subword decoding
for OOVs over the traditional word lattice/index expansion
approach. In Section VI, we compare the keyword search
performance across subword alternatives and show that adding
phonetic information in subword learning improves the system
performance over grapheme-based learning. In both sections
we analyze language differences. Since these differences imply
that there is no single best subword strategy, the best results
are obtained by the combination of all subword units.

V. GRAPHEME-BASED MORPH EXPERIMENTS

In this section, we empirically study the performance of
the typical grapheme-based morphs to explore the effect of
decoding vocabulary, keyword search strategy and pronunci-
ation modeling across languages, in order to identify a good
configuration for subsequent experiments with different types
of subwords.

A. Subword Decoding vs. Index Expansion

For OOV keywords, we compare two approaches to con-
struct subword indices: either by expanding the word indices
from a word-decoded system to subword indices, or by obtain-
ing subword indices directly from a subword-decoded system.
The OOV results for three methods of expansion (grapheme
bundles, syllables, phones) are compared to grapheme-bundle
subword decoding in Table IV for Zulu and Turkish; results
for other languages have a similar trend. No subword LMs are

used in the expansion. The grapheme bundles for subword-
only decoding use the morph-level G2P predicted pronuncia-
tions.

In both languages, subword decoding achieves much higher
OOV ATWV than all of the index expansion approaches;
phoneme expansion works better than syllable expansion,
which in turn is better than grapheme bundle expansion.
Note that phoneme search is much more time- and memory-
consuming than any other methods. We measure the recall
rate for OOV keywords in the lattices, i.e. the percentage of
OOV keywords that have matches in the lattices (regardless of
whether their scores are above the KWS detection threshold).
Phoneme expansion has the highest recall as expected, so
its posterior scores must be worse than subword decoding
due to the lower ATWV. Subword decoding with grapheme
bundles not only has similar or higher recall than expanding
word graphs with grapheme bundles or syllables, but also has
twice or three times as many hits as all the index expansion
systems. These results suggest that using subword decoding
(with subword LMs) is important for recognizing subword
sequences reliably for OOVs.

B. Mixed-Unit Decoding vs. Subword-Only Decoding

Table V shows in detail ASR and KWS results of three
different decoding vocabularies: words, mixed unit (words
and subwords), and subwords only, where the subwords are
grapheme bundles. Search level parameters, like lattice beam,
are fixed across languages, except language model weight,
which is tuned per language after lattices are generated. For
the purpose of calculating WER, lattices of the two subword-
based systems are first transduced into word-based lattices by
composing with a subword-to-word transducer which encodes
word segmentations. Note that in this case, the WER for
mixed and subword system must be taken with a grain of
salt: we would expect WER performance to be worse than the
corresponding word-based system because, for example, the
subword hypothesis space will not have the advantage of a
word-based language model.

The lattice densities for these systems are shown in Ta-
ble VI; lattices are more compact for subword systems.
For the word-based system, the OOV ATWV results are
achieved by phoneme search via index expansion. All systems
use trigram language models. The LM for the mixed-unit
system is the 2-way interpolation of the fully and partially
segmented training text. The word-based system has stronger
LMs for in-vocabulary words than subword-based systems,
leading to clearly higher IV ATWV and lower WER. The
weaker subword-only language model gives more opportunity
for OOV words to be represented in the lattice, so usually
achieves the highest ATWV on the OOV terms and beats the
phone expansion of the word-based system for OOVs on all
languages except Tamil. The mixed-unit decoding tends to do
better than the subword-only system on IV words (and even
better when using the 3-way interpolation LM that includes
the word n-grams), but not as good as the word-based system.
The mixed-unit system is rarely better than the subword-only
system, and we find that it is better to use system combination
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TABLE IV
SUBWORD DECODING VS. INDEX EXPANSION FOR OOV KEYWORDS ON THE development SET. #FA IS THE NUMBER OF FALSE ALARMS.

Decoding Unit LM Index Expansion OOV ATWV OOV #Hit OOV #FA OOV #Miss %OOV Recall (Lattices)

Zulu
word

word grapheme bundle 0.037 33 245 546 22.5
word syllable 0.081 62 566 517 42.8
word phoneme 0.093 68 516 511 60.8

grapheme bundle subword-only - 0.167 113 491 466 42.1

Turkish
word

word grapheme bundle 0.026 47 389 904 14.1
word syllable 0.035 44 292 907 13.9
word phoneme 0.064 69 424 882 51.7

grapheme bundle subword-only - 0.119 133 509 818 29.6

TABLE V
VOCABULARY SIZES, WORD ERROR RATES AND OOV/IV/OVERALL

ATWV RESULTS FOR WORD-ONLY DECODING VS. MIXED-UNIT DECODING
VS. SUBWORD-ONLY DECODING WITH grapheme bundle UNITS ON THE

development SETS.

Decoding Unit
word-only mixed-unit subword-only

Zulu

Vocab (k) 13.6 17.1 3.5
WER (%) 70.3 73.5 75.8

OOV 0.093 0.175 0.167
IV 0.345 0.291 0.278
All 0.288 0.265 0.253

Turkish

Vocab (k) 10.1 12.9 2.8
WER (%) 65.9 69.3 70.2

OOV 0.064 0.119 0.119
IV 0.302 0.254 0.237
All 0.247 0.223 0.210

Tagalog

Vocab (k) 5.5 8.4 3.0
WER (%) 61.6 64.9 70.4

OOV 0.018 0.113 0.125
IV 0.404 0.365 0.265
All 0.291 0.291 0.224

Haitian-Creole

Vocab (k) 4.8 8.3 3.5
WER (%) 63.4 66.0 64.8

OOV 0.044 0.137 0.137
IV 0.352 0.330 0.320
All 0.326 0.313 0.304

Assamese

Vocab (k) 7.7 8.7 1.1
WER (%) 65.2 72.0 74.6

OOV 0.035 0.042 0.060
IV 0.289 0.191 0.154
All 0.256 0.172 0.142

Bengali

Vocab (k) 7.9 8.9 1.0
WER (%) 67.6 75.2 79.1

OOV 0.064 0.065 0.064
IV 0.284 0.171 0.121
All 0.254 0.157 0.114

Tamil

Vocab (k) 14.3 15.7 1.5
WER (%) 76.6 80.3 83.1

OOV 0.051 0.042 0.035
IV 0.282 0.173 0.154
All 0.237 0.149 0.132

TABLE VI
RECOGNITION LATTICE DENSITIES (THE AVERAGE NUMBER OF ARCS
THAT CROSS A FRAME) FOR WORD-ONLY DECODING VS. MIXED-UNIT

DECODING VS. SUBWORD-ONLY DECODING WITH grapheme bundle UNITS
ON THE development SETS.

Decoding Unit
word-only mixed-unit subword-only

Zulu 934 889 799
Turkish 848 831 662
Tagalog 758 906 589

Haitian-Creole 1199 1621 667
Assamese 1493 1021 854
Bengali 1737 1058 865
Tamil 3194 1346 1024

than mixed unit decoding to combine the benefits of words and
subwords for KWS. We focus on the subword-only systems
for the rest of the experiments because of its simplicity and
better performance on OOVs.

C. Pronunciation Modeling

Directly predicting pronunciations at the morph level can
be error-prone due to the loss of word context, so we also
explore morph pronunciation extraction based on alignment of
the morph sequence to IV word pronunciations, as described
in Section III-C. The two different pronunciation derivations
are compared in terms of OOV ATWV using subword-only
decoding systems. Results on the development keyword set are
reported in Table VII, where “predicted” means the morph pro-
nunciations are predicted at the morph-level using the trained
G2P model and “aligned” indicates that the morph pronun-
ciations are generated through word-level grapheme-phoneme
alignment. We obtained moderate system improvement in 4 of
the 7 languages by using the “aligned” morph pronunciations.
A likely reason why the “aligned” pronunciations in some
cases degrade performance is because they introduce multiple
pronunciations for each morph, which could also increase the
confusability during decoding. As illustrated by the example in
Section III-C, this is particularly an issue for Zulu. Table VII
also shows the OOV word pronunciation phone error rate
(PER), comparing the actual error for the “predicted” model
and the oracle error for the “aligned” model, where the
oracle is obtained by choosing the lowest PER option of
the multiple possible morph sequence pronunciations. The
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oracle PER is an optimistic estimate, but is used based on the
assumption that the acoustic model would tend to match the
lower PER option in recognition. As expected, the “aligned”
morph pronunciation model better matches the true OOV word
pronunciations, but the reduction in PER is not indicative of
improvement in ATWV because it does not account for the
confusability.

TABLE VII
OOV ATWV AND OOV WORD PRONUNCIATION PHONE ERROR RATE
(PER) COMPARISON OF TWO GRAPHEME BUNDLE SUBWORD-ONLY

SYSTEMS WITH DICTIONARIES BASED ON DIFFERENT APPROACHES TO
EXTRACT MORPH PRONUNCIATIONS. RESULTS ARE REPORTED ON THE

development SET.

OOV ATWV OOV Pron. %PER

Grapheme Bundle Pron. predicted aligned predicted aligned

Zulu 0.167 0.144 11.5 3.0
Turkish 0.119 0.126 7.4 1.5
Tagalog 0.125 0.151 17.8 3.0

Haitian-Creole 0.137 0.143 3.2 2.4
Assamese 0.060 0.057 13.0 3.4
Bengali 0.064 0.045 10.1 4.7
Tamil 0.035 0.053 5.2 0.2

VI. PHONETIC MORPH EXPERIMENTS

In our second set of experiments, we explore different
choices of subword units as alternatives to grapheme bundles.
Instead of the original grapheme representation of words, we
can represent a word with a sequence of phones, graphones
or syllables. With the method described in Section III-A, we
use Morfessor on top of these representations to automatically
learn phone bundles, graphone bundles and syllable bundles as
pseudo-morphs respectively. In addition, we consider syllables
by themselves as another alternative subword type.

In the experiments, we mainly use grapheme bundles with
word-level aligned pronunciations as the baseline and for
combination, but we also show results of grapheme bundles
with morph-level predicted pronunciations as reference.

A. Morph Length & OOV Coverage

TABLE VIII
BASE UNIT INVENTORY SIZES FOR GRAPHEMES, PHONES, GRAPHONES

AND SYLLABLES.

#Graphemes #Phones #Graphones #Syllables

Zulu 28 49 368 1107
Turkish 33 44 139 1675
Tagalog 29 41 290 1848

Haitian-Creole 30 33 103 1979
Assamese 63 47 313 1518
Bengali 62 48 340 1769
Tamil 48 33 126 2202

Table IX lists subword statistics for different languages.
The phone inventories for Assamese, Bengali and Tamil are
smaller than their grapheme inventories (Table VIII), which
consist of Indian scripts. The inventory size contributes to the

TABLE IX
VOCABULARY STATISTICS FOR DIFFERENT SUBWORD UNITS. “BD” IS

SHORT FOR “BUNDLE”. PRONUNCIATIONS FOR GRAPHEME BUNDLE ARE
GENERATED BY WORD-LEVEL G2P ALIGNMENT. BEST CASE UNIT(S) FOR

OOV ATWV FOR EACH LANGUAGE IS INDICATED IN BOLD.

Language Subword Unit
#Morphs #Phones

#Morphs
OOV KW

/ Word / Morph %Coverage

Zulu

grapheme bd. 2.8 4.5 3506 94.8
phone bd. 2.7 4.3 4438 95.2

graphone bd. 4.1 3.5 2125 94.8
syllable bd. 3.3 3.9 2025 91.0

syllable 3.9 2.9 1107 97.1

Turkish

grapheme bd. 2.6 4.0 2823 94.1
phone bd. 2.3 4.2 3840 86.0

graphone bd. 3.3 3.7 2380 95.3
syllable bd. 2.8 3.7 3043 46.8

syllable 3.2 2.8 1675 57.6

Tagalog

grapheme bd. 2.1 4.3 2985 88.8
phone bd. 2.0 4.3 3685 90.2

graphone bd. 3.5 2.8 1955 93.5
syllable bd. 2.6 3.6 2362 81.6

syllable 2.9 3.0 1848 93.9

Haitian-
Creole

grapheme bd. 1.6 4.2 3527 89.5
phone bd. 1.8 3.8 2650 87.1

graphone bd. 2.9 2.6 1098 96.8
syllable bd. 2.0 3.4 2401 54.8

syllable 2.1 3.1 1979 67.7

Assamese

grapheme bd. 3.2 3.2 1099 95.5
phone bd. 2.0 4.2 3500 90.9

graphone bd. 2.9 3.0 2265 89.2
syllable bd. 2.6 3.4 2272 76.1

syllable 2.9 2.9 1518 86.9

Bengali

grapheme bd. 3.2 3.1 997 98.1
phone bd. 1.9 4.0 3963 88.3

graphone bd. 2.8 3.0 2221 93.7
syllable bd. 2.4 3.4 2709 68.4

syllable 2.6 2.9 1769 86.4

Tamil

grapheme bd. 3.5 3.6 1537 99.3
phone bd. 2.6 4.7 5035 91.8

graphone bd. 3.3 3.8 2351 93.6
syllable bd. 3.0 3.9 3993 84.3

syllable 3.6 3.1 2202 93.3

morph length, since in general unsupervised morph learning
based on a bigger base unit inventory tends to generate shorter
morphs in order to gain sufficient occurrences in multiple
words. As a result, the average morph length (measured by
“#phones/morph”, Table IX) of their derived phone bundles
is larger than that of their grapheme bundles - a grapheme
in the three Indian languages typically corresponds to a
phoneme. Therefore, phone bundles can effectively solve the
over-segmentation problem of grapheme bundles for languages
with these characteristics.

Graphone bundles are shorter than both grapheme bundles
and phone bundles in the non-Indian languages likely due to
the larger graphone inventories. However, for Indian languages
graphone bundles are still almost as long as grapheme bundles,
suggesting that the phonetic information helps morph learning
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(more discussion in Section VII).
Syllables as subword units are relatively short, each of

which has about 3 phones on average for all languages, and the
syllable boundaries need to be annotated by language experts
(provided by the language packs). Syllable bundles are derived
in such a way that they can make use of the syllable boundaries
and are longer than syllables for less confusability.

“OOV KW Coverage” in Table IX reports the percentage of
OOV keywords that can be fully represented by IV subwords
in the form of their segmentations (which is different than
the keyword OOV rate). Typically shorter subword types have
higher coverage. A reason for the generally better coverage
of the morphs than syllables is that the Morfessor algorithm
explicitly optimizes a minimum description length criterion,
which finds an efficient code for characterizing words based
on available training data. Depending on the complexity of
syllables in the language, this can be more or less of an
advantage. The morphs do contain substantially more single
phones than do syllables (Table X), but they do not include
all possible phones and the number of single phones is not
a good indicator of OOV keyword coverage. In particular,
the languages with the fewest single phone syllables (Zulu,
Tagalog) have the highest coverage rates for syllables (>93%).
The limited training scenario also plays a role: Morfessor has
worse coverage for syllable bundles due to the large symbol
set of syllable. In order to enhance the coverage of syllable
bundles, we expand the syllable bundle index back to a syllable
index before keyword search.

TABLE X
NUMBER OF UNIQUE SINGLE PHONES AS GRAPHEME BUNDLES, PHONE

BUNDLES AND SYLLABLES, AND NUMBER OF PHONES FOR EACH
LANGUAGE.

#phones
#Unique single phones in

grapheme bd. phone bd. syllable

Zulu 49 27 42 7
Turkish 44 30 34 16
Tagalog 41 24 34 0

Haitian-Creole 33 30 30 12
Assamese 47 33 37 15
Bengali 48 38 42 13
Tamil 33 32 32 12

B. Morph Pronunciation

We construct pronunciations of OOV words in keywords by
putting together the pronunciations of all component subword
units. We measure the phone error rates of such OOV word
pronunciations in Figure 2 and present the differences using
different subword types.10

Besides the grapheme bundles with aligned pronunciations,
phone bundles and graphone bundles have the lowest PER,
because they are derived after the word-level G2P is applied to
OOV words. The phone error rate of them is effectively 1/3 –

10If a word has multiple pronunciations provided by the development set
lexicon, we compare the predicted pronunciation with all of them and report
the lowest PER.

1/2 of that of grapheme bundles with predicted pronunciations.
For syllables and syllable bundles, since each predicted sylla-
ble is forced to follow a legitimate syllable structure learned
during G2P training, the syllable-based pronunciations are
less accurate than those based on phone bundles or graphone
bundles.

The IV PER is 1.1–14.2% for grapheme bundles with
predicted pronunciations, lower than their OOV PER, but 0
for other subword types since their pronunciations are aligned
against the true word pronunciations from the training lexicon.

Fig. 2. Phone error rate for development set keyword OOV word pronunci-
ations comprised of subword pronunciations.

C. KWS Results

Keyword search results for OOV keywords based on
subword-only decoding are presented in Figure 3 for all
5 types of subword units. Adding phonetic information for
morph learning helps in general as the consequence of mul-
tiple factors including reduced G2P errors, longer units and
increased OOV coverage. The best subword type varies due
to characteristics of the languages. For all 3 Indian languages,
all of the phonetic subword types perform well due to the
improved pronunciations. The poor results for Turkish using
syllables and syllable bundles are likely due to their low
coverage for OOV keywords (57.6%, Table IX). Grapheme
bundles perform reasonably well for languages where they
are relatively long. Phone bundles seem to be the best choice
in general because they are simple and effective in most
languages, and they do not require human annotation of
syllables. The combination of all 5 subword units improves
OOV ATWV substantially, which indicates their diversity can
reduce misses of OOV keywords although at the cost of
increased false alarms.

In order to better investigate whether the corrected subword
pronunciations improve KWS performance, we also compare
the IV ATWV results across different subword types in
Figure 4 - the 4 non-grapheme-bundle subword types have
perfect pronunciations when composing IV words, and all
subword types have perfect coverage for IV keywords. Phone
bundles improve IV ATWV over grapheme bundles for all
languages except for Haitian-Creole likely due to the already
low PER for its grapheme bundles (1.1%). This improvement
for Tagalog, Assamese and Bengali is even bigger than that in
OOV keywords, partly due to their higher IV PER reduction
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Fig. 3. OOV ATWV on the evaluation sets with subword-only decoding using
5 different subword types, and with the combination of the 5 systems.

Fig. 4. IV ATWV on the evaluation sets with subword-only decoding using
5 different subword types, with the combination of the 5 systems, with the
word-only decoding baseline, and with the combination of the word-only
decoding baseline and the phone-bundle-only decoding system. “bd” is short
for “bundle”.

compared to other languages. The other 3 non-grapheme-
bundle subword types are also better than grapheme bundles
except for Zulu and Haitian-Creole since apparently morph
length is still a confounding factor. Because coverage is not
a problem for IV keywords, Turkish syllables and syllable
bundles perform similarly to or slightly worse than other
bundles. Phone bundles are the best or among the best con-
sistently in all languages. The combination of all subword
units is less effective for IV keywords than OOV keywords,
likely because OOV ATWV is much more sensitive to missed
detection penalties according to the definition. However, the
word decoding baseline system performs even better than the
combination of all 5 subword systems for IV keywords. The
best system can be achieved by combining the word baseline
with the phone bundle system. Adding other subword systems
leads to minimal further improvement.

In most languages for both OOV and IV ATWV, the
morphological subword units based on phonetic information
perform better than the grapheme bundles with aligned pro-
nunciations and even better than the ones with predicted
pronunciations. This suggests that not only do better morph
pronunciations help, but also adding pronunciations into mor-
phology learning is useful.

TABLE XI
OOV ATWV AND WER ON THE development SET USING DIFFERENT

N-GRAM ORDER SUBWORD-ONLY LMS FOR EACH SUBWORD TYPE FOR
BENGALI. PRONUNCIATIONS FOR GRAPHEME BUNDLE ARE GENERATED

BY WORD-LEVEL G2P alignment. AVERAGE NUMBER OF MORPHS PER
WORD FOR EACH SUBWORD TYPE IS ALSO LISTED.

Subword Unit
#Morphs OOV ATWV WER
/ Word 3-gr 5-gr 7-gr 3-gr 5-gr 7-gr

grapheme bd. 3.2 0.045 0.042 0.047 72.5 72.9 73.0
phone bd. 1.9 0.115 0.109 0.107 69.7 69.8 69.8

graphone bd. 2.8 0.094 0.088 0.092 70.3 70.6 70.7
syllable 2.6 0.069 0.075 0.072 73.0 73.1 73.1

D. Effect of Higher Order LMs

In ASR experiments for morphologically rich and concate-
native languages, it has previously been shown, for example in
[4], that longer n-grams are beneficial for shorter sub-words.
We experimented with long-span n-grams for subword-only
LMs, comparing against trigrams for the purpose of OOV
keyword search and ASR. The results are given in Table XI.
We conducted this set of experiments on Bengali since it has
both a relative long subword type (phone bundle, 1.9 morphs
per word) and a short subword type (grapheme bundle, 3.2
morphs per word). For fair comparison, the number of n-
grams for 5-gram and 7-gram LMs are pruned using entropy
pruning to be approximately the same as that for 3-gram LMs.
As shown in Table XI, WER correlates with OOV ATWV
well when different subword types are compared. For each
subword type, the difference of OOV ATWV across LM order
is minimal. Higher order LMs seem to perform slightly worse
than or just about the same as trigrams in terms of WER.
We also tried using 5-gram and 7-gram LMs that were not
pruned to match the trigram size, but still did not observe any
significant performance improvement. In our case, it appears
that neither ASR nor KWS benefit from such higher-order
context, perhaps due to the data sparsity caused by our 10-
hour training set. Based on these results, we fixed our LM
choice to be trigram throughout the paper. Further evaluations
on more data and more languages could be future work for
interested readers.

E. System combination

The final system combination results are shown in Table
XII. The baseline is a word decoding system where OOV
search is handled by expanding word indices into phones.
Using the phone bundle subword-only decoding system for
OOV and combining it with the baseline for IV already pro-
vides good gains over the baseline, which leads to significant
improvement in the overall ATWV with up to 0.05 absolute
difference. These results suggest that using morphology-based
subword units for decoding, especially those learned with
phonetic information, is effective to handle the data sparsity
issue in the low-resource setting for keyword search. This
combination is efficient because only one subword decoding
is needed in addition to the word decoding. If resources allow,
combining all 5 types of subword units for the OOV portion
can achieve further improvement in overall ATWV with up to
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TABLE XII
SYSTEM COMBINATIONS FOR IV, OOV AND OVERALL ATWV ON THE
evaluation SETS. SYSTEMS: S0) WORD DECODING BASELINE: WORD

SEARCH FOR IV AND PHONE SEARCH FOR OOV (VIA INDEX EXPANSION).
S1) IV: S0 + PHONE BUNDLE SYSTEM; OOV: PHONE BUNDLE SYSTEM.
S2) IV: S1; OOV: COMBINATION OF SYSTEMS OF 5 SUBWORD TYPES.

Language System IV OOV All

Zulu
S0 0.313 0.079 0.250
S1 0.341 0.159 0.292
S2 0.341 0.198 0.303

Turkish
S0 0.339 0.043 0.257
S1 0.356 0.182 0.307
S2 0.356 0.225 0.320

Tagalog
S0 0.392 0.035 0.258
S1 0.406 0.135 0.305
S2 0.406 0.241 0.344

Haitian-Creole
S0 0.401 0.026 0.331
S1 0.425 0.122 0.369
S2 0.425 0.199 0.383

Assamese
S0 0.350 0.050 0.302
S1 0.375 0.091 0.330
S2 0.375 0.184 0.344

Bengali
S0 0.325 0.103 0.286
S1 0.353 0.114 0.311
S2 0.353 0.182 0.323

Tamil
S0 0.278 0.044 0.224
S1 0.298 0.061 0.244
S2 0.298 0.114 0.256

0.086 absolute difference compared to the word baseline, but
with the overhead of 5 decoding systems.

VII. ANALYSIS OF LANGUAGE DIFFERENCES

System performance for the different subword units varies
across languages, so it is of interest to examine language dif-
ferences. Zulu, Turkish and Tamil are agglutinative languages
with rich morphology. They have the largest vocabularies
(#IV words), leading to low trigram hit rates, high OOV
rates and high WER for recognition (Table II). Tagalog also
has a rich morphology, but it is less agglutinative and has
non-concatenative morphological features, such as infixation
and reduplication. Conversational Zulu and Tagalog have a
high ratio of code switching with English, which partially
causes the high G2P phone error rates. Haitian-Creole has
very limited productive morphology, lacking any form of
inflectional marking, but since it is based on French, its words
still reflect French derivational morphology. Like many other
Indo-European languages, Assamese and Bengali are fusional
languages, i.e. their rich morphological systems involve non-
concatenative morpheme combinations and changes in the
form of the word stem triggered by different morphemes.

Table IX statistics show that the grapheme bundles for the
three Indian languages (Assamese, Bengali and Tamil) are
relatively short (#phones per morph) so that they have the
highest OOV keyword coverage but at the cost of high acoustic
and lexical confusability. The large grapheme sets could be a
cause of this over-segmentation issue, which contributes to

the worse KWS performance on the Indian languages. Since
shorter units lead to high acoustic and lexical confusability,
the grapheme-based systems perform considerably worse than
the phone-based systems for the three Indian languages. This
difference for IV words is even more pronounced. We fit a
simple linear regression on the vocabulary statistics in Table
II and VIII to predict the morph length for each language
and found that the log of vocabulary size and the base unit
set size (#graphemes) are most correlated with the length
of the derived grapheme bundles. For the four non-Indian
languages, despite the fact that they are in different places on
the spectrum of morphological “richness” - Zulu and Turkish
are highly agglutinative, Tagalog has a rich, but partially
non-concatenative morphology, and Haitian-Creole has only
very limited morphology - the morph-based subword decoding
approaches works reasonably well on all of them.

One factor that appears to affect morph length resulting
from unsupervised learning is the base unit inventory size: in
general, a bigger inventory tends to produce shorter morphs in
order to obtain sufficient occurrences in multiple words. The
three Indian languages have bigger grapheme sets than the
other languages, which cause the over-segmentation issue for
their grapheme bundles; their smaller phone sets lead to phone
bundles being longer than grapheme bundles while maintain-
ing good coverage. Another factor is phonetic regularity. When
we used a graphone set for the Indian languages, despite it
being large, it leads to fewer morphs per word for graphone
bundles than grapheme bundles, likely because it makes the
grapheme set more specific. According to our one-to-many
alignment generation process, graphones are really graphemes
annotated with phonetic information - including this informa-
tion allows Morphessor to find more coherent, longer chunks.
Switching from graphemes to phones, graphones or syllables,
the inherent default vowel of consonants (see Section III-A)
becomes explicitly visible.

Besides morph length, there are other factors leading to
system performance differences. Syllable coverage is an issue
for Turkish OOV keywords. Pronunciation PER also has an
impact, but it is difficult to assess its role - PER reduction cor-
relates with IV ATWV improvement reasonably well but not
with OOVs since it interacts with morph length, OOV coverage
and other factors. In theory, Morfessor is expected to be more
effective on languages with concatenative morphology, but it
does not appear to be a deciding factor experimentally - Zulu
and Turkish perform well on OOV keywords while Tamil does
not. Besides concatenative morphology, the language-inherent
acoustic confusability certainly plays a role as well - Tamil
is the hardest even in the case of word decoding (Table II)
since their words are confusable in terms of pronunciation.
All of these factors interact to affect both ASR and KWS
performance across languages.

VIII. CONCLUSION

In this paper, we have systematically investigated the usage
of morphological subword units in KWS for handling the
OOV issue in the low-resource setting. We evaluate their
effectiveness in 7 languages that have different degrees of
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morphology, ranging from highly agglutinative languages like
Zulu to languages with limited productive morphology like
Haitian-Creole. We show that the morphology-based subword
approach is effective in all languages but requires careful
choices of system components. First of all, subword decoding
is better than subword expansion from word decoding for
handling OOVs; it provides better subword posterior estimates.
Furthermore, pronunciations have an effect on morphologi-
cal decomposition and hence ASR and KWS performance.
For grapheme-based morphs, extracting morph pronunciations
based on alignments to whole word pronunciations gives
lower PER than predicting pronunciations for these morphs in
isolation, and for most languages results in improved KWS.
However, better results can be obtained by using subword
definitions that learn from pronunciations, either be applying
morphology learning to phone or graphone sequences or by
using syllables. These novel morphological subword units have
not only reduced pronunciation errors, but have also learned
morphology from phonetic regularity, which improved KWS
performance in both IV and OOV keywords. In addition, the
combination of multiple types of morphs is able to obtain
substantial improvement over individual systems especially on
OOV performance at the cost of multiple decodings.

We find that grapheme bundles on Indian languages do not
work well out of the box since the words are over-segmented,
which is possibly due to the specifics of the Indian scripts
and their relatively large grapheme sets combined with the
small amount of text available for morphology learning. The
proposed phone bundles have effectively solved both issues
and have better pronunciations, which turn out to be longer and
perform substantially better in KWS than grapheme bundles.

As for all experimental work in speech recognition, the
improvements obtained here need to be interpreted in the
context of the particular speech recognition technology used.
In this work, we have not taken advantage of fuzzy or
proxy-based keyword search techniques due to the higher
computation and implementation costs, but that may provide
an alternative approach for achieving performance gains. The
rapid advances in neural network-based systems may impact
the findings. However, algorithms for unsupervised morphol-
ogy are also advancing with the increasing interest in low
resource languages, which could increase impact and/or benefit
from the generalization to more phonetically-based analysis.

Although we focus on the application of keyword search,
approaches proposed here could be adapted to other domains
like open vocabulary recognition and OOV detection. For
example, in open vocabulary recognition, word transcriptions
can be derived directly from the graphemes associated with
graphone morphs.

Future work may benefit from more sophisticated mor-
phological feature-based approaches in language modeling
which would provide better models of long-span subword
dependencies, and better rescoring of putative subword hits in
keyword posting lists. Phonetically close IV morph sequences
to a keyword segmentation can be generated based on con-
fusions, which can be used in a fuzzy search strategy for
detecting keywords that are not covered or reducing misses for
other keywords. Considering code switching or morphology

learning for G2P might be useful to further reduce morph
pronunciation errors for languages like Zulu and Tagalog.
In addition, a principled framework that allows for tuning
the morphological analysis pipeline based on ASR and KWS
performance directly would potentially be helpful.
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