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Adaptive filtered-x algorithms for room equalization
based on block-based combination schemes

Laura Fuster, Maria de Diego, Member, IEEE, Luis A. Azpicueta-Ruiz, Member, IEEE,
and Miguel Ferrer, Member, IEEE,

Abstract—Room equalization has become essential for sound
reproduction systems to provide the listener with the desired
acoustical sensation. Recently, adaptive filters have been proposed
as an effective tool in the core of these systems. In this context,
this paper introduces different novel schemes based on the
combination of adaptive filters idea: a versatile and flexible
approach that permits obtaining adaptive schemes combining
the capabilities of several independent adaptive filters.

In this way, we have investigated the advantages of a scheme
called combination of block-based adaptive filters which allows
a blockwise combination splitting the adaptive filters into non-
overlapping blocks. This idea was previously applied to the plant
identification problem, but has to be properly modified to obtain
a suitable behavior in the equalization application. Moreover,
we propose a scheme with the aim of further improving the
equalization performance using the a priori knowledge of the
energy distribution of the optimal inverse filter, where the block
filters are chosen to fit with the coefficients energy distribution.
Furthermore, the biased block-based filter is also introduced as
a particular case of the combination scheme, especially suited for
low signal-to-noise ratios (SNRs) or sparse scenarios. Although
the combined schemes can be employed with any kind of adaptive
filter, we employ the filtered-x improved proportionate normal-
ized least mean square (Fx-IPNLMS) algorithm as basis of the
proposed algorithms, allowing to introduce a novel combination
scheme based on partitioned block schemes where different
blocks of the adaptive filter use different parameter settings.
Several experiments are included to evaluate the proposed algo-
rithms in terms of convergence speed and steady-state behavior
for different degrees of sparseness and SNRs.

Index Terms—Convex combination, block-based algorithms,
biased filters, filtered-x structures, room adaptive equalization.

I. INTRODUCTION

N sound reproduction systems, a sound travels through an

acoustic space before reaching a listener or a microphone.
The behavior of the acoustic system between a source and
a listening position could be characterized by an impulse
response. Equalization (or room correction) techniques have
been used for years to try to compensate for the effect of the
audio and acoustic system. They aim at making the global
impulse response of the sound reproduction channel as close
as possible to the one desired. For real-time applications, this
process is accomplished by prefiltering the input audio signal
z(n) with the equalization filter before it is propagated through
the loudspeaker-enclosure-microphone (LEM) setup [1], rep-
resented with the Lj-length FIR filter h, as shown in Fig. 1.
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Fig. 1. Sound equalization system.

Thus, the combined effect of the equalizer and the LEM
channel will allow to obtain a good approximation of the
desired signal at the microphone. Here, although the goal of
room equalization is not always to remove all reverberation
from an audio signal, we consider that the desired signal is
the input signal with a suitable source-microphone delay T,
x(n— 7). Moreover, while room equalization can also attempt
to correct nonlinear distortion as in [1], the focus here is
on linear compensation. Bearing this in mind, we need to
estimate an L,,-length optimal coefficient vector w,, so that
it corresponds to the inverse of the linear LEM channel. This
can be mathematically described as w, * h = §(n — 7),
where * denotes the discrete linear convolution. The design
of the inverse filter is chosen to obtain a stable inverse using
a modeling delay approximately half the length of the inverse
filter [2].

Sound equalization systems including a wide number of
possibilities, ranging from the simplified case of a single
source and a single receiver (see Fig.1), which is the most
straightforward to analyze, to more complex configurations
considering multiple sources and/or listeners, sparse or non-
so-sparse acoustic channels or time-varying characteristics
of a given scenario. Those equalization filters can be im-
plemented in two different forms: non-adaptive or adaptive.
Several design methods have been presented over the years
concerning non-adaptive equalization filters design either in
the time or frequency domain, for instance [3] and [4]. These
methods compute the inverse filters previously to perform
the equalization process. However, practical audio applications
involve time-varying scenarios and multiple loudspeakers and
microphones (MIMO structure). For that reason, the use of
adaptive filtering becomes an excellent tool [5], [6]. In the
particular case of room equalization, several contributions
have been recently proposed in the time, frequency or wave
domain [7]-[15]. The adaptive schemes proposed in the time
and frequency domain usually consider the least mean square
(LMS) or the normalized LMS (NLMS) algorithms [5], [6],
which represent a stable and simple solution.
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Fig. 2. Block diagram of an AE system.

In this paper, we focus on a single channel adaptive room
equalization (AE) system whose general structure is shown in
Fig. 2, which can be extended to the MIMO case similarly to
that in [7]. The error signal e(n) is obtained by subtracting
the acoustic signal measured at the microphone z(n) from the
desired signal d(n) = z(n — 1),

e(n) = d(n) — z(n), (1)
z(n) = hxy(n) +r(n), (2)

where z(n) and y(n) are the input and loudspeaker signals,
respectively and r(n) is an additive white Gaussian noise of
zero mean and o2 variance, uncorrelated with the input signal

It is important to note that a remarkable difference intro-
duced by AE systems (similarly to active noise control (ANC)
systems) compared to a system identification problem is due
to the presence of the LEM channel h between the adaptive
filter output and the error signal. The usual way to take
into account this response and avoid negative effects on the
algorithm performance consists in using a particular filtering
structure named filtered-x scheme [16], that requires a previous
estimation of the acoustic channel. This filtering scheme has
been frequently used in ANC systems, [17]-[20]. For room
equalization, a brief description of the filtered-x scheme is
given for both single-channel and multichannel AE system in
[7]. Also for multichannel AE systems, a decoupled version
of the filtered-x LMS is presented in [11], and a wave-domain
algorithm in [13].

Regarding LMS-type algorithms, one of their main draw-
backs is that they distribute the adaptation energy equally
among all filter coefficients and thus, they can suffer from
slow convergence speed. To overcome this problem, the pro-
portionate adaptive filter (PNLMS) [21] has been introduced
to accelerate filter convergence in scenarios where the opti-
mal solution presents a high degree of sparseness. PNLMS
spends more energy on adapting the active coefficients, thus
it converges faster than the NLMS. However, since it assumes
that the filter solution is sparse, its performance degrades
significantly when the optimal solution is not so sparse.
Thus, the improved proportionate NLMS (IPNLMS) [22] tries
to alleviate this problem improving filter convergence for
different degrees of sparseness. However, its major drawback
is that it requires to a priori know the degree of sparseness of
the optimal solution, which rarely occurs in practical systems.
The filtered-x version of the IPNLMS is called Fx-IPNLMS
algorithm and it was introduced by the authors in [23]. Some

successful applications of the proportionated adaptive filters
include system identification [24], acoustic echo cancellation
(AEC) [21], ANC [23], as well as AE [7].

Moreover, in the last decade, a novel approach in adaptive
filtering has received a great interest: the adaptive combination
of adaptive filters. This strategy is based on the adaptive
combination of several adaptive filters running in parallel.
Each component adapts its coefficients independently in order
to minimize its own cost function. If the combination is
properly adapted, the combined filter obtains an improved
behavior, performing at each moment as the best component
filter and, under certain circumstances, even better [25]. These
combined schemes are introduced to improve robustness when
several kinds of adverse scenario conditions can impair the
filter performance, and to facilitate the selection of filter pa-
rameters, alleviating the different trade-offs inherit to adaptive
filters, for instance the well-know speed of convergence vs
steady-state misadjustment compromise [26]. Combination of
adaptive filters have been successfully employed in different
signal processing applications, including system identifica-
tion [26], [27], signal modality characterization [28], array
beamforming [29], [30], adaptive line enhancement [31], and
acoustic applications, such as AEC [32]-[35] and ANC [23],
[36], [37].

Recently, a new scheme that can be considered as a par-
ticular case of the combination of filters, has been proposed
to reduce the error of the adaptive filters [38] by means of
inclusion of a bias. This method uses a scaling factor a(n)
that multiplies the estimator, providing a biased estimator of
the optimal solution that can outperform the unbiased one,
especially when the SNR is low. The suitable selection of
a(n) to bias the weights is a key issue of this scheme, and
a(n) can be effectively adapted by considering this scheme
as the convex combination of the output of a standard filter
and that of a virtual zero filter. In [7], a biased version of
the filtered-x IPNLMS algorithm for AE is proposed, which
outperforms its unbiased version for low SNR values, even in
multichannel conditions.

An important characteristic of many acoustic signal pro-
cessing applications is the fact that the energy distribution of
the impulse response is not uniform. Taking advantage of this
feature, different schemes propose a block-based processing,
highlighting:

o Block-based combination schemes, where instead of com-
bining complete adaptive filters, each individual filter is
split into M non-overlapping blocks, giving rise to M
combinations. The mth combination mixes the outputs
of the mth block of each adaptive filter. For instance,
the block-based algorithm presented in [39] employs a
different scaling factor for each block when the energy
of the unknown plant is not uniformly distributed, and
enhances the performance of the biased scheme that
considers the same adaptive filter but only a shrinkage
factor.

o Block-based adaptive filters, where different blocks of an
adaptive filter adapt using different settings. For instance,
a partitioned two-block IPNLMS algorithm is used with
two different parameter settings per each block, thus



TABLE I

NOTATION
h Ly, -taps FIR estimated impulse response of h
x¢(n) Input signal z(n) filtered by h
Ymi(n) | Output signal gy, (n) of the m-block filter, filtered by h
ye(n) Output signal y(n) filtered by h
x¢(n) [ze(n), ze(n — 1), ..., 2¢(n — Ly + 1)]7
Xp(n) [z(n),z(n —1),...,2(n — Ly + 1)]T
y) | Wm),ytn— 1), yn— L + DI
xm(n) | 20— [m—1]Q),...,s(n—mQ + ]T
Xmi(n) | [ze(n — [m —1]Q),...z¢(n —mQ + 1)]T
Wi (1) | W14 (m-1)@ (M), -, Wmq(n)]"
Wo,m mth optimal inverse filter block

requiring some a priori knowledge of the sparseness about
the channel response.

In this paper, we are interested in analyzing how different
approaches derived from the combination of adaptive filters
can be used in the AE application context. To this end, we
proposed novel adaptive schemes that improve different as-
pects of previous algorithms and produce a good performance
in terms of convergence speed and steady-state behavior, when
the optimal solution can present different degrees of sparseness
or the SNR is unknown.

This paper is organized as follows. The next section in-
troduces two different strategies for AE based on the convex
combination of filters: the convex combination of two filtered-
x (CFx) adaptive filters and the convex combination of block-
based filtered-x (CBFx) filters. Section III provides particular
implementations of the general CBFx scheme. Firstly, in
Subsection III-A, the biased block-based filtered-x (BBFx)
scheme is presented. This algorithm allows to reduce the
final excess mean-square error (EMSE) for sparse inverse
responses, which usually occurs in equalization applications,
or low SNRs conditions. To better understand the behavior
of the BBFx scheme for AE, a theoretical analysis of its
optimal steady-state performance is included in the appendix.
Subsection III-B copes with utilization of the Fx-IPNLMS
algorithm to update the adaptive filters of the CBFx scheme. In
Subsection III-C, the partitioned block-based filtered-x (PBFx)
algorithm and its combination scheme are also presented,
whose novelty is that each block is independently modeled
using different parameter settings. Simulation results that show
the performance and advantages of the different schemes are
given in Section IV, where the computational cost of the
different proposed approaches is also detailed. Finally, the
main conclusions of this work are summarized in Section V.

Throughout the paper, we denote vectors and matrices by
boldface lower case and boldface capital letters, respectively,
whereas (n) refers to the n-time sample. Notation in Table I
will be used to describe the proposed schemes.

II. CONVEX COMBINATION OF BLOCK-BASED FILTERED-X
ADAPTIVE FILTERS FOR AE

In this section, we start by presenting the CFx scheme for
AE. Then, and as evolution of the convex combination of two
adaptive filters, the CBFx scheme is proposed.
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Fig. 3. Block diagram of the convex combination of filtered-x adaptive filters
for AE (CFx scheme).

A. Convex combination of filtered-x adaptive filters

One of the simplest combination schemes is based on
the combination of two parallel adaptive filters that work
separately. Fig. 3 depicts the convex combination of two
filtered-x filters (CFx) which could be employed to circumvent
the compromise convergence speed vs final residual error. In a
convex combination scheme, two adaptive filters are suitably
combined in order to obtain the output of the parallel filter
y(n) as the weighted sum of the single outputs y;(n) and

y2(n),
y(n) = Ay () + [1=Am) ), ©)

being A(n) € [0,1] the combination factor. This parameter is
adapted in order to minimize the power of the error of the
overall filter, i.e., J(n) = E{e?(n)} [25], [32], following a
gradient descent method. However, instead of updating directly
A(n), we adapt an auxiliary mixing parameter a(n) univocally
related with A(n) via a modified sigmoid activation function:

sgmla(n)] — sgm[—a"]

An) = , @)

sgmfat] — sgm[—a)]

where sgmla(n)] = m Following an NLMS adapta-

tion rule with power normalization [40], the mixing parameter

a(n) is updated as'

[a e(n)
p(n){sgmlat] — sgm[~a*]}
% |yae(n) = yar(m) | semla(m)}{1 - sgmla(n)] |

®)

where i, is a step size parameter and y;(n) (¢ = 1,2 for

each component adaptive filter) corresponds to the filter output

signal yi(n) filtered through the estimated impulse response
h. Moreover p(n) is the normalization factor obtained as

aln+1)=a(n)+

p(n) = Bp(n— 1)+ (1= B) [yum) — ()], (©)

being 0 < 3 < 1 a forgetting factor. It should be remarked
that, unlike other applications where combinations have been
employed, in AE the output signal y;(n) (for ¢ = 1, 2) of the
adaptive filter w;(n) has to be filtered through the estimated
impulse response h to obtain yif(n) following a filtered-x

ITo avoid that the adaptation of a(n) stops if sgm[a(n)] is close to 0 or 1,
the range of values of a(n) has to be restricted to [at, —at], being at = 4
a common choice [25].



TABLE II
CBFX STRUCTURE DESCRIPTION

M

y) = > { A () + (1= Xen )] g2 ()}
m=1 -
An(n) = E e

Ham

am(n+1) = am(n) +

fashion. Furthermore, the error signal e;(n) used to adapt each
adaptive filter w;(n), for i = 1,2 is given by

ei(n) = d(n) — yir(n), ™
where d(n) is estimated from e(n) as follows
d(n) = e(n) + ye(n). (®)

B. CBFx adaptive filters

In order to overcome the limitations of CFx scheme when
the energy of the optimal inverse filter is not uniformly
distributed, we introduce the CBFx strategy. This novel ap-
proach follows a block-based strategy combining each block of
both component filters independently and where, furthermore,
the different combination factors are computed to minimize
the power of the overall error, e(n). See the CBFx scheme
depicted in Fig. 4, where for the sake of clarity, only the
blocks required to update the second adaptive filter of block
M (wq pr(n)) are shown. This structure should be repeated
with their respective inputs for each adaptive block combina-
tion, wa ,,(n), where ¢ = 1,2 represents the adaptive filter
component, and m = 1,..., M is the block index, being M
the number of blocks.

In the particular case of AE, the structure of the inverse
channel presents a nonuniform energy distribution, thus differ-
ent degrees of sparseness can be found on different sections of
the adaptive filter. With this in mind, and similarly to [32], one
combination parameter is used for each group of coefficients
in order to reduce the computational complexity rather than
using a different parameter for each coefficient. The goal of
this approach is to optimize the combination of each pair of
blocks of coefficients instead of combining all the coefficients
in order to minimize the quadratic error of the overall filter.
Moreover, when used with a proper combination of algorithms
it will combine their behavior for each block, so that the whole
structure behaves at least as the best component filter [25].

The CBFx scheme can be considered as an extended version
of the CFx in which each of the two adaptive filters is split
into M non-overlapping blocks. Thus, the CBFx may be
described using very similar expressions to those provided in
Subsection II-A ((3)-(7)) as it is shown in Table II. The output
of the combination filter y(n) is obtained as the weighted sum
of the single outputs yi ,,,(n) and y2 ,,,(n) form =1,..., M.
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Fig. 4. Block diagram of a CBFx scheme, where for the sake of clarity,
the adaptive algorithms wo p7(n) and Aps should be repeated with their
respective inputs for each adaptive block combination.

Am(n) € [0,1] is the combination factor of the mth block,
which is updated through the auxiliary mixing parameter
am(n) where p,, is the mth step size parameter, and p,,(n)
the mth-block normalization factor. The error signal e;(n)
used to adapt each adaptive block filter w; ,,,(n), for i = 1,2
and m = 1,..., M, involves the computation of y;¢(n), that
is represented in Fig. 4 by the ), term.

The proposed CBFx scheme allows to properly combine the
different block filters to outperform the individual algorithms.
The main drawback is that it implies a high computational cost,
which significantly increases with the number of blocks due
to the filtered-x structure. For that reason, a trade-off between
number of blocks and computational burden should be sought.

Moreover, we have investigated the optimal inverse filters
in the context of room equalization. See as an example the
optimal inverse responses depicted in Fig. 7 (d-e-f), which
have been computed by using the least squares error method
(LSE) [3]. Given that they are designed with a proper modeling
delay to satisfy causality and stability requirements, as a result
and for different degrees of sparseness, the optimal filter
consists in a central part that is almost always sparse with
active coefficients while the remaining early and late parts are
normally dispersive and with low energy coefficients. Thereby,
the a priori knowledge of the inverse channel coefficient
distribution can be exploited to improve the performance of
block-based filters and unlike standard block-based combina-
tion schemes, we propose the design of the block filter location
depending on the energy distribution of the adaptive filter.
With this in mind and to provide an efficient block-based
approach, the block scheme must be designed to locate the
central coefficients in the same block filter. In Fig. 5 (a) these
coefficients are located in a central block and in a second block
that groups the remaining coefficients although they are not
contiguous. Other distributions with different block sizes and
even more blocks can be also considered. See, for example,
Fig. 5 (b), where the central coefficients are located in block
3.

The simplest block-based filter consists in a filter with only
two blocks (see Fig. 5 (a)). The first block is comprised of
the L. central coefficients and the second block that includes
the remaining coefficients at both sides with a total length of
L; coefficients. Thus, the whole adaptive filter has a length of
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Fig. 5. Examples of coefficient distribution of a block-based algorithm: (a)
two blocks and non-contiguous coefficients (plotted as white and shaded
areas), (b) four blocks of different sizes.

L, = L.+ L; taps.

It is important to note that although we have used a block
strategy based on the energy distribution of the coefficients,
the CBFx filter can be design with other considerations such
as the sparseness degree of the block.

III. PARTICULAR IMPLEMENTATIONS OF THE CBFX
SCHEME FOR AE

In this section, different approaches are presented as partic-
ular implementations of the CBFx scheme for AE applications.
Firstly, when one of the branches of the combination scheme
is an all-zero filter [39], it leads to the BBFx structure that can
provide an improved performance, reducing the final EMSE
for low SNRs or for sparse inverse responses. Furthermore,
the Fx-IPNLMS algorithm is proposed to update the adaptive
filters of the presented schemes. This algorithm can achieve
a good performance for inverse filters with different sparse-
ness degrees using a proper configuration. Finally, the PBFx
scheme is presented, where each block is modeled using
different parameter settings (u or x values) based on the
block filter characteristics. This structure could be combined
using the proposed approach, providing the combination PBFx
(CPBFx) scheme.

A. Biased filtered-x adaptive filter

The performance of adaptive filters can be severely dete-
riorated when the SNR is low. For sparse inverse filters in
AE applications, the output of each block filter presents a
different energy. Thus and even with high SNR conditions,
the output signal level of some blocks can be lower than the
system noise, that can be due to the gradient noise associated
with the identification of these coefficients or to the ambient
noise. This special feature of the BBFx scheme is showed
in the theoretical analysis of the filter steady-state behavior
included in the appendix.

As it has been said above, the BBFx scheme is derived from
the CBFx structure by setting all the coefficients of one of the
filters to zero and never adapting them [38]. Thus, only one
branch of the block convex combination remains, allowing
different scaling factors for the block filters. By doing so,
the output of each block filter w,,(n) for m = 1,..., M,
is independently biased by the scaling factor «,,,(n), which is
defined as A, (n) in Table II, where a,,, (n) is adapted similarly
to that in Table II, being yo me(n) = 0.

B. Convex Combination of Fx-IPNLMS algorithms

The proposed CBFx scheme introduced in Section II can be
implemented with different kinds of adaptive filters depending
on both the application and performance requirements. With
this in mind, this section focuses on efficiently increasing the
robustness of the Fx-IPNLMS algorithm for AE applications
by using the CBFx scheme. This fact implies to extend our
previous contributions [23], [41] in several ways that depend
on the performance requirements and scenario conditions
(such as energy distribution and variability of the optimal
solution, SNR values, etc.).

The Fx-IPNLMS assigns a different adaptation speed 11;(n)
to each coefficient according to,

wi(n) =wi(n —1) + w(n)e(n)ze(n — 1), )
Ml(n) — L/ﬂ)ilugl(n B 1) ’ (10)
5+ > gr(n—D)at(n—k)
k=0

wi(n —1)]
s+2z |wg(n — 1)]
k

qi(n—1) = (1—H)L+(1+H)

11
5L, , (1D

for! =0,...,L,—1 and where w;(n) is the Ith coefficient of
the L,,-length vector w(n) and x¢(n) corresponds to the input
signal z(n) filtered through the Lj-length estimated LEM
impulse response h. g1(n) is the adaptation gain factor of the
lth filter coefficient, € is a small value to avoid division by zero
and k € [—1, 1] arranges from the NLMS algorithm (x = —1),
especially suited for dispersive scenarios, to the PNLMS filter
(k = 1), optimally designed for sparse cases.

The adaptive scheme proposed will be called throughout the
paper as CBFx-IP algorithm. The benefits of this approach are
twofold. On the one hand, it allows to improve the robustness
of the Fx-IPNLMS mainly in terms of convergence speed for
different degrees of sparseness of the optimal filter when the
adaptive components only differ in the value of . On the other
hand, and as any other combination of gradient-base adaptive
filters, it achieves a good trade-off between convergence speed
and steady-state behavior when used with different step sizes.

The sequence of operations of the CBFx-IP scheme, where
the computation of the M combination parameters and the
update of the @ coefficients of the mth block of every
component filter, is illustrated in Algorithm 1. For simplicity,
we take Q = L,,/M coefficients for each filter block.

Also in order to provide a particular implementation of the
BBFx scheme for AE applications, in Algorithm 2 we list the
pseudocode for the BBFx-IP algorithm according to notation
in Table L.

C. Combination of partitioned block schemes

Based on both the a priori knowledge of the coefficient
energy distribution and the algorithm goal, each block of the
PBFx filter can be modeled using a different parameter setting.
For instance, the partitioned algorithm with two blocks, which
was introduced in [42] for AEC, uses a different x value for
each block depending on the degree of sparseness of each
block. This idea can be also exploited in an AE context, by



Algorithm 1 CBFx-IP algorithm.

Algorithm 2 BBFx-IP algorithm.

Input: Reference signal x(n), desired signal d(n) and microphone
signal z(n)
Output: Output of the parallel filter y(n)

1: Update the vectors Xm (1) (form = 1,..., M), xx(n) and y(n)
2: x¢(n) —xh n)h
3 Yim(n) = wim(n—1)xm(n), fori=12andm=1,...,.M
4 yi(n) =y” (n)h
5: Update the vectors Xmi(n), y1,m(n) and y2,m(n) for m =
1,....M
6: Yimi(n) =yl (n)h, fori=1,2and m=1,....M
7. e(n) = d(n) — z(n)
8: d(n) = ( )+ yr(n)
M
9: e Z Yi, mf 1=1, 2
10: pm(n) = Bpm(n — ) (1 = B)[yr.ms(n) — y2,me(n)]?,
for m=1,...,M
11: am(n) = am(n -1+ B, e(n)
pm () { semlat] —sgml—a+] }
X [y1,me(n) = y2,me(n)] sgm(am (n)] {1 — sgm[am (n)]}, for
m=1,...,
. sgmlam (n)]—sgm[—a™]
12: Am(n) = et et o form =1,..., M

13 yn) = Y {Am(n)yl,m(n) . )\m(n)]yg,m(n)}

m=1
[wi,i(n—1)]

14: gii(n—1) = (1 =Kim) 52— + (1 +Kim)
' 2w e+2Z\wlk (n—1)|
fori=1,...,Ly,2=1,2and m=1,. ,M

15 /h‘,mq(n) _ — Mgi,mq(nfl) Cfor m =

5+ Z gik(n—l)x?(n—k)

1,....M, q= ,...,Q andz—l 2

16: Gim(n) = diag(pi,m, (n), ul,mz(n),...,,ui,mQ(n)), for i =
1,2, m=1,....M

17: Wim(n) = Wzm(n— 1) 4+ G im(n)Xme(n)ei(n), for i = 1,2,
m=1,...,M

using the Fx-IPNLMS algorithm with a high s value for the
block with a high degree of sparseness and the Fx-NLMS
(k = 1) filter for the lateral block with a dispersive response.

In [42], for the partitioned scheme with 2 different w
values, to avoid problems during regularization of the PBFx-
IP algorithm, a normalized factor has to be used to meet

Zgl()“

the constraint 1. Results showed that a good

convergence speed was achieved for dispersive and sparse
responses with a normalized factor close to 0.5, whereas
normalized factors close to 0 and 1 got a slower convergence
speed, especially for dispersive filters. For AE applications,
this has to be adapted in a similar way to the central and
lateral blocks with the normalized factors 1%l and lwtls

lIwllx lIwllx
Lc—1 Li—-1
that multiply > g¢;.(n) and Y ¢;,(n

1.=0 ;=0
[[well1, ||wil]r and [|w]; correspond to the ¢y-norm of the
central, lateral and overall adaptive filters, respectively.

As it will be shown experimentally, this roughly a priori
knowledge is not so accurate to determine both the best block
sizes and « values, which depend on the optimal inverse filter.
For that reason, a combination of partitioned block (CPBFx)
filters has been also proposed, giving rise to a robust scheme
that exhibits generally a good performance.

), respectively, where

Input: Reference signal x(n), desired signal d(n) and microphone
signal z(n)
Output: Output of the parallel filter y(n)
1: Update the vectors X (n) (form =1,...

2: x(n) = xi, n)h

» M), xp(n) and y(n)

3 ym(n) = Wy (n — 1)xm(n), form=1,..., M

4: ye(n) =y (n)h

5: Update the Vectors Xmi(n), ym( ) (form=1,..., M)

6: ymi(n) =y ()h form=1,...,M

7: e(n) = d(n ) z(n)

8: d(n) = e(n )+ we(n)

9: e1(n) = d(n) - Zymf<n>

10: pm(n ﬁpm(nmjll) +(1- ,B)y,ﬂign n), for m = 1 ) LM

b () {sgmla*]—sgml—a]}
X Ymi(n)sgmam ()] {1 — sgmlam (n)]}, for m=1,..., M

sgm[a,, (n)]—sgm[—a™T
12: am(n): W for m = 1 M

13: y(n) = Z am(n)Ym

[wi(n—1)]

14: gi(n—1) = (1 — Kim) g + (1 + Kim) , for
w 2 fw(n 1)
k

l=1,....,.Lyandm=1,.... M

15: fim,(n) = —5—— #9mq (0= 1) ,form=1,....M
5+ Z gr(n —Dazf(n — k)
k=0

andg=1,...,Q
16: Gy, = diag(fm, , s, - - -5 fhmg )> for m=1,.... M
172 Wim(n) = wi(n — 1) + Gruxme(n)ei(n), form=1,..., M

d(n)

x(n)
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Fig. 6. Block diagram of a CPBFx scheme with 2 blocks.

Fig. 6 shows a CPBFx scheme where, in addition, each
block filter has been biased. For simplicity, only two blocks
are used in each algorithm, see Fig. 5 (a). As the central
(subindex c¢) and lateral (subindex [) blocks of each adaptive
filter have a different number of coefficients, the combination
of both algorithms is performed after scaling the weights. For
this reason, we consider different input vectors named x., (n)
and x;, (n) for ¢ = 1,2, with a different number of input signal
samples.

IV. EXPERIMENTS

In this section, we present the experimental evaluation of
the proposed schemes for room equalization. Moreover, the
single Fx-IPNLMS [22] with different x values will be used
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Fig. 7. Impulse responses of the considered acoustic channels (a, b and ¢) and their respective inverse filters (d, e and f). These responses present different
degrees of sparseness. (a): £ = 0.89, (b): £ = 0.70, (c): £ = 0.46, (d): £ = 0.86, (e): £ = 0.30 and (f): £ = 0.38.

for comparison purposes. If another « value is not specified,
we will use kK = —0.5, as recommended in [22] to achieve
a good behavior. Selection of x = —1 will be specifically
referred to as the Fx-NLMS algorithm.

The evaluation of the algorithms behavior is based on the
figure of merit EMSE, EMSE(n) = E {[e(n) + 7(n)]?}, that
has been estimated by averaging over 100 independent runs of
the algorithms. It should be noted that as the adaptive filters are
initialized to zero, the initial EMSE only depends on the input
signal z(n), which corresponds to a Gaussian noise with zero
mean and unit variance, while the variance of r(n) is adjusted
to obtain different SNRs.

Room channel responses have been measured in a real
listening room, with a reverberation time Tgg 200 ms
and a sampling rate of f; = 8 kHz. An omnidirectional
Earthworks QTC microphone (frequency range 4 Hz - 40
kHz) and an Event PS6 model loudspeaker (frequency range
from 45 Hz to 20 kHz) have been used, both with flat
frequency responses. Responses of Figs. 7 (b-c) have been
decimated to f; = 2 kHz and 512 samples. In order to
use a sparser response, the impulse response in Fig. 7 (a)
has been artificially obtained from Fig. 7 (b) by taking the
first 120 samples and zero-padding to length 512. Thus, three
acoustic paths with different degrees of sparseness have been
considered (Fig. 7 (a) & = 0.89, Fig. 7 (b) £ = 0.70 and
Fig. 7 (c¢) £ = 0.46), where ¢ is the sparseness measure based
on the /1 and /5 norms as in [43]:

o Ln ({_ bl
§(h) = =27 (1 VAP

The corresponding inverse filters have been modeled with
FIR filters of 1024 samples. The length of the inverse filter
has been chosen in order to allow a good equalization result
without highly increasing the number of samples [3]. It should
be noted that the sparseness of the inverse filters is lower

~

(12)

than that of their respective acoustic channels (¢ = 0.86,
& =0.30 and £ = 0.38). The most dispersive impulse response
is depicted in Fig. 7 (c) with £ = 0.46, whereas the most
dispersive inverse response is that of Fig. 7 (e) with £ = 0.30,
that corresponds to the measured acoustic channel of Fig. 7 (b).
We assume that the channel paths h are perfectly estimated,
but for Experiment G, where SNR(fl) is introduced?.

A. Improving the Convergence Speed vs. Steady-state EMSE

For the first experiment, the CBFx scheme for M =1 (see
Fig. 4) achieves both a good convergence speed and a low
steady-state EMSE. For this purpose, a combination of two
filters with different step sizes has been used. The acoustic
channel of Fig. 7 (a) has been used for this experiment, but
any other acoustics system would show a similar behavior. The
SNR has been chosen as 30 dB. Fig. 8 shows the EMSE per-
formance (left axis) of the CBFx-IP algorithm (circle marker
line) with different step sizes of py = 0.01 and ps = 0.1,
and of its Fx-IPNLMS component filters. On the one hand,
1 = 0.1 allows a fast convergence without getting unstable,
meanwhile a lower p value of 0.01 leads to a lower steady-
state error. The step size of the combination factor p, has
been set to 0.1 to allow a fast shift from one algorithm to
the other. As it is expected, the combining parameter (right
axis) changes from one to the other algorithm. As it can be
seen, the combination outperforms both components around
iteration n = 5.8 x 10°.

B. Improving the EMSE for nonuniform energy distribution in
the optimal inverse filter

The inverse filter has normally nonuniform energy distri-
bution among its coefficients. When an Fx-IPNLMS filter is

2 "
”h”j#, where h = h+n,,
variance.

2SNR(h) is defined as SNR(h) = 101og;,

being n, a random vector with zero mean and o2
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component filters. (b) A, (n) evolution.

employed to identify such inverse filter, the higher the coeffi-
cient energy, the larger the step size and the associated gradient
noise. However, an Fx-NLMS filter spreads its gradient noise
uniformly among all the coefficients. Therefore, we propose a
CBFx-IP algorithm where the component filters differ in the
% value. Thus, those blocks with higher energy will behave
as the Fx-IPNLMS algorithm with lower s value, meanwhile
blocks with low energy will follow the Fx-IPNLMS algorithm
with a higher &, resulting in a reduced EMSE [32].

The acoustic channel of Fig. 7 (a), whose inverse channel

shows a high nonuniform energy distribution, has been used
with an SNR= 30 dB. We combine Fx-IPNLMS filter with
k1 = 0.9 and Fx-NLMS algorithm, both split in 32 blocks of
@ = 32 consecutive coefficients, where, for simplicity, the first
block starts with the first coefficient. Both component filters
have the same step size p3 = ps = 0.1 and gy, = 0.01 to
adapt the 32 mixing parameters. As can be seen in Fig. 9 (a),
the combined filter behaves always as the best component filter
and, in steady state, it reaches a better performance because
each block combination converges to the block component
with lower EMSE. Fig. 9 (b) shows the combination factors of
the 32-block CBFx-IP algorithm, where a A, (n) value close to
1 means a behavior similar to a block with x = 0.9, whereas
a value close to 0 means an Fx-NLMS behavior. In steady
state, the central blocks (dotted line) with high energy exhibit
a factor closer to the Fx-IPNLMS with x = —1, meanwhile the
blocks with lower energy behave mainly as the Fx-IPNLMS
with £ = 0.9. Combination factors of blocks 15 and 18 get
intermediate values as they have mixed energy values.

C. Improving the steady-state EMSE for unknown SNRs

In this subsection we illustrate how the BBFx-IP filter
outperforms the standard Fx-IPNLMS algorithm, specially for
low SNR. For this purpose, Fig. 10 shows a comparison
between the simulation results (with circle markers) and
the theoretical results obtained by means of the analysis in
the appendix (with asterisk markers and dotted line). We
compare the steady-state EMSE of the BBFx-IP filter with
different M-block sizes (EMSE,;) with respect to that of
the standard filtered-x algorithm, defining AEMSE(co) =
EMSE(o0) — EMSE ) (00). For inverse filters with a high
degree of sparseness, the BBFx-IP adaptive filter allows to
improve the steady-state EMSE value when increasing the
number of blocks.

The results are represented for different SNRs and number
of blocks M, with p = 0.3, u, = 0.01 and k = —0.5,
considering the impulse response of Fig. 7 (a), whose corre-
sponding inverse filter has a high number of coefficients close
to zero [Fig. 7 (d)]. In this context, the BBFx scheme leads to
a performance improvement because it allows to manage the
variance vs bias tradeoff independently at each block. Thus,
the gradient noise related with the identification of blocks
with coefficients close to zero is removed, consequence of the
bias introduced by scaling factors that are zero, as shown in
Fig. 10 (b). Meanwhile, for lower SNRs the improvement is
more evident since the gradient noise is inversely proportional
to the SNR. Also, the block-based algorithm improves the
EMSE results when increasing the number of blocks. However,
when the block size is too small, as that for M/ = 256 and a
block size of ) = 4, this improvement is limited to almost 4
dB for the represented SNR range. This is due to the gradient
noise associated with the update of the scaling factors o, (n),
form=1,..., M [33].

As shown in Fig. 10 (a), a good performance is achieved
with M = 16, which corresponds to (Q = 64 samples. For
this case, Fig. 10 (b) shows the 16 steady-state scaling factors
considering different SNRs. For low SNRs, the factors of the
adaptive blocks with low energy bias these outputs almost to
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0. Meanwhile, the blocks with high energy (the central ones
for room equalization) exhibit a lower bias. For higher SNRs,
these central scaling factors converge to a higher value.

With regard to the influence of x, lower values (such as, x =
—1 for the Fx-NLMS algorithm) allow a higher improvement
of the block-based scheme. For that reason, if the steady-state
performance of the algorithm is crucial, a block-based Fx-
NLMS filter can be employed, improving the EMSE at steady
state and reducing also the computational cost.

The theoretical and simulated values have a similar ten-
dency, although they are not the same, specially when the
number of blocks increases. The explanation might lie in the
assumptions of the theoretical analysis and because in the
appendix we are considering optimal scaling factors, and the
gradient noise in the adaptation of «,,(n) can degrade the
performance of the BBFx-IP scheme with small blocks.
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Fig. 11. (a): EMSE evolution of the 1, 2 and 8-BBFx-IPNMS algorithm and

the 2 and 5-FBBFx-IP algorithm. (b): Scaling factors c;(n) for the two-block
schemes: 2-BBFx (solid lines) and 2-FBBFx (dashed lines).

D. Block-based filters for AE

As it has been showed in the previous experiments, the
CBFx and the BBFx schemes improve their behavior as the
number of blocks increases, but also causing the computational
cost to increase (see III). It should be remarked that unlike
other applications where an increment of number of blocks
leads to a negligible increment in computational cost [33], in
AE the number of blocks must remain modest, in order to
keep the computational cost feasible.

However, in an equalization context is possible to keep the
computational cost modest employing a block-based scheme
where the block filter coefficients are designed depending
on the energy distribution of the expected inverse filter. For
instance, Fig. 11 illustrates the EMSE evolution of the BBFx-
IP algorithm with a central block of 512 coefficients and
another block with the 512 remaining taps, denoted as 2-
FBBFx (fitted block scheme), considering p = 0.3 and
k = —0.5. The performance of this filter has been compared
with the BBFx-IP filter with M = 1,2 and 8 blocks, denoted
as M-BBFx, where the coefficients are consecutively selected.
Results in Fig. 11 (a) show that the 2-FBBFx-IP algorithm
(black dotted line) outperforms the 2-BBFx-IP (red dotted



line), although it does not achieve the stationary EMSE of the
8-BBFx-IP algorithm (green solid line). However, a 5-FBBFx-
IP (with 205 coefficients for each filter block) falls close to it
(orange dotted line). For this experiment SNR= 0 dB has been
used, although higher SNR values obtain a similar behavior
provided that the scaling factors are not 1. However, lower
SNRs lead to more significant differences.

Fig. 11 (b) shows the scaling parameters of two approaches
with same number of blocks, and hence, same computational
costs: 2-BBFx-1P and 2-FBBFx-IP. As it can be seen, the block
design of the 2-FBBFx-IP algorithm permits a more efficient
bias, giving rise to very different value of its scaling factors:
ag(n) ~ 0.9 for the central coefficients with higher energy,
and ag(n) ~ 0.1 for the lateral coefficients with low energy.
This allows to obtain a reduced EMSE with respect to that of
the 2-BBFx-IP algorithm.

E. Performance evolution of the PBFx scheme for different
sparseness degrees

Next, we will like to study the influence of the central-block
length on the PBFx-IP performance. Thus, as an example,
the notation PBFx-IP55¢N~7¢s refers to a central block with
an IPNLMS with x = —0.5 and L. = 256 samples, and a
lateral block with an NLMS (an IPNLMS with k = —1) and

L.,
L; = 768 samples. To meet the constraint . g;(n) ~ 1, the
i=1

L. L
terms Y. g;.(n) and Zl: g1, (n) have been multiplied by 0.5.
l=1 L=1

Different block sizeé have been considered, L, = L,,/2 =
512, L. = 256, L, = 64 and L. = 960 samples, with p, =
0.01 and SNR= 15dB. For comparison purposes, we have
also studied the behavior of the Fx-NLMS and Fx-IPNLMS
algorithms.

Fig. 12 (a) illustrates the EMSE evolution considering
1 = 0.1 and the acoustic channel of Fig. 7 (c), whose inverse
filter of Fig. 7 (f) shows a sparseness degree of { = 0.38.
The fastest convergence corresponds to the normalized factors
””w“fu”ll and ||‘|VV‘L"||‘11 close to 0.5 for the PBFx-IPy54N76s and
PBFx-No561P76s schemes. Whereas a narrower or wider block
size implies a slower convergence, as the normalized factors
are closer to 0 or 1.

Fig. 12 (b) represents the EMSE evolution for the acoustic
response of Fig. 7 (a), with ¢ = 0.3, whose inverse filter
[Fig. 7 (d)] has a sparseness degree of & = 0.86. For this
inverse channel with many coefficients close to zero, the
normalized factors near 0.5 correspond to Lc = 16, thus
the PBFx-N5IP1gos algorithm exhibits a fast convergence.
On the other hand, the PBFx-IP1gN1gps is not so fast, as the
Fx-NLMS algorithm uniformly distributes the 0.5 normalized
value between a high number of coefficients (1008).

For the steady-state error in Fig. 12 (b), as the coefficients
with high energy are included in a narrow block, the lower
steady state is obtained when an Fx-NLMS algorithm that
contains all these taps for the central block is used, for
instance, L. = 256 or 512 samples.

To summarize, the PBFx-IP filter can exhibit a convergence
speed faster than the Fx-IPNLMS, when the normalized factors

|”v;';‘|”11 and ‘||‘VVVI'L|‘||11 are close to 0.5. Moreover, to reduce the
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Fig. 12. EMSE evolution for the PBFx scheme with different block sizes and
 values. PBFx-IP;N;; refers to the partitioned fitted-block algorithm with a
central block with k = —0.5 and L. = ¢ samples, and a lateral block with
k = —1and L; = j samples. Also the Fx-NLMS and Fx-IPNLMS are shown
as reference.(a): for the acoustic channel of Fig. 7 (c). (b): for the acoustic
channel of Fig. 7 (a).

EMSE in steady state, the suitable setup is a central block of
L, /4 or Lw/2 with the Fx-NLMS algorithm, which includes
the coefficients that have a higher energy, and the Fx-IPNLMS
algorithm for the lateral block (with coefficients with lower
values).

F. Convex combination of partitioned block schemes

From the previous experiment, we exploit the convex combi-
nation scheme to improve the speed of convergence versus the
steady-state performance. To do so and for a general scenario,
we combine the PBFx-IPo56N7¢s and the PBFx-Ngi5IP510
algorithms, CPBFx-1Po56N765-N5121P515.

Fig. 13 shows the EMSE evolution for the acoustic channel
of Fig. 7 (a), which corresponds to the same filter used in
the previous experiment in Fig. 12 (b), but removing some
schemes for clarity. The CPBFx-IP556N763-N5121P512 exhibits
a fast convergence speed and the lowest steady state.
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Fig. 14. Combination of a BBFx-IP algorithm with a biased Fx-NLMS
algorithm with different g values (in solid lines) and with path estimation
errors (in dotted lines).

G. Convex Combination of BBFx-IP and biased Fx-NLMS
Algorithms

The combination can be designed employing any kind of
algorithms, even differing in the tuning of several parameters
simultaneously. In this experiment, we pursuit to obtain a
combination with very fast convergence and very low steady-
state error. Then, we combine a 2-block BBFx-IP algorithm
with 1 = pg = 0.3, k1 = ke = —0.5 with a central-block of
512 coefficients (that exhibits a very fast convergence) with
a biased Fx-NLMS algorithm with 4 = 0.01, that reaches
a very low steady-state EMSE with reduced computational
cost. As it can be seen in Fig. 14, where the acoustic channel
of Fig. 7 (b) has been considered, the combination achieves
both good convergence speed and low steady-state error, even
outperforming the individual components in some iterations.
It should be noted that the role of the biased version of the
Fx-NLMS algorithm is to prevent low SNR situations (for
this experiment, SNR= 10 dB). However, if the computational
burden is not a constraint, a better performance at steady state

can be achieved using a block-based strategy for the Fx-NLMS
algorithm, or even a partitioned block scheme.

The same adaptive algorithms have been considered with
a non-perfect estimate of the acoustic path being SNR(B) =
20 dB (in dotted lines), which allows to analyze robustness
of the adaptive filters in this scenario. The difference of this
imperfect estimation is shown on the BBFx-IP algorithms. As
expected, the combination filter combines the performance of
the component filters and outperforms them at some points.

H. Computational Cost

In this subsection, we analyze the computational complexity
of the proposed algorithms in terms of multiplications per iter-
ation, which is given in Table III. Regarding the Fx-IPNLMS
filter, it requires 6 L,,+2 multiplications more than the simplest
of the algorithms considered in this paper, the Fx-NLMS.
In the case of the combination schemes, the increase in the
number of blocks can provide a better performance, but with
a larger computational cost. Specifically, the computation of
the combination factors involves (2L, 4 11)M multiplications
more than the single algorithm, including also the additional
filtering through the estimated channel and (L; + 10)M
multiplications for the biased schemes.

The computational cost of the CPBFx-IP algorithm of Fig. 6
is computed as explained in Section III-C with an Fx-IPNLMS
algorithm for the central block and an Fx-NLMS algorithm for
the lateral blocks. In this case, the computational burden of the
adaptive filter is of Ly + 2(2L,, + 6L. + 5) multiplications.

The computational complexity of the different schemes
considered is summarized in Table III, where also an example
has been given at the last column for L; = 512, L,, = 1024
and M = 16. For the CPBFx scheme with only 2 blocks, a
central block of 512 coefficients has been considered for the
typical case.

V. CONCLUSION

In this contribution, we propose the utilization of com-
bination schemes for room equalization applications. In this
context, and due to the nonuniform distribution of the inverse
optimal filter, the blockwise combination inherent to the CBFx
algorithm allows to reach an improved performance with re-
spect to that of combinations of whole adaptive filters. We can
obtain additional advantages using particular implementations,
as the BBFx scheme, which presents a good performance,
specially for low SNRs and/or with sparse optimal filters.

Although combination schemes can be designed employing
any kind of adaptive filter as components, we have based our
proposal in the Fx-IPNLMS algorithm, which allows to design
combination filters that efficiently alleviate the compromise
related with the sparseness degree of the inverse filter.

An important difference between the proposed schemes and
other blockwise combination schemes employed in other ap-
plications is that, in the room equalization context, the number
of blocks should remain modest, in order to keep a reasonable
computational cost. However, we propose different schemes
that fulfill with this premise presenting a good performance.
For instance, an improved behavior is obtained if the blocks
are designed considering the standard shape of the inverse filter



TABLE III
SUMMARY OF THE COMPUTATIONAL COMPLEXITY OF THE PROPOSED SCHEMES. COMPLEXITY IS MEASURED AS THE NUMBER OF MULTIPLICATIONS PER
ITERATION OF THE CONSIDERED ALGORITHMS. TYPICAL CASE: Ly = 512, L., = 1024, M = 16.

Algorithm

Multiplications Typical case

Fx-NLMS // Fx-IPNLMS

Ly +3Lw +2// Ly +9Lw + 4

3586 // 9732

CBFx-N // CBFx-IP (M = 1)

3Ly + 5Lw +15// 3Ly, + 17Lw 4 19

6671 // 18963

CBFx-N // CBFx-IP

Ln(2M + 1) + 5Ly, + 1IM 4 // L, (2M + 1) + 17Ly, + 11IM + 8

22196 // 34488

BBFx-N // BBFx-IP

Lh(M+1)+ 3Ly + 10M+2// L,(M + 1) + 9L, + 10M + 4

11938 // 18084

CPBFx-IP (M = 2)

Ln + 2(2Lw + 6Lc + 5)

10762

and the central coefficients are located in the same block. In
addition, we present the PBFx scheme for AE applications,
where each block is modeled using different parameter settings
(p or k values) based on the block filter characteristics.

Simulation results show the benefits of the proposed algo-
rithms for room equalization applications. The use of com-
bination schemes in this context permits to obtain a robust
behavior for different sparseness degrees and different SNR
conditions, allowing to efficiently alleviate several trade-offs
inherent to the adaptive filters, highlighting the compromise
between convergence speed and steady-state error.

Future work includes its extension to the multichannel
case, and to study the performance of other kind of adaptive
combinations.

APPENDIX
STEADY-STATE ANALYSIS OF THE BBFX-IP ALGORITHM:
EMSE PERFORMANCE AND OPTIMAL SCALING FACTORS

The BBFx-IP algorithm provides an improvement with
respect to the Fx-IPNLMS algorithm for low SNRs but also
when the optimal adaptive filter has a sparse response, which
normally occurs in AE applications. To better understand
the behavior of the BBFx scheme, this appendix presents
the theoretical analysis of its steady state. The following
development can be straightforwardly extended to the CBFx
scheme. Nevertheless, due to the limited space, it has not been
included in this contribution.

In order to compute the EMSE of the BBFx-IP algorithm
introduced in Section III-A, the output error in Algorithm 2
can be expressed as a function of the a priori error e, (n).

For the sake of simplicity, we consider each coefficient
separately and constant scaling factors. Thus, we use the filter
coefficients w;(n) for I = 1,..., Ly, and the scaling factors
that multiplies each block, a,,, for m = 1,..., M can be
rewritten as ap L1 That means, m is assigned to each filter
coefficient w;(n) depending on the filter block it belongs to,
rounding up the division i/ towards the nearest integer.
Moreover, for low variations of the weight vector, h and
w'(n) are considered linear systems that can be interchanged
(associative law of linear time-invariant systems, [44]). Thus,
the microphone signal z(n) and the error signal e(n) have

been rewritten respectively as
Lu

z(n) = Za(é]w?(n)zf(n 1) +r(n).

=1

(13)

L

e(n) = d(n) — =(n) = 3 [oo1 — a4y (m)wi(m)]  n — 1) — ()
=1

T (n)x¢(n) —r(n) = \I/T(’IL)ITITX“,}L(TL) —r(n) = eq(n) —r(n),
(14)

being ¥(n) a vector containing the wlg@) terms for [
]-a teey st lII(n) = [1/11 (n)7 ce 7¢Lw (n)] , Where wl(n)
Wo,1 — a(é]wl(n) has been used for compactness. X,,;(n)
a column vector containing the last L,, + L; — 1 samples of
the input signal x(n) that multiplies the convolution matrix
HT of size L, x Ly, + L, — 1 to provide the filter vector
x¢(n), being

is

h(0) h(1) R(Ln—1) ... 0
qr_ 0 h(0) h(1) (1)
0 0 0' i}(d) h(Ly, —1)

Following the analysis in [39], the EMSE of the filter is
therefore given by
Jea(m)= B{e2(n)} = B {97 ()T H xn (n)xT, (n) ¥ ()}

~ B {UT(HTE {xu (x5, ()} HEm) |, (16)

where E{-} denotes the mathematical expectation.

Assuming the step size is small enough to allow the filter
coefficients to follow the average statistics of the input signal
(see the Direct Averaging Method applied in [5]), the term
Xwh(n)xL, (n) can be approximated by its expected value. If
we consider the statistics of the input signal, for a white noise
signal of zero mean and o2 variance, the following term in (16)
can be simplified, E {x,n(n)xL,(n)} = 02L1,11,-1),
where Iz, 47, 1) is the identity matrix of size (L, +Lp—1).
Then, (16) can be rewritten as

Jea(n) = 02E {@T(n)ﬁTﬁxp(n)}. (17)

After some manipulations and using the symmetrical prop-
erty of the correlation matrix, (17) can be rewritten as,

Jex(n) = 02E [¥7 (n)®(n)] DHY h, (18)

where D is a diagonal matrix of L;, length, whose first entry
is equal to 1, and the rest of the elements of the main diqgongl
are 2 to implement the symmetric factor. Furthermore, thh
ilnplements the correlation of the channel response, wflere
th is a matrix composed with the first L; columns of HT.
Moreover, matrix ®(n) of size L,, X Lj is a convolution
matrix built with the ;(n) coefficients, whose first column
is ¥(n) and the following columns are built by shifting down
this vector and zero-padding at the beginning, i.e.,

UL (n)®(n) = [ ¢1(n) va(n) YL, (n) |
1(n) 0 o 0
Pa2(n) P1(n) :
: : () . (19)

/¢Lw7L‘h,+1(”)

I/JLw. (n) ’l/}Lw;1 (n)



For h = 6(n — 7) (acoustic propagation in free field
conditions), H”h = [1,0,...,0]T, and the multiplication by
matrix D gives also the Lj, length vector [1,0,...,0]T. This
vector activates only the first column of ®(n) in (19), and thus
expression (20) reduces to the one obtained in [39], when the
filtered-x structure is not considered.

Jez(n) = o2E [UT (n)¥(n)] . (20)

Expression (19) shows the influence of the channel filtering
among the U;(n) coefficients. Thus, (18) can be rewritten as

Jez(n) = 02| B|3E [97 ()W (n)]
Lp—1 Ly—1
+202 Z Z E [ (n)ryr(n)], (21
where (r) = z h(k)h(k — 7). For r = 0, 7(0) = |h|2

which appears as "the first term in 210).

In steady state (n — o0), the EMSE of the block-biased
filtered-x scheme can be developed as in [39]. After some ma-
nipulations, using the coefficient weight error w;(n), defined
as wi(n) = wo,y — wi(n), in Y(n) = wey — apmwi(n) =
apwi(n) + [1 — am|w,,; and assuming independence of the
filter coefficients and that they tend to their optimal solution,
E{w(n)w;+-(n)} = E{w(n)}E{w;+-(n)} = 0, where

E{w;(c0)} = wo,, we get
Jex(00) = o7 ||h|3 Z am B {[[Wam (00) |3}
Ln—1
+Z 1—am)? [|Woml|? +2022
waT

> (1-ag) (1

Oql%q) Wo Wo 47|,  (22)

where the first term is similar to that of (12) in [39] but
including the effect of the channel energy ||h||3, and there
is an additional second term dependent on the correlation of
the channel response r(7) for 7 =1,..., Ly — 1.

If only one block is considered (o, = «) as in [41], the
coefficients in (14) can be rewritten as v;(n) = aw;(n)+[1—
ajw, ;. Leading to,

)3}

Jea(00)=

2|\h|\§ZE{ @1 (00
+Uw( __a)

In order to compute the EMSE in steady state, we have
to obtain the terms E {||W,,(c0)||3} and c,,. For simplicity,
we assume that the channel correlation terms r(7) for 7 =
1,...,L, — 1 can be discarded respect to the 7(0) = ||h|3
coefficient.

Following the development as in [32], the weight error
coefficients can be obtained as,

E{ Il (o)} } = si(ce)

a2||h||2 2=ngi(o0)!
gi(00) = (1 -

WOTHTHWO. (23)

(24)

I=1,...,L,

_ weal _
+(1+k) l=1,....,L, (25)
)2L s+22\w0k\

Finally,

Q
E{|%m(o)l13} = > E{|@m-naul)3} @6
=1

In steady state, if the scaling factors converge to the optimal

solution «,, we can obtain this solution from (22) with
6‘]5;("") = (. The scaling terms can be obtained as
1
*
o) = = . 27)
n 1+ E{llwm ()3}
lIwo,m I3
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