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Modelling for Polyphonic Transcription

Ken O’Hanlon, Member, IEEE, Hidehisa Nagano, Senior Member, IEEE,
Nicolas Keriven, Student Member, IEEE, Mark D. Plumbley, Fellow, IEEE

Abstract—Automatic Music Transcription (AMT) can be per-
formed by deriving a pitch-time representation through decompo-
sition of a spectrogram with a dictionary of pitch-labelled atoms.
Typically, Non-negative Matrix Factorisation (NMF) methods are
used to decompose magnitude spectrograms. One atom is often
used to represent each note. However, the spectrum of a note may
change over time. Previous research considered this variability
using different atoms to model specific parts of a note, or large
dictionaries comprised of datapoints from the spectrograms of
full notes. In this paper the use of subspace modelling of note
spectra is explored, with group sparsity employed as a means of
coupling activations of related atoms into a pitched subspace.
Stepwise and gradient-based methods for non-negative group
sparse decompositions are proposed. Finally, a group sparse NMF
approach is used to tune a generic harmonic subspace dictionary,
leading to improved NMF-based AMT results.

Index Terms—Group sparsity, automatic music transcription,
non-negative matrix factorisation, stepwise optimal

I. INTRODUCTION

UTOMATIC Music Transcription (AMT) seeks to derive

pitch-time activations from a musical signal. Spectro-
gram factorisations provide one approach to this problem,
and are particularly appropriate when the signal is comprised
of instruments with fixed pitch, such as a piano. Often, in
audio signal processing a magnitude, or power, spectrogram is
used with methods based on Non-negative Matrix Factorisation
(NMF) [1]. In this case, NMF seeks to approximate the non-
negative spectrogram S € Rf *N such that

S ~ DX (1)

where D € R% K isa dictionary matrix, with an atom, dy, in
each column and X € Rf *N is an activation matrix in which
each row, x”, relates the activations of the corresponding
atom, dg. When the atoms are pitch labelled a pitch-time
representation can be derived from the activation matrix.
NMEF is an unsupervised learning algorithm which typically
uses multiplicative updates to perform the approximation (1).
NMF was first proposed for AMT by Smaragdis and Brown
[2]. They considered that each note in a signal may need to be
played in isolation at least once in order to learn a meaningful
atom for that note [2] as overlap of signal elements in the
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spectrogram, common in musical signals, presents difficulty
in separation of factors. While NMF may separate notes that
are not played in isolation [3], there is a tendency to learn
atoms that are not meaningful, with energy concentrated in
few dimensions [3] [4] while the selected learning order, or
factorisation rank, K, is seen to effect AMT performance [3].

Supervised NMF, or Non-negative Matrix Decomposition
(NMD) [5], using a fixed dictionary, provides a means to
perform AMT that avoids problems associated with NMF.
However, NMD performance degrades if a dictionary is not
suited to the signal [4]. Typically NMD is performed with one
atom used to model each note [S]. Improved AMT using multi-
atom note modelling is reported in [6], where it is suggested
that using several atoms better captures variation in spectral
shape over the duration of a note. Similarly, different atoms
are used to model the attack, sustain and decay states of a
piano note with Hidden Markov Models used to determine
transitions between states [7] [8]. Alternatively, use of low-
rank subspaces, learnt offline using NMF, to model notes is
considered in [4]; however degraded performance is reported.

An alternative approach to note modelling for NMD is
taken in [9] where a dictionary comprised of the frames of
isolated note spectrograms is used in order to capture the
variability in the note spectrum. This datapoint dictionary is
overcomplete (K > M), and Orthogonal Matching Pursuit
(OMP) [10] is used to decompose a spectrogram. Difficulty in
selecting an appropriate stopping condition for OMP in this
context is identified [9], while broken temporal continuity in
spectrogram decompositions using greedy pursuits is reported
in [11]. However, the potential advantage of stepwise pursuits
in the case of multi-instrument signals is noted in [12].

Harmonic variants of NMF [4] [13] [14] constrain the
learning in order to learn meaningful atoms and avoid the
rank selection problem. These approaches initialise with one
atom, estimating an expected note spectrum, specified for
each note. Racinski et al [13] place zeroes at all positions
of an atom not expected to contain a harmonic partial of
the associated note. The zeroes, and harmonic structure, are
maintained by multiplicative updates used in NMF. Vincent
et al [4] propose a semi-supervised NMF approach using
a hierarchical dictionary, in which each high-level harmonic
atom is defined by learning a superposition of several low-
level fixed narrowband atoms sharing the same fundamental
frequency. While this method is considered state-of-the-art for
NMF-based AMT, we consider that the harmonic constraint
may be over-restrictive, particularly in the case of semi-
percussive instruments such as the piano.
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A. Contributions of this paper

In this paper, the use of subspace models of note spectra
is considered, whereby a note is represented by a group of
atoms, such as seen in Fig. 3 and Fig. 5, that may be co-active
and have no explicit temporal dependencies. We consider that
negative results reported for this model [4] are due to the lack
of a strategy to couple groups of atoms into pitched subspaces.
We propose to use group sparsity for this purpose, and develop
a suite of non-negative group sparse algorithms. OMP-based
methods are first proposed [15], but noted problems with
this class of approaches in this context [9] [11] lead us to
propose an alternative stepwise method, employing backwards
elimination [16]. We previously proposed these approaches
in [15] [16], and offer a direct comparison here alongside a
further comparison of subspace and datapoint modelling [9].

Group sparsity is then extended to NMF with S-divergence.
We propose a novel group sparse penalty that scales in a
linear fashion to [-divergence, for which we provide an
auxiliary function that affords a monotonic group sparse NMF
algorithm. We then employ this approach in a dictionary tuning
method, applied to a restructured version of the harmonic
dictionary used in [4], whereby the hard harmonic constraint
is dropped. Part of this work was described in [17] and is
augmented here through monotonic descent algorithm with
scale invariant group sparse penalty and further evaluation.
We also propose a new onset detector for NMF-based AMT.

In the next section some relevant background information
and baseline methods are briefly described. Following this,
the proposed group sparse methods are outlined in section III.
Section IV introduces the dictionary tuning approach, before
evaluation of all proposed approaches is given in section V.
Finally the paper concludes with pointers to further work.

II. BACKGROUND AND BASELINE METHODS
A. Group Sparsity

PARSE approximation seeks a signal representation that

is predominated by zeros. Given a signal, s € RM, and
a dictionary, D € RM*X  with unit ¢, norm atoms in each
column, dy, the sparse approximation problem is defined as a
penalised least squares problem

x < min [|s — Dx||3 + A|[x[lo )

where ||x|lo = |x # 0] is referred to as the ¢, pseudonorm and
A is a parameter controlling the sparsity of the representation.
Different approaches may be used to approximate (2). Greedy
methods such as OMP [10], outlined in Fig. 1, form a repre-
sentation by iteratively adding the atom most correlated with
the residual signal, r, to the sparse support, I'. The supported
atoms, indexed by Dr, are projected onto the signal, giving
the interim coefficients, xr, which are used to recalculate the
residual. This iteration is performed until a predefined stopping
condition such as residual energy level, or a number of selected
atoms, is met. An alternative to matching pursuits is to replace
the ¢y penalty in (2), considered a difficult problem, with an
¢1 norm, where ||x||; = >, |z,|. This approach, referred to
as /1 minimisation or Basis Pursuit Denoising [18], allows
approximation of (2) with convex optimisation methods.

o Input : D € RM*XN. g c RM
o Initialise :r =s; T = {}
¢ Repeat

— Select atom with index

k= argmax|(d, )| 3)

— Add to support .
r=Tuk 4)

— Backproject support onto signal
Xr m)in |s — Drx||3 (5)
— Calculate new residual
r=s— Drxr (6)

« Until stopping condition met

Fig. 1: Orthogonal Matching Pursuit.

Group sparse representations incorporate the assumption
that certain atoms tend to be active together, as demonstrated
in Fig. 2. Given the set J = {J7}, where J/ contains the
indices of the jth group, the notation

[d7i1); - dgiqgi))]

x[j] = [zziqy,-gigzip)”

is used for the jth group of the dictionary, D[j], and of the
coefficient vector, x[j], where 77 (i) is the ith member of the
jth set of indices. The notation x[j,1] is used to refer to the
ith member of the jth group of x.

Group sparse variants of OMP replace (3) with a group
selection criteria, and add all atoms in the selected group,
indexed by j’, to the support : I' = T' U J7. The most well-
known group sparse greedy method is Block-OMP (B-OMP)
[19] which uses the selection criterion:

= argmas o] g
x[1]
x[2]
= L X[3]
x4
s D[1] | DI2] | D[3] | Di4]

Fig. 2: Graphical description of the group sparse problem
showing dictionary with groups notated D(j] and one active
group x[2]. White blocks denote zeroes.
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where #[j] = D[j]7r. Subspace Matching Pursuit [20] is a
similar approach which uses the selection criterion:

§'=argﬁljin||r—7fj(f)\|2 ®)

where 7;(r) is the projection of r onto the subspace D[j].

The group sparse problem can also be considered using a
penalised least squares approach. In this case a mixed-norm
¢p.q penalty is employed where

L)

P.q = Z Z

g \ie{1,..,|T71}

1| x[j,if? NG

In the case where it is expected that few groups are active, with
many atoms active in each group, an ¢, o norm is considered
ideal, typically with p = 2 [19]. Similar to Basis Pursuit
Denoising [18], relaxation using an ¢, ; penalty is considered
[19]. Other mixed norm penalties, such as the f; > term
proposed in [21] which seeks to have many groups active with
few atoms in each group supported, are known. A list of some
of these penalties is given in [22].

B. Non-negative methods

Spectrogram decompositions are often performed on non-
negative spectra with a non-negative constraint applied to the
dictionary and activations. Stepwise methods such as OMP
require modification to explicitly accommodate this constraint
[23]. The least squares backprojection (5) is replaced with
Non-Negative Least Squares (NNLS) :

X ¢— min|[s — Dx||? st x>0. (10)

NNLS is a well studied problem for which many different
methods have been proposed [24]. The classic NNLS algo-
rithm [25] is a greedy stepwise algorithm, similar to OMP,
that considers a positive only selection criteria

k= argm]?x dfr (11
and backprojects using an iterative loop. In each iteration a
least squares projection is performed and atoms displaying
a negative coefficient are ejected from the active set, I
Iterations continue until the non-negative constraint is met.
NNLS possesses a natural stopping condition that no inactive
atoms have a positive correlation with the residual. Non-
negative OMP (NN-OMP) [23], apart from the stipulation of
normalised atoms, can be considered a truncated NNLS algo-
rithm terminating upon a predetermined stopping condition.

The ¢, penalised approach can also be used for non-
negative sparse approximation using typical ¢; solvers with the
non-negative constraint applied [26] [27] or penalised NMD
approaches [28]. However, NNLS can be considered a sparse
algorithm as the non-negative constraint performs an innate
regularisation [29], and is shown empirically to outperform
non-negative ¢; minimisation [29]. In AMT experiments we
have observed little difference between such non-negative ¢;-
approximation and NNLS.

Gradient-based methods, often based on NMF, are generally
preferred for spectrogram decompositions. While stepwise
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Fig. 3: Group of atoms forming a subspace representing one
note.

methods employ the Euclidean distance, other cost functions
are considered superior for audio signal processing [2] [4]
[30]. In particular, it was shown that the Kullback-Leibler (KL)
divergence

S
Cir(slz) =) snlog ot (12)
where z = Dx is the current estimate, outperforms Euclidean
distance in the original paper considering NMF for AMT [2].
The generalised S-divergence [31]

Cs(sl2) = mZSﬁJr(ﬂ—l)Zi—ﬁ(sti_l) (13)

generalises popular cost functions such as Euclidean distance
(8 = 2), with KL (12) and Itakuro-Saito (IS) divergences as
limit cases as 5 — {1,0}, respectively. NMD experiments
described in [4] [5] report superior AMT results for 5 = 0.5.

Similar to NNLS, sparsity is a known side effect of
NMF due to non-negative regularisation [1]. Nonetheless it
is relatively common to enhance this implicit sparsity by
using penalty terms, which are easily accommodated in NMF.
Typically an ¢; penalty is considered [32] [33] [34]; however
this may not always be effective [33] [27]. Concave penalties,
such as the log based penalty, , log(14x,,), used with audio
signals in [6], may be attractive as they tend to be sparser than
the ¢; norm. Penalised NMF approaches with S-divergence
generally lead to the multiplicative updates [34]

Xexo [[DT[DX]M] Y WXJ (1
De<Dbg {[[DX}[B—HXT] +)\\IJ(D)} (15

where ® denotes elementwise multiplication, x[1 denotes
elementwise exponentiation of a vector or matrix, the matrix
division is also elementwise, ¥(D) and ¥(X) typically de-
scribe the gradient of the penalty term, and () is a parameter
that varies with 3 and the penalty used to ensure descent of the
cost function. For the range 0 < 8 < 2, a value of p(8) = 1 is
given in [35] for the unpenalised case, while p(3) = 1/(3—0)
is given when a £3 penalty is applied [34].
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III. NON-NEGATIVE GROUP SPARSE METHODS

In order to apply the subspace model for AMT using
magnitude spectrogram, non-negative group sparse algorithms
are proposed.

A. Non-negative Group Sparse OMP

Non-negative group sparse OMP methods are simply de-
rived, similar to NN-OMP [23], by using NNLS backprojec-
tion and enforcing non-negativity in the selection step. We
derive a non-negative B-OMP (NN-BOMP) selection criterion
from (7) by considering only positive inner products:

j = argmax 67 ]l (16)
when ¢ = Z¢ where 7 is an “is positive” indicator function.
We previously proposed the Non-Negative Nearest Subspace
OMP (NN-NS-OMP) [15], using the selection criteria:

j=argmin|r—Dlix[jll st x[jj=0 (17
where x[j] is the NNLS solution vector for the decomposition
of the residual over the subspace D[j]. While (17) can be
considered a non-negative variant of Subspace Matching Pur-
suit selection criteria (8), the non-negative constraint implies
that the solution to (17) is not accessible through dictionary-
residual multiplication as the active set must be determined for
each group, requiring the use of NNLS. This is computation-
ally demanding, as NNLS is calculated for each group at each
frame q times, where ¢ is the number of groups to be selected.
For a minute of music, sampled at 44.1 kHz, with a hopsize
of 1024 samples, or ~ 23.2ms , a dictionary containing 88
pitched groups, and an average polyphony of ¢ = 5, NN-NS-
OMP requires more than 10° blockwise NNLS calculations.
A fast, exact, variant of NN-NS-OMP upper bounds the norm
of the NNLS projection by the lower of the norm of the least
squares projection 7;(r) (8) and the NN-BOMP coefficient
(16), both available through dictionary-residual multiplication,
in order to prune the number of NNLS calculations. The details
of this approach are left to [36] [37].

B. Backwards Elimination

Problems with corruption of time continuity [11] and dif-
ficulty in selecting an apt stopping condition [9] are reported
when matching pursuits are employed for AMT. Indeed, it
would seem that greedy pursuits may not be appropriate for
AMT decompositions. Pursuit algorithms are known to give
accurate results when the dictionary elements are uncorrelated,
or incoherent [38]. However, non-negative dictionaries are in-
nately coherent [23], a problem accentuated by harmonicity in
a dictionary representing pitched notes, where consonant notes
are represented by coherent atoms. As a result, it is observed
that even initial atom/note selections with greedy methods
may be incorrect when two related pitches are present, and
a correction mechanism is desirable.

Bi-directional pursuits that alternate between forward selec-
tion and backwards elimination have been recently proposed
[39] [40] [41]. Some of these approaches [41] [39] [42] are

o Input : D € RMXN.g c RM: 7
e Initialise :

X < argmin||s — Dx|ls st. x>0 (20)
I = {5l > 0}
« Do While A; < X (or |T| > q)
I = {k[x; > 0}; F=[DiDp]™"
— Select group

~ . . = =171 —1 —

j =argminA; = argminx[j]" [F[j][j] (]
(21)

where j = {i|I(i) € jj}

— Eliminate : T < T\j; x[j]=0

— Reproject

x>0

xr < argmin ||s — Drx|s  s.t.
x

Fig. 4: Group Backwards From NNLS algorithm.

also stepwise optimal, in that the sparse cost function (2) is
optimised at each elimination or selection. For example, given
the current support, I', a forward optimal step is given by

. ) )

k= argriuan—D{FUk}xH? (18)
X

In comparison, OMP selects the atom that optimises the least

squares error relative to the current residual :

l;::argrilimnﬂr—dka:\\%. (19)
Fast stepwise optimal selection and elimination criteria, de-
rived using block matrix updates, are proposed in the Greedy
Sparse Least Squares approach [42].

The non-negative constraint suggests a simple stepwise
optimal strategy for the problem at hand. In particular an
initial sparse solution can be derived using NNLS, which
has a natural stopping condition. Subsequently the necessity
to alternate between forwards and backwards steps in order
to correct early errors is removed, and an elimination only
strategy, referred to as Backwards From NNLS (BF-NNLS)
[16] is proposed. The group sparse variant, GBF-NNLS, is
outlined in Fig. 4. After the initial NNLS (20) is performed
the set of active groups, I, is identified before entering the
main loop of iterative elimination. At the start of each iteration
the index ordered set of active atoms, II, is denoted and the
inverse of the Gram matrix of the active set of the dictionary,
F, is calculated. The group elimination cost, A;, equal to the
difference in ¢2 error before and after elimination, is given
by (21) where F[j][j] denotes the square block of the matrix
F with row/column indices related to the active atoms from
the jth group. The calculation of the group elimination cost
is derived using block matrix inverse updates, generalising the
atomic elimination step used in [42]. The group, indexed by
7 displaying the minimum elimination cost is then eliminated
from the support. NNLS is then performed using only the
supported groups, before the iteration is re-entered.
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In practice NNLS is performed on the full spectrogram,
S, before elimination, in order to determine the stopping
condition, A, which is calculated using a parameter, §:

A =06 xmax[H|;, (22)
7n
where H is a group coefficient matrix
[H]j.n = ID[]xn[j]l2- (23)

This approach is similar to that used in [4] and [5] for
thresholding approaches. The optimal value of § is seen to
be consistent across spectrograms of different transforms [37]
in thresholding approaches. As this consistency is desirable, a
modified group sparse cost function is used [16]

Crmod = |Is = Dx||2 + Allx]| L0 24)

where ||x[j]||L = [|D[j]x[j]||2. The modified cost (24) simply
replaces the typically used ¢3 error (2), with the ¢y error.
Experiments in [16] verify that use of this cost function
maintains the scaling property seen in thresholding. The mod-
ified elimination cost, Aj, is only explicitly considered in the
stopping condition, as the ordering of elimination costs is the
same as that of the standard elimination cost Aj., from which

it is calculated
Ay = /lIell3+ A5 = [r]l2

where r is the current residual.

(25)

C. GS-B-NMF with {5 ; penalty

A variant of group sparse NMF, using IS (8 = 0), was
proposed for source separation in [43], with a log-based
penalty applied to ¢; norm group coefficients:

)\Zlog(a—i— I1x[7]111) (26)
l
leading to updates generalised by (14) (15). A strategy for
estimation of the parameters A, a, in (26) is given in [43],
however it is unclear whether this strategy extends to cost
functions other than IS. The penalty (26) is also employed
with KL divergence in [22], in which case optimisation is
performed by using a convex-concave projection algorithm. As
an alternative, we now propose a group penalty using an ¢
norm group coefficient that is scale invariant to 3-divergence.
An alternative to the log-based sparse penalty is the /D
quasinorm measure [44] which is also concave when p < 1

x5 =[x

27

where x[?! denotes elementwise exponentiation, and can form
a tighter approximation to the ¢, pseudonorm as p — 0 than
either /; or the log-based penalty. We considered a small value
of p in [17], but now propose to use a Eg penalty with the S-
divergence, noting the scaling relationship when S > 0

Cy(slz) _ Cs(aslaz)
I

(28)
lax |5

This relationship implies consistent sparse penalisation, rela-
tive to a given A, regardless of scale. For the KL-divergence

(8 = 1), the ¢, penalty gives constant penalisation, which
is explained in terms of dispersion factors of exponential
distributions in [34] [45]. This scale invariance is desirable,
hence we use an Eg, 5 penalty for the GS-5-NMF problem

N
. A B
X, D ¢ argmin Cs(SIDX) + 3 Z:l [ynllzg (29

for 5 €]0,2] where Cg is given by (13) and
[Y]k,n = [X}k»n X ||dk||2

is considered in order to accommodate the ¢5 norm constraint
on each atom. For KL (5 = 1), the /3 ; penalty is employed
in (29), giving a convex cost function and linear scaling, unlike
the approach in [22]. KL with ¢5 ; penalty was previously used
for group sparse NMD [46], however a monotonic algorithm
was not developed in [46], and is offered here.

Majorisation-Minimisation (MM) methods are used to de-
rive monotonic descent algorithms for 5-NMF [47] [35] and
penalised S-NMF [34]. MM approaches consider an auxiliary
function G(x,x) defined by the properties

C(x) = G(x,%); C(x) < G(x,x)

where C(x) denotes C(s|Dx), and X is referred to as an
auxiliary variable. In practical terms, the auxiliary vector X
is set to the current estimate of the coefficient vector, which is
considered a constant. Optimisation of the auxiliary function

(32)

(30)

&1y

X  arg min G(x, X)

then results in optimisation of the function C(x). Separability
of auxiliary functions in terms of individual variables such that

G(x[%) = G(axl®) + C (33)
k

where C' is a constant, is desirable allowing decoupling of the
optimisation [35]. Summed variables are separable, and a MM
approach is used for the ¢3 penalty, or Y, x7, in [34].

The Kgﬁ penalty is separable groupwise as ||y[j] ||§B =
> [Iyl] |7, Development of a MM approach for (29) requires

an auxiliary function for ||y|[j] ||§ . This can be achieved using
the weighted arithmetic-geometric inequality

b

and setting a = [[y[j][3. b = [[F[j]l3. v=B. w=2- 5"

e < B_IylE <1_ 5) .
WUl < 5ot ) g5
with equality only when ||§[j]ll2 = |ly[j]/l2- The inequality
(35) has previously been derived, less the group notation, using
Young’s inequality [48], and through calculating a quadratic
function that is tangent to the concave left hand side at the
current estimate [49] [44]. The second term of the right hand
side in (35) is a constant in terms of ||y[s]|| as it is given in
terms of the auxiliary variable, allowing the auxiliary function
for the 65 penalty to be given as

2
Gop (yrlyli]) = QHS’ff]Irz_ﬁ
2

(35)

+C. (36)
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where k € J7, and C denotes a constant in terms of ||y[j]]|.
Considering unit norm atoms (Y = X), the gradient of (36)
relative to xj 1S

ﬁxk
R[5

Elementwise multiplication of (37) by & /Sy, consideration
that (36) is separable in each column of X, and setting £ — x
in the convention of (14) leads to

[W(X)]kn =

Vi, Gy (xs[%14]) = 37

Tkn

I [0

which is inserted into (14), to optimise (29) relative to X.
For the dictionary update the auxiliary function (36) is not
separable in the columns of X and needs to be summed
over all activations gzg( el Y[5]) = >, Qzﬁ( mk| Y l7])-
Otherwise, a similar process to that used to derive (38) gives

Dm an2
) ”“;nxnmn;ﬁ

where k € J7, which is inserted into (15), to optimise GS-f3-
NMF (29) relative to D. Subsequent normalisation such that
Xin = Xinp Xdg; di = TaT does not affect the cost (29) due
to (30). For both (14) with (38) and (15) with (39) a value of
©(B) = (3 — B)~! guarantees monotonicity through a similar
MM strategy as used for /2 penalised [-divergence in [34].

(38)

[(¥(D)] i = (39)

IV. DICTIONARY TUNING WITH GS-3-NMF

Use of GS-3-NMF requires knowledge of the partitioning of
the dictionary, unless a group clustering strategy is applied. An
application of GS-S-NMF for dictionary tuning in the former
case is now proposed. Unlike dictionary learning, which seeks
to discover a dictionary in a purely data-driven manner,
dictionary tuning considers initialising a dictionary that is fit
for purpose and preferably generic, and allowing it to morph
into a better version of itself in its immediate context, while
maintaining its labelling. For this purpose, we restructure the
adaptive harmonic dictionary (AHD) proposed by Vincent et
al [50] [4] [14], which models a pitched atom by superposition
of narrowband atoms of the same pitch, such as seen in Fig.
5. A similar model was earlier proposed by Virtanen and
Klapuri [51] using a linear frequency scale. The AHD [4] uses
a logarithmic Equivalent Rectangular Bandwidth Transform
(ERBT) scale, which may be more robust to inharmonicity
due to larger spacing between higher frequency bins.

In [4] it is considered that an atom, e;, representing the full
spectrum of the jth note is formed from a superposition of
several narrowband harmonic atoms, D{j], of similar pitch

ej = D[jlulj] (40)

where D is the AHD and u € RX. The spectrogram is then
approximated by

S ~ EX 41)

where X € R88*N In this way E can be considered the
top-level of a hierarchical dictionary in which each atom, e;
is formed as a linear mixture of several columns of D, the
fixed AHD. Semi-supervised NMF algorithms were proposed
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Fig. 5: Group of atoms used to represent one note in adaptive
harmonic dictionary.

for the approximation (41) using a perceptually weighted
Euclidean distance [50] and S-divergence [4], which we refer
to here as Harmonic NMF (H-NMF). H-NMF used alternating
multiplicative updates to estimate the pitch activation matrix
X, and then the spectral shape of each individual atom in E
by updating u[j]. The low-level dictionary, D, is not updated.

An alternative perspective on the AHD is taken here, in
which the top-level dictionary, E, is excluded, and the dic-
tionary D is group structured, that is, the narrowband atoms
used to represent one note form a subspace. In this case, GS-
B-NMD (14) (38) can be used as a decomposition algorithm,
leading to note representations that can vary at each individual
time frame, as the signal can now be decomposed with 88
pitched subspaces rather than with 88 atoms, as in H-NMF. In
particular, the coupling between narrowband atoms is effected
through data in H-NMF, while it is effected simply by the
group sparse penalty in GS-/3-NMD. In this way, H-NMF may
present different results for a given piece of data when learning
is performed on a subset, or superset, of that data while GS-
B-NMD will present the same result as each decomposition is
independent of other time frames.

A potential weakness of H-NMF, and GS-3-NMD, in this
context, is the strict harmonic model of the AHD due to
the narrowband atoms being fixed. Non-harmonic elements
present in a signal, such as the resonances of a piano body,
may then lead to false detections of atoms that best capture
their energy. It is considered that relaxation of the harmonic
constraint in the AHD may be beneficial. For this purpose
the dictionary tuning approach, outlined in Fig. 6, that uses
GS-5-NMF to update the AHD, is proposed here. In order
for the harmonic constraint to be dropped, a small value,
€mk = Y mik/(4 X M), is added to all elements of the
dictionary allowing them to be updated. While it is expected
that the coupling of atoms within a group will maintain the
pitch identity of each atom, some steps are made to explic-
itly encourage this behaviour through slowing the dictionary
updates. An initial decomposition is performed using NMD
in order to form a reasonable approximation of the signal, in
which case the dictionary can be expected to change less than
it might from a random coefficient initialisation. Then when
the dictionary tuning starts, two coefficient matrix updates are
performed for each dictionary update. Finally, the dictionary
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« Initialise
- Zpp =0.01V {k,n}
— for i=l:a
* Perform NMD using (14) with ¥(X) =0
o Dictionary Tuning
— for i=1:b
* Update dictionary using (15) with (39)
* Normalise: x* < x¥ x ||ds|2; di, < di/||dx|l2
* Update activation matrix (14) with (38) (x2)
¢ Output X, D

Fig. 6: Dictionary tuning with GS-3-NMF.

update itself is further stabilised through addition of an extra
term, 4 = 1, to the numerator and denominator in the
dictionary update (15). This reduces the step size taken for
each dictionary element, particularly in the case where the
numerator and denominator are small, and more likely to result
in very large steps that may introduce instability to the pitch
labelling of the dictionary.

V. EVALUATION

XPERIMENTS were performed with the group sparse

algorithms to evaluate their use for AMT. Further ob-
jectives include evaluating subspace modelling relative to the
datapoint approach. A dataset was formed from the EnStDkCl
subset of the MAPS database [52], containing live record-
ings of 30 pieces of classical piano played by a Disklavier
piano. The Disklavier is an upright piano, that is capable of
robotic acoustic playback with piano strings struck by electro-
mechanically actuated hammers. This robotic setup leads to
acoustic signals with a reliable ground truth that affords a
more rigorous experimental setup that is not available for
other instruments. The acoustic nature of these signals has
previously led to a large divergence in results, particularly for
onset detection, relative to MIDI playback files in the MAPS
dataset [14] [53] [54]. In particular, the difference reported in
[54] is over 20%

The first 30 s of each piece in the dataset were downsampled
to 22.05 kHz. For each piece a Short-Time Fourier Transform
(STFT) spectrogram [50] with window size 2048 and 75%
overlap, leading to a hopsize of ~ 23.2ms, was formed.
A further set of spectrograms using an ERBT of dimension
M = 250, similar to the AHD, and with similar temporal
resolution, was also formed. Dictionaries were learnt offline
from a set of signals containing isolated notes, also from
the EnStDKCl subset of the MAPS database. For each of
the 88 notes on the piano scale, an STFT spectrogram of
the corresponding isolated note was computed, with similar
parameters as the spectrograms of the dataset. Subspaces were
learnt from each spectrogram using Euclidean distance NMF
for a range of values of rank P € {1,...,7} in order to
compare the effects of subspace size. An example subspace
of rank P = 4 is shown in Figure 3. The dictionary was
formed by concatenating the individual pitched subspaces with

appropriate labelling, with each atom normalised to unit /5
norm. A datapoint dictionary was formed from the same spec-
trograms. In order to omit silent segments at the start, onset
detection was performed on each isolated note spectrogram
and 50 spectra, representing ~ 1.16s of audio including, and
subsequent to, the onset were extracted. These datapoints were
normalised and formed a subdictionary representing the given
note. The datapoint dictionary was formed by concatenation of
these subdictionaries. Equivalent dictionaries were also formed
using the ERBT.

A. Experiment A

Spectrogram decompositions were performed to compare
the stepwise methods and NNLS for subspace and datapoint
dictionaries. As the selection of a stopping condition for OMP
is known to be problematic [9], the sparsity, or polyphony,
at each frame is given in order to allow fair comparison of
the different approaches. NN-BOMP and NN-NS-OMP were
both run for all values of P € {1,...,7}, noting that both
algorithms revert to NN-OMP when P = 1, and were stopped
when ¢,,, the number of notes active at the nth frame, groups
were selected. OMP was used with the datapoint dictionaries,
in which case selection of different atoms of the same pitch
was allowed, and a stopping condition specifying that g,, notes
are selected at each time frame was used.

NNLS was run using the datapoint dictionary and with the
subspace dictionaries, in which case it is referred to as GT-
NNLS. An early stopping strategy, after 100 iterations, was
used for NNLS with the datapoint dictionaries, as convergence
may not occur due to the dimensions of the dictionary. To
allow comparison with the OMP based approaches, a ¢-
thresholding was performed whereby the ¢, notes displaying
the largest pitch-grouped coefficients (23) at each frame were
selected and all other pitches set to zero. Similarly, GBF-
NNLS was performed until only ¢,, groups were active. GBF-
NNLS was also employed with the datapoint dictionaries, with
grouping of active atoms of a similar pitch in each column of
the initial NNLS activation matrix. For each decomposition
the sets of true positive, ¢p, and false positive, fp, detections
are denoted for all pieces, and the results are described in
terms of F-measure which, when the sparsity level is known,
is given simply by F = %. The STFT spectrograms and
corresponding dictionaries were used.

Results for this set of experiments are shown in Figure 7.
The subspace methods are seen to improve on the case of
P = 1, with the increase in J-measure being of the order
of 3 ~ 5% at the optimal value of P = 5. NN-NS-OMP is
seen to be more consistent than NN-BOMP, and with optimal
P performs similar to OMP using the datapoint dictionaries.
NN-BOMP, for some values of P performs worse than NN-
OMP. The thresholded NNLS approaches outperform the OMP
methods while GBF-NNLS adds further improvements in all
cases. For the subspace dictionaries, GBF-NNLS is seen to
improve on GT-NNLS by around 3% except when P = 1, for
which similar F-measure is given. For the datapoint dictionar-
ies, the improvement is smaller. GBF-NNLS, at optimal P, is
also seen to perform similar to NNLS and GBF-NNLS using
the large datapoint dictionary.
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Fig. 7: AMT results for OMP and NNLS approaches with
subspace and datapoint dictionaries and known polyphony.
Datapoint dictionary methods denoted by (D)

B. Experiment B

Experiments giving a more realistic comparison of
NNLS and backwards elimination approach, without known
polyphony, were performed. Thresholding, similar to that
described in [50] [4] [5] was performed for the NNLS
approaches. In the case of GT-NNLS, and NNLS with the
datapoint dictionaries, thresholding of the group coefficient
matrix, H, (23) using the § parameter (22) was performed for
a variety of values of 6 € {15, ...,50} dB in steps of 1dB. At
each value of 4, for all pieces, the ground truth and binarised
thresholded group matrix are compared, with true positives,
false positives and false negatives, fn, denoted from which
the common Precision, P, Recall, R and F-metrics

P = ||/ (Itp| + |fp])
R Itp| / (|tp] + | fnl)
F = 2xPxR/(P+R)

were derived. The optimal results in terms of JF-measure,
found at d,,; applied across all pieces, were recorded. For
GBF-NNLS, with both dictionaries, the stopping condition is
calculated from the coefficient matrix of the NNLS decompo-
sition (22), with experiments similarly run for various values
of §. Again the STFT spectrograms were employed.

Results are shown in Fig 8, where the difference between
GBF-NNLS and GT-NNLS is more marked than in Exp. A
with differences of ~ 7% seen for the subspace dictionaries,
and ~ 5% for the datapoint dictionaries. GT-NNLS varies
little relative to P. GBF-NNLS(S) improves on NNLS with
the datapoint dictionaries by ~ 4%, and again approaches the
performance of the GBF-NNLS with datapoint dictionaries.

We also compared to two other methods that are designed
for use with overcomplete dictionaries. ASNA [55] is a step-
wise method that uses the KL cost function (12), a selection
criterion based on the KL gradient, and Newton steps to per-
form the signal estimation. The ASNA approach was run for
100 iterations, similar to NNLS. Another KL-based method,

Fig. 8: F-measure for AMT, relative to groupsize P for
(G)BF-NNLS and (G)T-NNLS with subspace dictionaries (S),
and with datapoint dictionary (D).

P [ R | F
T-NNLS 669 | 67.6 | 672
ASNA [55] | 669 | 664 | 666
KL05[50] 711 | 69.1 | 70.1
GBFNNLS | 759 | 682 | 719
[GBFNNLS (S) | 764 | 672 | 715 |
TABLE

COMPARISON OF METHODS USING DATAPOINT DICTIONARY TO
GBF-NNLS WITH A SUBSPACE DICTIONARY WITH (P = 5). (S) DENOTES
SUBSPACE DICTIONARY

proposed in [56], seeks to minimise Cx 1, (s|Dx) — Al|x||2. We
tested for several values of A = 27% a € {0,1,...6} and found
A = 1/4 to perform best, concurring with the optimal range
expressed in [56]. We ran until a convergence criterion as using
the few iterations suggested by the authors [56] resulted in
poor performance. The results are given in Table I, where the
two unpenalised stepwise methods, ASNA and T-NNLS are
seen to perform similarly. In terms of the penalised methods
the GBF-NNLS with the datapoint dictionary performs slightly
better than the KL-/5 approach [56]. GBF-NNLS with the
subspace dictionary is comparable to these methods.

C. Experiment C

Experiments were run to test the effectiveness of the NMF-
based approaches, comparing the use of the proposed GS-3-
NMF dictionary tuning and GS-3-NMD using AHD with H-
NMF [4]. The ERBT spectrograms were employed.

The H-NMF algorithm was run using code supplied by the
authors, and the AHD was produced using the default settings
provided. For the group sparse approaches, normalisation of
the atoms to unit 5 norm is performed. H-NMF was run with
B = 0.5 for which superior performance is reported [4]. GS-
[B-NMD / NMF was run with f = 0.5 and also with the
KL-divergence (3 = 1). For KL and 3(9%), a value of A = 1
was seen in early experiments to be apt and was used for all
experiments. Dictionary tuning using GS-5-NMF was run for
b = 30 iterations, after an initial a = 30 iterations of NMD.
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P R 5opt F
KL-NMD 72.3 | 69.6 32 70.9
3-NMD 745 | 69.4 33 71.9
H-NMF [4] 70.3 | 65.3 29 67.7
GS-KL-NMD | 679 | 67.1 30 67.5
GS-8-NMD 70.5 65.3 29 67.8
GS-KL-NMF 75.4 68.5 31 71.8
GS-3-NMF 75.5 | 705 34 72.9

TABLE II

FRAMEWISE RESULTS FOR SUPERVISED KL AND 3-NMD USING OPTIMAL
ONE ATOM PER PITCH DICTIONARY, H-NMF [4], PROPOSED GS-3-NMD
APPROACHES AND GS-3-NMF DICTIONARY TUNING APPROACHES.

GS-5-NMD used a flat initialisation on the activations, setting
[X]k.n = 0.01¥{k,n}, and were run until the cost function
was seen to decrease by less than 0.5% over 5 iterations. For
comparison, $(°->)-NMD and KL-NMD were used to perform
AMT using a dictionary with one atom per pitch, and were
run with similar initialisation and stopping conditions as GS-
B-NMD. Framewise analysis is performed in a similar manner
to the previous experiments.

1) Onset Analysis: An onset analysis is also performed.
Typically this is performed using a simple threshold-based
onset detector, which is triggered when a threshold is sur-
passed and sustained for a minimum of 3 frames [4] [17] [3].
A true positive is denoted when a detected onset falls within
a tolerance of 50ms from a ground truth onset, with other
detections denoted as false positives, and undetected ground
truth onsets denoted as false negatives. Analysis of onset
detection is performed in a similar manner to the framewise
case, using thresholding relative to a range of values of the ¢
parameter (22), and with results given for P, R, F.

We have previously observed systematic problems with
the described onset detector [57], including not capturing
retriggered notes and detecting spurious false onsets when
the activation level is near the threshold. We propose some
modifications. In order to avoid spurious triggering a small
median filter is applied to each row of the activation matrix,
h*, resulting in a smoothed coefficient matrix H. In order
to capture retriggered notes, difference matrices such that
[Algn = [Hlkn — [H]gn—1 are used. The differences are
calculated for both H and H. A search for candidate onsets
considers only points where the elements of both difference
matrices are above a threshold, and, similar to above, the
subsequent two activations, [H] n+1, [H]k,n+o are above the
threshold. Often two or more of these points are found
adjacent to each other. Pruning is performed by eliminating
any candidate point for which either of the two earlier time
frames is also a candidate. Remaining candidates are deemed
onsets, and linear interpolation between the activations of
the candidate candidate [H]y , and the earlier point in the
activation vector, [H] ,—1 is used to estimate the onset time.
As above, the threshold is estimated for a range of values of
0, the thresholding parameter.

2) Results: Table II displays the results for the framewise
analysis. GS-3-NMD, for both KL and 5(°%), is seen to per-
form similar to H-NMF in framewise analysis. Improvements
of ~ 5% for B(9%) and ~ 4% for KL are observed using
dictionary tuning. In the case of 5(°-5) all metrics increase
by 1% relative to 3-NMD using the optimal dictionary, and

P R (50pt F
KL-NMD 84.8 | 76.3 29 80.3 (74.2)
3-NMD 88.7 | 76.7 30 82.3 (76.0)
H-NMF [4] 772 | 744 28 75.8 (71.7)
GS-KL-NMD | 78.0 | 69.4 27 73.4 (67.6)
GSANMD | 755 | 724 | 27 | 739 (69.2)
GS-KL-NMF 82.7 | 75.7 28 79.1 (72.7)
GS-8-NMF 83.1 | 777 29 80.3 (75.4)
TABLE II

ONSET ANALYSIS RESULTS FOR PROPOSED GS-3-NMD / NMF
APPROACHES, COMPARED AGAINST H-NMF [4], AND SUPERVISED KL
AND 3-NMD USING OPTIMAL ONE ATOM PER PITCH DICTIONARY.
NUMBERS IN BRACKETS FOR IN THE F COLUMN SHOW RESULTS FOR
THRESHOLDING ON ACTIVATIONS RATHER THAN THE PROPOSED
ACTIVATION DIFFERENCES.

also by ~ 2% relative to our previous results [17], using the
monotonic descent algorithm.

The onset-based analysis results are given in Table III. We
first note that the proposed onset detector performs between
4 ~ 7% better than the original, with the largest increases for
the NMD results using the dictionaries learnt offline and the
smallest for GS-NMDs with the fixed AHD. H-NMF performs
better than the GS-3-NMD approaches, by ~ 2.5%. Using GS-
B-NMF dictionary tuning, performance for both cost functions
exceeds that of H-NMF. For 5(°-5) the F-measure is almost
5% higher than for H-NMF, and 2% lower than 8-NMD while
being similar to KL-NMD.

As GS-B-NMF was run for a fixed number of iterations,
rather than to a convergence condition, a subsequent GS-3-
NMD is run using the new tuned dictionary, for each piece,
with the purpose of confirming that a better dictionary has been
learnt, rather than a favourable local minima found. The results
for these post-NMD approaches are seen in Table IV. Here it
is seen that the results acheived using dictionary tuning with
£(0-5) are almost maintained by post-NMD using either KL or
£(0-5) However, the framewise results achieved by dictionary
tuning using KL are seen to degrade with post-NMD.

D. Discussion

The evaluation validates the proposed approaches; the sub-
space model is seen to be similar to the larger datapoint
models, and the backwards elimination strategy improves over
NNLS and OMP. More significantly, the dictionary tuning
approach improves over H-NMF [4], and performs almost as
well as S-NMD with a dictionary learnt offline. Furthermore,
the modified onset detector leads to improvements.

Further AMT experiments were performed to directly com-
pare the stepwise and NMF-based methods. First, GBF-NNLS
and GS-3-NMD were run with ERBT subspace dictionaries.
GBF-NNLS, with a similar datapoint dictionary, is also com-
pared. GBF-NNLS and GS-5-NMD were then used for post

Frames Onsets
DT | s [ KL | DT [ 05 | KL
BO3) [ 729 [ 727 73 | 803 | 79.6 | 794
KL 718 | 695 | 703 | 79.1 | 780 | 785
TABLE IV

JF-MEASURE FOR FRAMEWISE AND ONSET ANALYSIS WITH POST-TUNING
NMD. VALUES ON LEFT GIVE COST FUNCTION USED FOR DICTIONARY
TUNING. DT INDICATES THE RESULTS FROM THE DICTIONARY TUNING.

OTHER COLUMN HEADS DESCRIBE COST USED FOR POST-TUNING NMD.
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Frames | Onsets
[ GBF-NNLS (D) 73.3 76.9
GBF-NNLS (S) 73.2 76.1
GS-5-NMD (S) 73.8 82.0
GS-KL-NMD (S) 74.1 83.2
GS-5-NMD (T) 72.7 79.6
GBF-NNLS (T) 69.9 71.8
NN-NS-OMP (T) 69.7 74.4
TABLE V

JF-MEASURE FOR FRAMEWISE AND ONSET ANALYSIS COMPARING
GBF-NNLS WITH GS-3-NMD. (D) DENOTES DATAPOINT; (S) DENOTES
SUBSPACE (S), AND (T) DENOTES DICTIONARIES TUNED USING
GS-5-NMF

dictionary tuning NMD, using AHDs tuned for each piece
using GS-8-NMF. NNLS was observed not to converge with
the tuned AHDs, which was due to narrowband atoms from
different pitches of the AHD being highly correlated to each
other. NN-NS-OMP was instead used for the initial decompo-
sition, selecting a maximum of 22 groups, with results given.
A similar experimental setup to Exp. C, with framewise and
onset analysis, was employed, For the subspace dictionaries,
results given are for the optimal P for each algorithm.

The results are given in Table V. GBF-NNLS performs simi-
lar to GS-/3-NMD algorithms in terms of framewise measures
with the subspace dictionaries. However, in terms of onset
measures, and also framewise measures with the AHDs, the
performance of GBF-NNLS is lesser relative to GS-5-NMD.
In the case of the tuned AHDs, some error may be effected by
the correlated elements that caused convergence problems for
NNLS. Alternatively, the results may be interpreted in terms of
the quality of model. The subspace dictionary provides a more
descriptive model than the AHD by including implicit tempo-
ral information, while the approximate additivity assumed by
NMF-based AMT may be less effective in the presence of
transients and onsets [57]. From this perspective, GBF-NNLS
performs well when the spectra can be well-approximated, as
also seen in Table I, but is not so robust as the NMF-based
methods which outperfom GBF-NNLS in other cases.

Framewise detection is improved by group sparse NMD
with the subspace dictionaries relative to standard NMD for
both KL and 50'5, as seen in Table II, and are also above that
seen with dictionary tuning. These results suggest that there is
some room for improvement in dictionary tuning, or learning.
The improvement is larger for GS-KL-NMD, for which onset-
based metrics also increase. We suggest that KL is better than
£(0-5) for GS-NMD, with 5(%-5) superior for dictionary tuning,
which we also observe to a greater extent in experiments
not reported here. The concave penalty used with 3(°-5) may
improve the dictionary updating as low-energy elements are
penalised more while convexity of the ¢, ;-penalised KL-
divergence may be preferable for performing GS-3-NMD.

A common feature of many AMT methods is the use of
temporal information. Temporal information is an obvious
prior for audio signals, and some NMF approaches perform
frame to frame penalisation to encourage smoothness [33] [14]
[54] [58]. While smoothing is considered useful for source
separation [33], its validity in the context of AMT for piano
is questioned in [14] [54], where little or no improvement is
reported. A large improvement in AMT is reported when tem-

50ms | 100ms [ 100 ms (Best §)
GS-38-NMF 80.3 84.3 86.4
GS-KL-NMD 83.2 87.3 89.5
TABLE VI

JF-MEASURE FOR ONSET DETECTION WITH DIFFERENT WINDOW SIZES.

poral constraints are employed to transition between different
states of piano notes [7], which may be due to the weaker shift-
invariant note model used. Such methods may be improved by
constrained training of a subspace dictionary, with states rep-
resented by active subsets of atoms, with overlapping subsets
for adjacent states. Such staggered activation patterns are often
implicitly present in the subspace dictionaries, and may be
observed in spectrogram decompositions, even in a polyphonic
setting. In terms of dictionary tuning, we consider that it may
be possible to learn this implicit temporal information by using
one, or more, constrained group-wise subspace learning steps,
in a manner akin to the Block K-SVD [59], rather than gradual
updating, early in the dictionary tuning approach.

The use of long-term temporal dependencies for AMT is
considered necessary in [60]. Structured sparse decomposition
methods may provide further possibilities. It is easy to observe
in NMF-based AMT the problem of low-energy elements of
sustained notes being overpowered by false positives related
to higher energy active notes [57]. We previously observed
improved AMT, in both analyses, simply by using a low offset
threshold, clustering adjacent active atoms into molecules, and
subsequently determining activation over a whole molecule
rather than for individual atoms [15] [37], using stepwise
methods. An enhanced clustering approach, possibly using an
excitation-decay model may be considered. However, this may
require reliable onset detection, itself one of the primary goals
of AMT.

In order to probe the potential for improved onset detection,
we further inspect the proposed onset detector by re-running
GS-3B-NMF with AHD and GS-KL-NMD with the subspace
dictionary, with 50 ms and 100 ms onset tolerances compared.
Results are given in Table VI, where a jump of ~ 4% is
seen for the larger tolerance. A further increase of ~ 2% is
observed when the optimum § per song is used. We note a
tendency towards higher precision than recall, as also seen
in Table III. Careful consideration, through alignment to the
spectrogram, or leveraging onset classification methods [53]
[61] may possibly bridge this performance jump.

VI. CONCLUSIONS

In this paper the use of group sparsity with subspace
modelling for piano transcription was explored. Non-negative
group sparse algorithms, a dictionary tuning approach, and
an onset detector for NMF-based AMT were proposed and
experimentally validated. The subspace model performed sim-
ilar to a datapoint model, and an elimination based stepwise
method was seen to counter noted problems of OMP in this
context. A proposed monotonic group sparse 3-NMF with a
scale invariant penalty term was used for tuning a harmonic
dictionary previously proposed in [4], leading to improved
NMF-based AMT. In particular, dictionary tuning counters the
problems of NMD, as the dictionary is adapted to the signal,
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and unsupervised NMF as rank selection and separability
problems are avoided. Some possibilities for incorporating
temporal information into the group sparse methods for further
improving piano transcription were then discussed.

Further work will include extending the range of grouping
strategies, allowing different problems to be considered. One
potential application is for multi-instrument signals [12] [62],
where grouping could be performed on instrument and pitch-
labels. NMF-based decompositions tend towards co-activity of
instruments in this case and stepwise methods incorporating
penalty terms that encourage e.g. temporal continuity of a
given instrument-pitch combination may provide an alternative
perspective.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for useful
comments, and the authors of [50] [4] for making the code
for H-NMF freely available, in particular to Roland Badeau
for discussions during his visit to the Centre for Digital Music.
The code to reproduce the experiments in the paper is available
at https://code.soundsoftware.ac.uk/projects/gs_bnmf .

REFERENCES

[1] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in Neural Information Processing Systems
(NIPS 14), Denver, 2000, pp. 556-562.

P. Smaragdis and J. C. Brown, “Non-negative matrix factorization for

polyphonic music transcription,” in Proceedings of the IEEE Workshop

on Applications of Signal Processing to Audio and Acoustics (WASPAA),

New Paltz, 2003, pp. 177-180.

[3] N. Bertin, R. Badeau, and G. Richard, “Blind signal decompositions
for automatic transcription of polyphonic music: NMF and K-SVD on
the benchmark,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, 2007,
pp. 65-68.

[4] E. Vincent, N. Bertin, and R. Badeau, “Adaptive harmonic spectral
decomposition for multiple pitch estimation,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 528-537,
March 2010.

[5] A. Dessein, A. Cont, and G. Lemaitre, “Real-time polyphonic

music transcription with non-negative matrix factorization and beta-

divergence,” in Proceedings of the 11th International Society for Music

Information Retrieval Conference (ISMIR), Utrecht, 2010, pp. 489—494.

S. A. Abdallah and M. D. Plumbley, “Polyphonic transcription by

non-negative sparse coding of power spectra,” in Proceedings of

the International Society for Music Information Retrieval Conference

(ISMIR), Barcelona, 2004, pp. 318-325.

E. Benetos and S. Dixon, “A shift-invariant latent variable model for

automatic music transcription,” Computer Music Journal, vol. 36, no.

4, pp. 81-94, Winter 2012.

[8] M. Nakano, J. Le Roux, H. Kameoka, T. Nakamura, N. Ono, and
S. Sagayama, “Bayesian nonparametric spectrogram modeling based
on infinite factorial infinite hidden Markov model,” in Proceedings of
the IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), Oct. 2011.

[9] S. K. Tjoa and K. J. Ray Liu, “Factorization of overlapping harmonic

sounds using approximate matching pursuit,” in Proceedings of the In-

ternational Society for Music Information Retrieval Conference (ISMIR),

Miami, 2011, pp. 257-262.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching

pursuit: Recursive function approximation with applications to wavelet

decomposition,” in Proceedings of the 27th Annual Asilomar Conference

on Signals, Systems, and Computers, Pacific Grove, CA, 1993, vol. 1,

pp. 40-44.

J. J. Carabias-Orti, P. Vera-Candeas, F. J. Canadas-Quesada, and N. Ruiz-

Reyes, “Music scene adaptive harmonic dictionary for unsupervised

note-event detection,” IEEE Transactions on Audio, Speech, and

Language Processing, vol. 18, no. 3, pp. 473-486, March 2010.

[2

—

[6

—

[7

—

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

P. Leveau, E. Vincent, G. Richard, and L. Daudet, “Instrument-specific
harmonic atoms for mid-level music representation,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 16, no. 1, pp. 116—
128, January 2008.

S. Raczynski, N. Ono, and S. Sagayama, “Extending non-negative
matrix factorisation - a discussion in the context of multiple frequency
estimation of musical signals,” in Proceedings of the European Signal
Processing Conference (EUSIPCO), Glasgow, 2009, pp. 934-938.

N. Bertin, R. Badeau, and E. Vincent, “Enforcing harmonicity and
smoothness in Bayesian non-negative matrix factorization applied to
polyphonic music transcription,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 18, no. 3, pp. 538-549, March 2010.
K. O’Hanlon, H. Nagano, and M. D. Plumbley, “Structured sparsity for
automatic music transcription,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Kyoto, 2012, pp. 441-444.

N. Keriven, K. O’Hanlon, and M. D. Plumbley, “Structured sparsity
using backwards elimination for automatic music transcription,” in Pro-
ceedings of IEEE Workshop on Machine Learning for Signal Processing
(MLSP), Southampton, 2013, pp. 1-6.

K. O’Hanlon and M. D. Plumbley, “Polyphonic piano transcription using
non-negative matrix factorisation with group sparsity,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Florence, 2014, pp. 3112 — 3116.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, pp.
33-61, December 1998.

Y. C. Eldar, P. Kuppinger, and H. Bolsckei, “Block-sparse signals:
Uncertainty relations and efficient recovery,” I[EEE Transactions on
Signal Processing, vol. 58, no. 6, pp. 3042-3054, June 2010.

A. Ganesh, Z. Zhou, and Y. Ma, “Separation of a subspace sparse signal:
Algorithms and conditions,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Taipei, 2009, pp. 3141-3144.

M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” Journal of the Royal Statistical Society, vol. 68, no.
1, pp. 49-67, February 2006.

D. L. Sun and G. J. Mysore, “Universal speech models for speaker
independent single channel source separation.,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2013, pp. 141-145.

A. M. Bruckstein, M. Elad, and M. Zibulevsky, “On the uniqueness of
non-negative sparse solutions to underdetermined systems of equations,”
IEEE Transactions on Information Theory, vol. 54, no. 11, pp. 4813—
4820, November 2008.

D. Chen and R. J. Plemmons, “Nonnegativity constraints in numerical
analysis,” in A. Bultheel and R. Cools (Eds.), Symposium on the Birth
of Numerical Analysis. 2009, pp. 109-140, World Scientific Press.

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems,
Prentice Hall, 1974.

D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underde-
termined linear equations by linear programming,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 102,
no. 27, pp. 9446-9451, 2005.

J. Rapin, J. Bobin, A. Larue, and J. Starck, “Robust non-negative matrix
factorization for multispectral data with sparse prior,” in Proceedings of
the 7th Conference on Astronomical Data Analysis (ADA 7), Cargese,
2012.

M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD and its non-
negative variant for dictionary design,” in Proceedings of the SPIE
conference (Wavelets XI), Baltimore, 2005, pp. 327-339.

M. Slawski and M. Hein, “Sparse recovery by thresholded non-negative
least squares,” in Advances in Neural Information Processing Systems
(NIPS 24), Granada, 2011, pp. 1926-1934.

C. Fevotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factor-
ization with the Itakura-Saito divergence. With application to music
analysis,” Neural Computation, vol. 21, no. 3, pp. 793-830, March
2009.

A. Cichocki, S. Amari, R. Zdunek, R. Kompass, G. Hori, and Z. He,
“Extended smart algorithms for non-negative matrix factorization,” Lec-
ture notes in Artificial Intelligence, 8th International Conference on
Artificial Intelligence and Soft Computing (ICAISC), vol. 4029, pp. 548—
562, 2006.

P. O. Hoyer, “Non-negative matrix factorization with sparseness con-
straints,” Journal of Machine Learning Research, vol. 5, pp. 1457-1469,
November 2004.



ACCEPTED FOR PUBLICATION, IEEE/ACM TALSP

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

T. Virtanen, “Monaural sound source separation by non-negative matrix
factorisation with temporal continuity and sparseness criteria,” [EEE
Transactions on Audio, Speech, and Language Processing, vol. 15, no.
3, pp. 1066-1074, March 2007.

V. Y. F Tan and C. Fevotte, “Automatic relevance determination
in nonnegative matrix factorization with the beta-divergence,” I[EEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no.
7, pp. 1592 — 1605, July 2013.

C. Fevotte and J. Idier, “Algorithms for nonnegative matrix factorization
with the beta-divergence,” Neural Computation, vol. 23, no. 9, pp. 2421—
2456, September 2011.

K. O’Hanlon and M. D. Plumbley, “Non-negative group sparsity,” in
Proceedings of the IMA Conference on Numerical Linear Algebra and
Optimisation, Birmingham, 2012.

K. O’Hanlon, Automatic Music Transcription using structure and
sparsity, Ph.D. thesis, Queen Mary University of London, 2013.

J. A. Tropp, “Greed is good: Algorithmic results for sparse approxi-
mation,” IEEE Transactions in Information Theory, vol. 50, no. 10, pp.
2231-2242, October 2004.

B. L. Sturm and M. G. Christensen, “Cyclic matching pursuits with
multiscale time-frequency dictionaries,” in Conference Record of the
44th Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, CA, 2010, pp. 581-585.

H. Huang and A. Makur, “Backtracking-based matching pursuit method
for sparse signal reconstruction,” IEEE Signal Processing Letters, vol.
18, no. 7, pp. 391-394, July 2011.

B. Varadarajan, S. Khudanpur, and T. D. Tran, “Stepwise optimal sub-
space pursuit for improving sparse recovery,” IEEE Signal Processing
Letters, vol. 18, no. 1, pp. 27-30, January 2011.

B. Moghaddam, A. Gruber, Y. Weiss, and S. Avidan, “Sparse regression
as a sparse eigenvalue problem,” in Information Theory and Applications
Workshop (ITA), San Diego, 2008, pp. 219 -225.

A. Lefevre, F. Bach, and C. Fevotte, “Itakura-Saito nonnegative
matrix factorization with group sparsity,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2011, pp. 21-24.

M. A. T. Figueirido, J. M. Bioucas-Dias, and R. D. Nowak,
“Majorization-minimization algorithms for wavelet-based restoration,”
IEEE Transactions on Image Processing, vol. 16, no. 12, pp. 2980—
2991, November 2007.

U. Simsekli, A. T. Cemgil, and Y. K. Yilmaz, “Learning the beta-
divergence in Tweedie compound Poisson matrix factorization models,”
in Proceedings of The 30th International Conference on Machine
Learning (ICML), Atlanta, 2013.

A. Hurmalainen, R. Saeidi, and T. Virtanen, “Group sparsity for speaker
identity discrimination in factorisation-based speech recognition.,” in
INTERSPEECH, 2012.

M. Nakano, H. Kameoka, J. Le Roux, Y. Kitano, N. Ono, and
S. Sagayama, “Convergence-guaranteed multiplicative update algorithms
for nonnegative matrix factorization with the S-divergence,” in Pro-
ceedings of the IEEE International Workshop on Machine Learning for
Signal Processing (MLSP), Kittila, 2010, pp. 283-288.

J. De Leeuw and G. Michailidis, “Drawing data graphs by push-
ing and pulling,” http://gifi.stat.ucla.edu/janspubs/1999/notes/deleeuw\
_michailidis\_U\_99c¢.pdf, 1999.

H. Kameoka, N. Ono, K. Kashino, and S. Sagayama, “Complex NMF:
A new sparse representation for acoustic signals,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2009, pp. 3437 — 3440.

E. Vincent, N. Bertin, and R. Badeau, “Harmonic and inharmonic non-
negative matrix factorisation for polyphonic music transcription,” in
Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Las Vegas, 2008, pp. 109-112.

T. Virtanen and A. Klapuri, “Separation of harmonic sounds using
linear models for the overtone series,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Orlando, 2002, pp. 1757 — 1760.

V. Emiya, R. Badeau, and B. David, “Multipitch estimation of piano
sounds using a new probabilistic spectral smoothness principle,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 18, no.
6, pp. 1643-1654, August 2010.

S. Bock and M. Schedl, “Polyphonic piano note transcription with
recurrent neural networks,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Kyoto, 2012, pp. 121-124.

N. Bertin, R. Badeau, and E. Vincent, “Fast Bayesian NMF algorithms
enforcing harmonicity and temporal continuity in polyphonic music

[55]

[56]

(571

[58]

(591

[60]

[61]

[62]

transcription.,” in Proceedings of the IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), 2009, pp. 29-32.
T. Virtanen, J. F. Gemmeke, and B. Raj, “Active set Newton algorithm
for overcomplete non-negative representations of audio,” IEEE Trans-
actions on Audio, Speech and Language Processing, vol. 21, no. 11, pp.
2277-2289, November 2013.

P. Smaragdis, “Polyphonic pitch tracking by example,” in Proceedings
of the IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA), Oct. 2011.

K O’Hanlon, H. Nagano, and M. D. Plumbley, “Oracle analysis for
automatic music transcription,” in Proceedings of 9th International
Symposium on Computer Music Modelling and Retrieval (CMMR),
London, 2012.

M. Nakano, J. Le Roux, H. Kameoka, N. Ono, and S. Sagayama,
“Infinite-state spectrum model for music signal analysis,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), May 2011, pp. 1972-1975.

L. Zelnik-Manor, K. Rosenblum, and Y. C. Eldar, “Dictionary opti-
mization for block-sparse representations,” Signal Processing, IEEE
Transactions on, vol. 60, no. 5, pp. 2386-2395, 2012.

E. Benetos, S. Dixon, D. Giannoulis, H. Kirchoff, and Anssi Klapuri,
“Automatic music transcription: Breaking the glass ceiling,” in Pro-
ceedings of the 13th Conference of the International Society for Music
Information Retrieval (ISMIR), Porto, 2012, pp. 379-384.

F. Weninger, C. Kirst, Bjorn B. Schuller, and H. J. Bungartz, “A
discriminative approach to polyphonic piano note transcription using su-
pervised non-negative matrix factorization,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2013, pp. 6-10.

E. Benetos, S. Ewert, and T. Weyde, “Automatic transcription of pitched
and unpitched sounds from polyphonic music,” in Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), May 2014.



