
2146 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2016

Efficient Training and Evaluation of Recurrent Neural
Network Language Models for Automatic

Speech Recognition
Xie Chen, Member, IEEE, Xunying Liu, Member, IEEE, Yongqiang Wang, Member, IEEE,

Mark J. F. Gales, Fellow, IEEE, and Philip C. Woodland, Fellow, IEEE

Abstract—Recurrent neural network language models
(RNNLMs) are becoming increasingly popular for a range
of applications including automatic speech recognition. An
important issue that limits their possible application areas is the
computational cost incurred in training and evaluation. This
paper describes a series of new efficiency improving approaches
that allows RNNLMs to be more efficiently trained on graphics
processing units (GPUs) and evaluated on CPUs. First, a modified
RNNLM architecture with a nonclass-based, full output layer
structure (F-RNNLM) is proposed. This modified architecture
facilitates a novel spliced sentence bunch mode parallelization
of F-RNNLM training using large quantities of data on a GPU.
Second, two efficient RNNLM training criteria based on variance
regularization and noise contrastive estimation are explored to
specifically reduce the computation associated with the RNNLM
output layer softmax normalisation term. Finally, a pipelined
training algorithm utilizing multiple GPUs is also used to further
improve the training speed. Initially, RNNLMs were trained on
a moderate dataset with 20M words from a large vocabulary
conversational telephone speech recognition task. The training
time of RNNLM is reduced by up to a factor of 53 on a single
GPU over the standard CPU-based RNNLM toolkit. A 56 times
speed up in test time evaluation on a CPU was obtained over
the baseline F-RNNLMs. Consistent improvements in both
recognition accuracy and perplexity were also obtained over
C-RNNLMs. Experiments on Google’s one billion corpus also
reveals that the training of RNNLM scales well.

Index Terms—Estimation, GPU, language models, noise
contrastive, pipelined training, recurrent neural network, speech
recognition, variance regularisation.

Manuscript received November 20, 2015; revised June 3, 2016 and July 13,
2016; accepted July 22, 2016. Date of publication August 4, 2016; date of current
version September 2, 2016. This work was supported by the Engineering and
Physical Sciences Research Council under Grant EP/I031022/1 (Natural Speech
Technology). The work of X. Chen was supported by Toshiba Research Europe
Ltd, Cambridge Research Lab. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Yang Liu.

X. Chen, P. C. Woodland, and M. J. F. Gales are with the Department of
Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K. (e-mail:
xc257@cam.ac.uk; pcw@eng.cam.ac.uk; mjfg@eng.cam.ac.uk).

X. Liu is with the Department of Systems Engineering and Engineering
Management, Chinese University of Hong Kong, Shatin, Hong Kong (e-mail:
xyliu@se.cuhk.edu.hk).

Y. Wang was with the Department of Engineering, University of Cambridge,
Cambridge CB2 1PZ, U.K. He is now with the Microsoft Corporation, Red-
mond, WA 98052 USA (e-mail: yw293@cam.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASLP.2016.2598304

I. INTRODUCTION

S TATISTICAL language models (LMs) are crucial compo-
nents in a wide-range of applications, including automatic

speech recognition (ASR) systems. A central part of language
modelling, is how to appropriately model long-distance context
dependencies in natural languages. This generally leads to a
data sparsity problem for conventional back-off n-gram LMs
given limited training data. In order to address this issue, LMs
that can represent history contexts in a continuous vector space,
for example, neural network LMs (NNLMs), can be used
[5]–[10]. Depending on the underlying network architecture,
these models can be splitted into two major categories:
feedforward NNLMs [5]–[7], [10], which use a vector repre-
sentation of preceding contexts of a finite number of words, and
recurrent NNLMs (RNNLMs) [8], [11], which use a recurrent
vector representation of longer and potentially variable length
histories. LSTM RNNLMs [9] use the long short term memory
unit which allows longer history be modelled. In recent years
RNNLMs have been shown to give significant improvements
over back-off n-gram LMs and feedforward NNLMs, thus
becoming an increasingly popular choice for state-of-the-art
ASR systems [2], [3], [12]–[25], as well as other related
applications including spoken language understanding [26],
[27], and statistical machine translation [28]–[30].

A key issue that limits the possible application areas of
RNNLMs, and standard recurrent neural networks (RNNs) in
general, is the computational cost incurred in model training
and evaluation. In order to address this issue, there has been
increasing research interest in deriving efficient parallel train-
ing algorithms for RNNs based acoustic models and machine
translation systems. Many of the these approaches including the
Baidu’s deep speech and Microsoft’s CNTK systems [31], [32]
use a synchronous stochastic gradient descent update algorithm
with data parallelization and optionally pipelining between mul-
tiple processors [33], [34].

In contrast to previous research which has largely focused on
RNN based acoustic modelling and machine translation tasks,
this paper aims to improve the training and evaluation efficiency
of RNN based LMs, with a particular focus on deriving novel
training criteria to explicitly reduce the computational cost in-
curred at the RNNLM output layer. As a normalisation term is
required for the softmax function, the output layer accounts for
a major part of the overall computation. This has a significant
impact on both RNNLM training and evaluation, when a large
output layer vocabulary is used. In order to improve efficiency,

2329-9290 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html

CHEN et al.: EFFICIENT TRAINING AND EVALUATION OF RNNLMs FOR ASR 2147

most of existing techniques use an RNNLM architecture with a
class based factorized output layer [11], known as class based
RNNLMs (C-RNNLM). A similar architecture has been used for
feedforward NNLMs [35]. As the number of classes is normally
significantly smaller than the full output layer size, a speed up of
both training and evaluation can be achieved [11]. When further
combined with parallelized model training [36] and multi-stage
classing at the output layer [37], training time speed up to 10 fold
were reported in previous research for C-RNNLMs. However,
there are several issues associated with these approaches. First,
the use of class base output layer limits the potential speedup
from bunch1 mode training parallelization [15]. Second, the un-
derlying word to class assignment schemes can impact the re-
sulting C-RNNLM’s performance [2], [11], [39], [40]. Finally,
only CPU based speed up techniques were studied in previous
research [11], [15], [36], [37]. Hence, it is preferable to also
exploit the parallelization power of GPUs.

To address these issues, a modified RNNLM architecture
with a non-class based, full output layer structure (F-RNNLM)
is proposed in this paper. This F-RNNLM architecture not only
removes the performance sensitivity to word classing, but also
facilitates a novel spliced sentence bunch mode parallelization
of F-RNNLM training. This efficient parallelization algorithm
can be implemented on GPUs to fully exploit their parallel
computing power.

Several techniques are also explored to further improve the
training and evaluation speed of F-RNNLMs. These include two
efficient RNNLM training algorithms that attempt to signifi-
cantly reduce the computation associated with the output layer
softmax normalisation term. In variance regularisation (VR)
based RNNLM training, the variance of the output normalisa-
tion term is introduced into the conventional cross entropy (CE)
based training objective function [2], [30], [41]–[43], and ex-
plicitly minimized. This allows this term to be ignored during
testing time thus gaining significant speed up, while retaining the
performance comparable to conventional CE training. A second
more efficient training algorithm based on noise contrastive esti-
mation (NCE) [44] is also investigated. NCE training implicitly
minimizes the variance of the output layer softmax normali-
sation term, and allows this normalisation term to be ignored
during both training and evaluation time.

The rest of this paper is organized as follows. In Section II
RNNLMs are reviewed and the two RNNLM architectures are
presented. A novel spliced sentence bunch mode paralleliza-
tion algorithm for F-RNNLM training and a GPU based im-
plementation of this algorithm are proposed in Section IV. A
detailed GPU based implementation of this algorithm is de-
scribed in Section IV-C. VR and NCE based RNNLM training
methods are presented in Sections III-B and III-C. Pipelined
RNNLM training is described in Section V. In Section VI
the performance of the proposed F-RNNLMs and a range of
efficiency improving techniques are evaluated on a large vo-
cabulary conversational telephone speech (CTS) transcription
system and the Google’s one billion word benchmark task.

1It is also sometimes referred as “minibatch” in the literature [34], [38]. For
clarity, the term “bunch” is used throughout this paper.

Fig. 1. An example RNNLM with an full output layer and OOS nodes.

Section VII draws the conclusions and discusses possible future
work.

II. RECURRENT NEURAL NETWORK LMS

There are two types of neural network structures used for
language modelling. They are feedforward NNLMs [5] and re-
current NNLMs [8] respectively. n gram Feedforward NNLMs
could be constructed using a standard multilayer perceptron
neural network. In contrast to feedforward NNLMs, recur-
rent NNLMs represent the full, non-truncated history hi−1

1 =
〈wi−1 , . . ., w1〉 for word wi using a 1-of-k encoding of the most
recent preceding word wi−1 and a continuous vector vi−2 for the
remaining context. For an empty history, this is initialized, for
example, to a vector of all ones. The topology of the RNN used
to compute LM probabilities PRNN(wi |wi−1 ,vi−2) consists of
three layers. The full history vector, obtained by concatenating
wi−1 and vi−2 , is fed into the input layer. The hidden layer
compresses the information of these two inputs and computes a
new representation vi−1 using a sigmoid activation to achieve
non-linearity. This is then passed to the output layer to produce
normalized RNNLM probabilities using a softmax activation,
as well as recursively fed back into the input layer as the “fu-
ture” remaining history to compute the LM probability for the
following word PRNN(wi+1 |wi,vi−1). As RNNLMs use a vec-
tor representation of full histories, they are mostly used for
N-best list rescoring. For more efficient lattice rescoring using
RNNLMs, appropriate approximation schemes, for example,
based on clustering among complete histories [17] can be used.

A. Full Output Layer Based RNNLMs (F-RNNLMs)

A standard RNNLM architecture with an unclustered, full
output layer (F-RNNLM) is shown in Fig. 1. RNNLMs can be
trained using an extended form of the standard back propagation
algorithm, back propagation through time (BPTT) [45], where
the error is propagated through recurrent connections back in
time for a specific number of time steps, for example, 4 or

2148 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2016

Fig. 2. An example RNNLM with a class-based output layer and OOS nodes.

5 [11]. This allows the recurrent network to record information
for several time steps in the hidden layer. To reduce the
computational cost, a shortlist [6], [46] based output layer
vocabulary limited to the most frequent words can also be used
for class based RNNLMs. A similar approach may also be used
at the input layer when a large vocabulary is used. To reduce the
bias to in-shortlist words during NNLM training and improve
robustness, an additional node is added at the output layer to
model the probability mass of out-of-shortlist (OOS) words [7],
[10], [17].

B. Class Based RNNLMs (C-RNNLMs)

Training F-RNNLMs is computationally expensive. As a ma-
jor part of the cost is incurred at the output layer, existing tech-
niques have been centered around C-RNNLMs, an RNNLM
architecture with a class based factorized output layer [11]. An
example C-RNNLM is illustrated in Fig. 2. Each word in the
output layer vocabulary is attributed to a unique class based on
frequency counts. The LM probability assigned to a word is
factorized into two individual terms

PRNN(wi |wi−1 ,vi−2) = P (wi |ci,vi−1)P (ci |vi−1). (1)

The calculation of word probability is based on a small subset
of words from the same class, and the number of classes is
normally significantly smaller than the full output layer size.
Hence, speed up in both training and evaluation time can be
achieved. A special case of C-RNNLM using a single class is
equivalent to a traditional, full output layer based F-RNNLM
introduced in Section II-A. A modified version of the RNNLM
toolkit [47] supporting the above architecture is used.

In state-of-the-art ASR systems, NNLMs are often linearly
interpolated with n-gram LMs to obtain both a good context
coverage and strong generalisation [6]–[8], [10], [15], [46]. The
interpolated LM probability is given by

P (wi |hi) = λPNG(wi |hi) + (1 − λ)PRNN(wi |hi) (2)

where λ is the weight assigned to the n-gram LM distribution
PNG(·) and kept fixed as 0.5 in all experiments of this paper for
all RNNLMs. In the above interpolation, the probability mass

of OOS words assigned by the RNNLM component needs to be
re-distributed among all OOS words [7], [10].

III. RNNLM TRAINING CRITERIA

RNNLMs were normally trained with CE based objective
function. In this section, two other training criteria will also be
introduced to improve train and evaluation efficiency.

A. Cross Entropy

Conventional RNNLM training aims to maximise the log-
likelihood, or equivalently minimize the CE measure of the
training data. For a given sequence containing a total of Nw

words, the objective function is given by

JCE(θ) = − 1
Nw

Nw∑

i=1

ln PRNN(wi |hi) (3)

where

PRNN(wi |hi) =
exp

(
θ�

i vi−1
)

∑|V |
j=1 exp

(
θ�

j vi−1
) =

exp
(
θ�

i vi−1
)

Z(hi)
(4)

is the probability of word wi given history hi . θi is the weight
vector associated with word i at the output layer. vi−1 is the
hidden history vector computed at the hidden layer, and |V | is
the size of output layer vocabulary. The gradient used in the
conventional CE based training for RNNLMs is

∂JCE(θ)
∂θ

= − 1
Nw

Nw∑

i=1

(
∂

(
θ�

i vi−1
)

∂θ

−
|V |∑

j=1

PRNN(wj |hi)
∂

(
θ�

j vi−1
)

∂θ

⎞

⎠ . (5)

The denominator term Z(hi) =
∑|V |

j=1 exp
(
θ�

j vi−1
)

in (4)
performs a normalisation over the full output layer. As discussed
in Section I, this operation is computationally highly expensive
when computing the RNNLM probabilities during both test
time and CE based training when the gradient information of
(5) is calculated. As discussed in Section IV, the efficient bunch
mode GPU based parallelization with sentence splicing is used
to improve the speed of conventional CE training.

B. Variance Regularisation

One technique that can be used to improve the testing speed
is introducing the variance of the normalisation term into the
conventional CE based objective function of (4). In previous re-
search VR has been applied to training of feedforward NNLMs
and class based RNNLMs [30], [41], [42]. By explicitly mini-
mizing the variance of the softmax normalisation term during
variance training, the normalisation term at the output layer can
be ignored during testing time thus gaining significant improve-
ments in speed. The conventional CE objective function of (3)
is modified as

JVR(θ) = JCE(θ) +
γ

2Nw

Nw∑

i=1

(ln Z(hi) − ln Z)2 (6)

CHEN et al.: EFFICIENT TRAINING AND EVALUATION OF RNNLMs FOR ASR 2149

where JCE(θ) and Z(hi) are the CE based training criterion
and the softmax normalisation term associated with a history
hi in (4) respectively, and ln Z is the mean of the log scale
normalisation term computed over the Nw words in the train
data

ln Z =
1

Nw

Nw∑

i=1

ln (Z(hi)). (7)

γ is a tunable parameter that adjusts the contribution from the
VR term. Directly maximising the above objective function in
(6) during VR based RNNLM training explicitly minimises the
variance of the softmax normalisation term. The gradient used
in the VR based training is given by

∂JVR(θ)
∂θ

=
∂JCE(θ)

∂θ
+

γ

Nw

Nw∑

i=1

(ln Z(hi) − ln Z)

×
|V |∑

j=1

PRNN(wj |hi)
∂

(
θ�

j vi−1
)

∂θ
(8)

where ∂J CE(θ)
∂θ is the CE gradient given in (5), and PRNN(·|hi)

the standard RNNLM probabilities computed using (4) with nor-
malisation. VR allows a history independent, constant softmax
normalisation term to be used in evaluation time. The RNNLM
probabilities are thus approximated as

P VR
RNN(wi |hi) ≈

exp
(
θ�

i vi−1
)

Z
. (9)

This significantly reduces the computation at the output layer
as the normalisation is no longer required. As such computation
is no longer sensitive to the size of output layer vocabulary,
|V |, a maximum |V | times speed up at the output layer can be
achieved in test time.

In this paper VR based training is used to improve the eval-
uation time efficiency for F-RNNLMs [2], [43] and integrated
with the bunch mode parallel training algorithm in Section IV.
In contrast to setting the mean of log normalisation term ln Z
to zero used in the previous research for C-RNNLMs [42], it
is found that calculating ln Z separately for individual bunches
gave improved convergence speed and stability in F-RNNLM
training. During test time, this term is computed on a validation
set first, remains fixed and applied on unnormalized probability
as Equation (9). 2

C. Noise Contrastive Estimation

As discussed in Section I, the calculation of the the softmax
normalisation term required at the output layer significantly im-
pacts both the training and testing speed of RNNLMs. VR can
significantly reduce the associated computation during evalua-
tion time. However, the calculation of this normalisation term
is still required in training and used to compute the variance
regularised gradient information in (8). A more general solution
to this problem is to use techniques that can remove the need

2The fixed normalisation term Z is also equivalent to changing the word
insertion penalty.

to compute such normalisation term in both training and test-
ing. One such technique investigated in this paper is based on
NCE [3], [20], [43], [44].

NCE provides an alternative solution to estimate normalized
statistical models when the exact calculation of the normalisa-
tion term is either not possible or highly expensive to perform,
for example, in feedforward and recurrent NNLMs, when a large
output layer vocabulary is used. The central idea of NCE is to
perform a nonlinear logistic regression to discriminate between
the observed data and some artificially generated noise data.
The variance of normalisation term is minimized implicitly dur-
ing training. Hence, it allows normalized statistical models, for
example, NNLMs, to use “unnormalized” probabilities without
explicitly computing the normalisation term during both train-
ing and decoding. In common with the use of a class based
output layer, the NCE algorithm presents a dual purpose so-
lution to improve both the training and evaluation efficiency
for RNNLMs.

For NCE based training of RNNLMs, it is assumed that for
a given full history context hi , data samples are generated from
a mixture of two distributions: the NCE estimated RNNLM
distribution P̃ NCE

RNN (·|hi), and some noise distribution Pn (·|hi)
that satisfies the desired sum-to-one constraint. Assuming that
the noise samples are k times more frequent than true RNNLM
data samples, the distribution of all data can be described as

1
k+1 P̃ NCE

RNN (·|hi) + k
k+1 Pn (·|hi). The posterior probabilities of

a word w̃ being generated either from the RNNLM or noise
distribution, are

P (CRNN
w̃ = 1|w̃, hi) =

P̃ NCE
RNN (w̃|hi)

P̃ NCE
RNN (w̃|hi) + kPn (w̃|hi)

P (Cn
w̃ = 1|w̃, hi) =

kPn (w̃|hi)
P̃ NCE

RNN (w̃|hi) + kPn (w̃|hi)
(10)

where CRNN
w̃ and Cn

w̃ are the binary labels indicating which
of the two distributions that generated word w̃. The following
objective function is minimized during NCE based training:

JNCE(θ) = − 1
Nw

Nw∑

i=1

(
ln P (CRNN

wi
= 1|wi, hi)

+
k∑

j=1

ln P (Cn
w̌i , j

= 1|w̌i,j , hi)

⎞

⎠ (11)

where a total of k noise samples {w̌i,j} are drawn from the
noise distribution Pn (·|hi) for the current training word sample
wi and its history context hi . The gradient of the above NCE
objective function in (11) is then computed as

∂JNCE(θ)
∂θ

= − 1
Nw

Nw∑

i=1

(
P (Cn

wi
= 1|wi, hi)

∂

∂θ
ln P̃ NCE

RNN (wi |hi)

−
k∑

j=1

P (CRNN
w̌ i , j

= 1|w̌i,j , hi)
∂

∂θ
ln P̃ NCE

RNN (w̌i,j |hi)

⎞

⎠

(12)

2150 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2016

where the NCE trained RNNLM distribution is given by

P̃ NCE
RNN (wi |hi) =

exp
(
θ�

i vi−1
)

Z
(13)

and constrained during NCE training by setting a constant, his-
tory context independent normalisation term Z, in contrast to
fully normalized RNNLM distribution that is used to compute
both the CE and variance regularised gradient information given
in (3) and (8).3 This crucial feature not only allows the resulting
RNNLM to learn the desired sum-to-one constraint of standard
CE estimated RNNLMs, but also to be efficiently computed
during both training and test time without requiring explicitly
computing the softmax normalisation term at the output layer.

In this paper, NCE training of RNNLMs is implemented on
GPU and integrated with the sentence splicing based bunch
mode training of Section IV. A bunch size of 128 was used
in all experiments. CUBLAS is used for matrix operation. The
NCE objective function shown in (11) is optimized on the train-
ing set. The CE measure on the validation set computed us-
ing the conventional RNNLM probabilities with normalisation
in (4) is used to control the learning rate. During NCE train-
ing, a number of parameters need to be appropriately set. First,
a noise distribution is required in NCE training to provide a
valid sum-to-one constraint for the NCE estimated RNNLM to
learn. As suggested in earlier research presented in [48], [49],
a history independent unigram LM distribution is used to draw
the noise samples during NCE training in this paper. Second, the
setting of k controls the bias towards the characteristics of the
noise distribution. It also balances the trade-off between training
efficiency and performance. In this paper, for each target word
w, a total of k = 10 noise samples are independently generated
from the noise distribution. It is worth noting that the noise
sample could be the predicted word and the same noise sample
may appear more than once. Finally, NCE training also requires
a constant normalisation term Z in equation (13) to be set. In
previous research on NCE training of log-bilinear LMs [48] and
feedforward NNLMs [49], the constant normalisation term was
set as ln Z = 0. In this paper for RNNLMs an empirically ad-
justed setting of ln Z = 9 was used. This was close to the mean
of the log scale normalisation term computed using a randomly
initialized RNNLM on the whole training corpus. This setting
was found to give a good balance between convergence speed
and performance and used in all experiments.

The main advantages of RNNLMs training with NCE are
summarized below. First, the computation on output layer is re-
duced dramatically as it only needs to consider k noise samples
and the target word, instead of the whole output layer. Com-
pared with the CE based training gradient given in equation (5),
the computation of NCE gradient in equation (12) gives a total
speed up of |V |

k+1 times at the output layer. Second, the train speed
is insensitive to output layer size, which allows RNNLMs with
larger vocabulary to be trained. Finally, the normalisation term
is constrained to be a constant during NCE training. This can

3A more general case of NCE training also allows the normalisation term to
vary across different histories, thus incurring the same cost as in conventional
CE based training [44].

Fig. 3. An example of bunched RNNLM training without sentence splicing
(where N denotes the bunch size).

avoid the re-computation of the normalisation term for different
histories, therefore allows the normalized RNNLM probabilities
to calculated in test time with the same efficiency as unnormal-
ized probabilities. In common with VR based training, a |V |
times speed up at the output layer during test time can thus be
achieved.

IV. SPLICED SENTENCE BUNCH TRAINING

In order to reduce the computational cost in model training,
a bunch mode parallelization can be applied to RNNLMs. This
technique was previously proposed for feedforward NNLMs [6],
[50]. A fixed number of n-grams from the training data are
formed as a bunch. This bunch of data is propagated through
the network for the computation of gradients. These gradients
over the bunch were then accumulated and used for updating
the weight parameters.

A. Standard Bunch Mode RNNLM Training

As RNNLMs use a vector representation of full history con-
texts, a necessary modification of the data structure used by this
algorithm is required. Instead of operating at the n-gram level,
a sentence level bunch should be used [15], [51]. This form of
parallelization requires each sentence to be regarded as indepen-
dent in RNNLM training by re-initializing the recurrent hidden
history vector at the start of every sentence.

The basic idea of bunch mode training is shown in Fig. 3.
Given the bunch size N , N sentences are aligned from left to
right. During parallelization, a regular structured input matrix is
formed. The element at the jth row and tth column in the input
matrix, associated with time t + 1 and an output word w

(j)
t+1 ,

represents a vector [w(j)
t , v

(j)
t−1]

�, where w
(j)
t and v

(j)
t−1 are the

1-of-k vector encoding of the tth word of the jth sentence in the
bunch, and the corresponding recurrent history vector at word
w

(j)
t respectively.
Two issues arise when directly using the above sentence

bunch mode training. First, the variation of sentence length
in the training data requires setting the number of columns of
the input matrix to the maximum sentence length in the training

CHEN et al.: EFFICIENT TRAINING AND EVALUATION OF RNNLMs FOR ASR 2151

Fig. 4. An example of bunched RNNLM training with sentence splicing (N
denotes the bunch size and M is the number of sentences in the whole train
corpus). The bunch is initially filled top-down from stream 0 to stream N − 1
with a total of N randomly sorted training data sentences, and then from left to
right repeat the same process until the N stream bunch is filled with a minimum
number of NULL tokens at the stream end.

corpus. NULL words are then inserted at the end of other shorter
sentences in the bunch, as is shown in Fig. 3. These redundant
NULL words are ignored during BPTT. As the ratio between
the maximum and average sentence length of the training data
increases, and more NULL tokens are inserted, the potential
speed up from parallelization is increasingly limited. Second,
the standard sentence bunch mode training also interacts with
the use of class based RNNLMs [11], [15]. As words aligned
at the same position across different sentences can belong to
different classes, the associated output layer submatrices of ir-
regular sizes will be used at the same time instance. This can
also result in inefficiency during training.

B. Bunch Mode RNNLM Training With Sentence Splicing

In order to handle these issues, an efficient bunch mode paral-
lelization based on spliced sentences is used. Instead of a single
sentence, each stream in the bunch now contains a sequence of
concatenated sentences, as is illustrated in Fig. 4. Sentences in
the training corpus are joined into streams that are more com-
parable in length. Sentence boundaries within each stream are
marked in order to appropriately reset the recurrent history vec-
tor as required. As the streams are more comparable in length,
the insertion of NULL tokens at the stream end is minimized.
This approach can thus significantly reduce the synchronization
overhead and improve the efficiency in parallelization.

The non-class based, F-RNNLMs introduced in Section II-A
are also chosen to address the second issue as mentioned above.
F-RNNLMs use the entire output layer both in training and LM
probability calculation, therefore allow the speed improvements
from parallelization techniques to be fully exploited.

C. GPU Implementation of Bunch Mode RNNLM Training

To improve efficiency, graphics processing units (GPUs),
which have been previously employed to train deep neural net-
work (DNN) based acoustic models in speech recognition [34],
[38], are used to train RNNLMs used in this paper. CUBLAS
from CUDA 5.0, the basic linear algebra subprograms library

TABLE I
INITIAL LEARNING RATE PER SAMPLE WITH DIFFERENT BUNCH SIZE

Bunch size 1 8 32 64 128 256

Learning rate 0.1 0.0375 0.025 0.0156 0.0156 0.0078

optimized for NVidia GPUs, is used for fast matrix operation.
As discussed in Sections I and II-B, when a large number of
output layer nodes are used, the softmax computation during
gradient calculation is very expensive. To handle this problem,
a fast GPU implementation of the softmax function is used.
Instead of summing the sufficient statistics sequentially over
all output layer nodes, they are processed in one block. Shared
memory is also used and to facilitate rapid address access time.
An array in each block with a fixed length (1024 used in this
work) is allocated in the shared memory. Partial accumulates are
stored in the array elements. A binary tree structured summation
performed over the array reduces the execution time from N to
log N , for example, from 1024 down to 10 parallelized GPU
cycles.

In order to obtain a fast and stable convergence during
RNNLM training, the appropriate setting and scheduling of
the learning rate parameter is necessary. For the F-RNNLMs
trained with bunch mode, the initial learning rate per sample is
empirically adjusted in proportion to the underlying bunch size.
When the bunch size is set to 1 and no form of parallelization
is used, the initial learning rate is 0.1, in line with the default
setting used in the RNNLM toolkit [47]. The initial learning
rate settings used for various other bunch sizes are also shown
in Table I. When the bunch size increases to 128, the initial
learning rate is set to 0.0078 per sample.

V. PIPELINED TRAINING OF RNNLMS

The parallel structure of neural network training can be classi-
fied into two categories: model parallelism and data parallelism
[52]. The difference lies in whether the model or data is split
across multiple machines or cores. Pipelined training is a type of
model parallelism. It was first proposed to speedup the training
of DNN based acoustic models in [34]. In this paper pipelined
training of RNNLMs is used. Layers of the network are dis-
tributed across different GPUs. Operations on these layers such
as the forward pass and error back propagation are executed on
their own GPUs. It allows each GPU to proceed independently
and simultaneously. The communication between different lay-
ers is performed after each parameter update step.

The data flow of pipelined training is shown in Fig. 5. Two
weight matrices (denoted by Weight 0 and Weight 1) are kept in
two GPUs (denoted by GPU 0 and GPU 1). For the first bunch
in each epoch, the input is forwarded to the hidden layer and
the output of hidden layer is copied from GPU 0 to GPU 1. For
the 2nd bunch, the input is forwarded again. Simultaneously,
GPU 1 forwards the previous bunch obtained from hidden layer
to the output layer. This is followed in sequence by error back
propagation, parameter update, and the communication between
GPUs in the form of a copying operation. For the following

2152 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2016

Fig. 5. An example of data flow in pipelined RNNLM training using 2 GPUs.

bunches, GPU 0 updates the model parameters using the corre-
sponding error signal and input with BPTT, before forwarding
the new input data for the next bunch. GPU 1 performs suc-
cessively a forward pass, error back propagation and parameter
update again.

VI. EXPERIMENTS

In this section the performance of the proposed techniques
to improve RNNLM training and evaluation efficiency are eval-
uated using two tasks: a HTK-based large vocabulary speech
recognition system developed for English CTS used in the 2004
DARPA EARS evaluation [53]; and Google’s one billion word
benchmark corpus [54] for language modelling.

A. CTS-English ASR Experiment

In this section, RNNLMs are evaluated on the CU-HTK
LVCSR system for CTS used in the 2004 DARPA EARS evalu-
ation. The acoustic models were trained on approximately 2000
hours of Fisher conversational speech released by the LDC. A
59 k recognition word list was used in decoding. The system
uses a multi-pass recognition framework. A detailed description
of the baseline system can be found in [53]. The 3 hour dev04
data, which includes 72 Fisher conversations, was used as a test
set. The baseline 4-gram LM was trained using a total of 545
million words from 2 text sources: the LDC Fisher acoustic tran-
scriptions, Fisher, of 20 million words (weight 0.75), and the
University Washington conversational web data [55], UWWeb,
of 525 million words (weight 0.25). The Fisher data was used
to train various RNNLMs. A 38k word input layer vocabulary
and 20 k word output layer shortlist were used. RNNLMs were
interpolated with the baseline 4-gram LM using a fixed weight
0.5. This baseline LM gave a WER of 16.7% on dev04 measured
using lattice rescoring.

The baseline class based RNNLMs were trained on CPU4

with the modified RNNLM toolkit [47] compiled with g++.
The number of BPTT steps was set as 5. A computer with
dual Intel Xeon E5-2670 2.6 GHz processors with a total of 16
physical cores was used for CPU-based training. The number of
classes was fixed as 200. The number of hidden layer nodes was
varied from 100 to 800. 12 epochs were required for RNNLMs
training to get convergence in this task. The 100-best hypotheses

4A speedup of 1.7 times for CPU based training could be obtained by the
Intel MKL CUBLAS implementation with multi-threading (compiled with icc
version 14.0.2) over the baseline RNNLM toolkit for C-RNNLMs with 512
hidden layer nodes and 200 classes.

TABLE II
TRAINING SPEED, PERPLEXITY AND WER RESULTS OF CPU TRAINED

C-RNNLMS ON CONVERSATIONAL ENGLISH FISHER DEV04 WITH VARYING

HIDDEN NODES AND A FIXED NUMBER OF CLASSES OF 200

Hidden Speed Train time dev04

nodes (w/s) (hours)∗ PPL WER

100 7.6 k 9.8 50.7 16.13
200 2.1 k 35.6 48.6 15.82
512 0.37 k 202.1 46.5 15.32
800 0.11 k 679.9 45.8 15.40

TABLE III
TRAINING SPEED, PERPLEXITY AND WER RESULTS OF GPU TRAINED

F-RNNLMS ON DEV04 WITH VARYING BUNCH SIZES AND

A FIXED HIDDEN LAYER SIZE OF 500

Model type Bunch size #Parameter Speed (w/s) Time (hours) dev04

PPL WER

C-RNN – 26.9M 0.37 k 202.1 46.5 15.32

F-RNN 1 26.8M 0.17 435.3 45.9 15.26
8 1.4 k 53.4 45.7 15.22

32 4.6 k 16.3 45.6 15.25
64 7.6 k 9.8 45.7 15.16

128 10.1 k 7.4 46.3 15.22
256 12.9 k 5.7 46.5 15.38
512 13.3 k 5.6 47.5 15.55
1024 14.2 k 5.2 48.2 15.63

extracted from the baseline 4-gram LM lattices were rescored
for performance evaluation. The perplexity and error rates of
various RNNLMs are shown in Table II. The C-RNNLM with
512 hidden layer nodes gave the lowest WER of 15.32% and
serves as the baseline C-RNNLM in all the experiments.

1) Experiment on Bunch Mode GPU Training: The next ex-
periment is to examine the efficiency of bunch mode GPU based
RNNLM training with sentence splicing. The NVidia GeForce
GTX TITAN GPU was used to train various F-RNNLMs. The
spliced sentence bunch mode parallelization algorithm and its
GPU implementation described in Sections IV and IV-C were
used. A range of different bunch size settings from 8 to 256
were used. Consistent with the above C-RNNLM baseline,
all F-RNNLMs have 512 hidden layer nodes and a compara-
ble number of weight parameters. Their performance measured
in terms of training speed, perplexity and WER are shown in
the 2nd Section of Table III. The performance of the baseline
C-RNNLM with 512 hidden nodes (previously shown in 3rd line
in Table II) is again shown in the 1st line of Table III. Setting
the bunch size to 8, a 4 times speed up is achieved. Improve-
ments in perplexity and WER over the C-RNNLM baseline are
also obtained. Further improvements in training speed can be
consistently achieved by increasing the bunch size to 128 with-
out performance degradation. The best performance in terms of
training speed and WER was obtained by using a bunch size of
128. This gives 27 times speed up and a 0.1% absolute reduction
(significant at alpha = 0.05, obtained with MASSSWE test) in

CHEN et al.: EFFICIENT TRAINING AND EVALUATION OF RNNLMs FOR ASR 2153

Fig. 6. F-RNNLM training speed with and without sentence splicing.

TABLE IV
EVALUATION SPEED OF RNNLMS FOR N-BEST SCORING ON DEV04

Model Test speed
type Device Bunch (words/sec)

F-RNN CPU N/A 0.14 k
C-RNN 5.9 k

F-RNN GPU 1 1.1 k
64 41.3 k

512 56.3 k

The performance is the same for F-RNNLM
using GPU with various bunch size.

WER over the C-RNNLM baseline. 128 is chosen as the default
bunch size for the following experiments.

Examining the breakdown of the training time suggests the
output and hidden layers account for the majority of computation
during BPTT (44.8% and 39.4% respectively), due to the heavy
matrix multiplication required. The remaining computation is
shared by other operations such as resetting F-RNNLM hidden
vectors at the sentence start, and data transfer between the CPU
and GPU. This breakdown of training time suggests that further
speed up is also possible via pipelined training by allocating the
computation of the hidden layer and output layer into different
GPUs, as will be later shown in Section VI-A4. A further speed
up is possible, for example, by increasing the bunch size to 256.
However, the convergence becomes less unstable and leads to
performance degradation.

As a major contribution factor to the above speed improve-
ments, the importance of using sentence splicing in bunch mode
based GPU implementation is shown in Fig. 6, where a contrast
in speed with and without sentence splicing is drawn. When
using the standard bunch model training with no sentence splic-
ing as shown in Fig. 3, only limited speed improvements were
obtained by increasing the bunch size. This is due to the large
number of inserted NULL tokens and the resulting inefficiency,
as discussed in Section IV. These results suggest that the pro-
posed sentence splicing technique is important for improving
the efficiency of bunch mode RNNLM training.

The spliced sentence bunch based parallelization can also be
used for RNNLM performance evaluation on GPU. Table IV
shows the speed information measured for N-best rescoring

TABLE V
PERPLEXITY AND WER PERFORMANCE OF F-RNNLMS TRAINED WITH

VARIANCE REGULARISATION ON DEV04

γ Log-norm PPL WER

Mean Var Z(h) Z

0.0 15.4 1.67 46.3 15.22 16.24
0.1 14.2 0.12 46.5 15.21 15.34
0.2 13.9 0.08 46.6 15.33 15.35
0.3 14.0 0.06 46.5 15.40 15.30
0.4 14.2 0.05 46.6 15.29 15.28
0.5 14.4 0.04 46.5 15.40 15.42

The mean and variance of log normalisation term
were computed over the validation data at the end
of each epoch. The two columns under WER (Z(h)
and Z) denote word error rates using normalised
or approximated RNNLM probabilities computed
using (4) and (9).

using the baseline C-RNNLM and the F-RNNLM of Table III.
As expected, it is very expensive to use F-RNNLM on CPU.
C-RNNLMs can improve the speed by 43 times. A further speed
up of 9 times over the CPU C-RNNLM baseline was obtained
using the bunch mode (bunch size 512) parallelized F-RNNLM.

2) Experiment on VR: In this section, the performance of
F-RNNLMs trained with VR are evaluated. These experimental
results with various settings of the regularisation constant γ
in (6) are shown in Table V. The word error rates with Z(h)
in the table are the WER scores measured using the standard
normalised RNNLM probabilities computed using (4). WERs
with Z in the last column are obtained using the more efficiently
approximated RNNLM probabilities given in (9). The first row
of Table V shows the results without VR by setting γ to 0,
the same to the standard CE based training. As expected, the
WER was increased from 15.22% (standard fully normalized
F-RNNLMs) to 16.24% without performing the normalisation.
This confirms that the normalisation term computation for the
softmax function is crucial for using CE trained RNNLMs in
decoding.

When the VR term is applied in F-RNNLM training, there
is only a small difference in terms of WER between using the
accurate normalisation term Z(h) or approximate normalisation
term Z. As expected, when the setting of γ is the increased, the
variance of the log normalisation term is decreasing. When γ
is set as 0.4, it gave a WER of 15.28%, insignificant to the
WER of the baseline CE trained F-RNNLM (1st line in Table V
and also 5th line in Table III). At the same time, significantly
improvements in evaluation speed were also obtained. This is
shown in Table VI. The CPU based F-RNNLM evaluation speed
was increased by a factor of 56 over the CE trained F-RNNLM
baseline using VR, while retaining the same training speed.

3) Experiment on NCE Training: As discussed in Sections I
and III-C, an important attribute of NCE based RNNLM training
is that the variance of the RNNLM output layer normalisation
term Z of (13) can be implicitly constrained to be minimum
during parameter estimation. This effect is illustrated in Fig. 7
on log scale over a total of 12 epochs on the validation data

2154 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2016

TABLE VI
TRAINING AND EVALUATION SPEED OF F-RNNLMS TRAINED WITH

VARIANCE REGULARISATION ON DEV04

Model Train Train Train time Test
type crit speed(w/s) (hours) speed(w/s)

C-RNN CE 0.37 k 202.1 5.9 k

F-RNN CE 10.1 k 7.4 0.14 k
VR 10.1 k 7.4 7.9 k

C-RNNLMs were trained on CPU and F-RNNLMs on GPU.
Both were evaluated on CPU.

Fig. 7. Variance of the output layer log-normalisation term on validation data
at different epochs during NCE based RNNLM training.

TABLE VII
PERPLEXITY AND WER PERFORMANCE, TRAINING AND EVALUATION SPEED OF

NCE TRAINED F-RNNLMS ON DEV04

Model type Train crit Train speed(w/s) Train time(hr) Test speed(w/s) dev04

PPL WER

C-RNN CE 0.37 k 202.1 5.9 K 46.5 15.32

F-RNN CE 10.1 k 7.4 0.14 k 46.3 15.22
VR 10.1 k 7.4 7.9 k 46.6 15.28

NCE 19.7 k 3.8 7.9 k 46.8 15.37

C-RNNLMs trained on CPU and F-RNNLMs on GPU. Both evaluated on CPU.

set. The variance of the normalisation term is slightly increased
from 0.035 to 0.06 from the beginning to the fourth epoch, then
gradually reduced to 0.043 at the last epoch.

The WER and PPL performance of an NCE trained RNNLM
are shown in Table VII. 12 epochs were required for both the
conventional CE and NCE based training to converge. As dis-
cussed in Section III-C, the log normalisation term ln Z in Equa-
tion (13) was fixed as 9. The perplexity scores in Table VII were
obtained by explicitly computing the output layer normalisation
term. During N-best rescoring, normalized RNNLM probabili-
ties were used for the CE trained RNNLM baseline, while unnor-
malized probabilities were used for the NCE trained RNNLM.
As expected, when unnormalized probabilities were used by the
CE trained RNNLM, a large degradation in performance was
found. As is shown in Table VII, the NCE trained RNNLM
gave slightly worse performance to the CE trained baseline.

TABLE VIII
TRAINING SPEED AGAINST THE SIZE OF F-RNNLM OUTPUT LAYER

#Output Train speed (w/s)

layer nodes CE NCE

20 k 10.1k
25 k 9.1 k 19.7 k
30 k 8.0 k

TABLE IX
TRAINING SPEED, PERPLEXITY AND WER PERFORMANCE OF F-RNNLMS ON

DEV04 USING PIPELINED CE TRAINING

Model type Train speed(w/s) dev04

GPU PPL WER

C-RNN – 0.37 k 46.5 15.32

F-RNN 1 × TITAN 10.1 k 46.3 15.22
1 × K20m 6.9 k 46.3 15.22
2 × K20m 11.0 k 46.3 15.23

At the same time, the training speed was doubled. This is ex-
pected as the time consumed on output layer is approximately
half of the total training time required for conventional CE
training.

Similarly a large testing time speed up of 56 times over the
CE trained RNNLM on CPUs was also obtained, as is shown
in Table VII. This improvement is comparable to the speed up
obtained using VR based RNNLM training previously shown
in Table VI. As the computation of the normalisation term is no
longer necessary for NCE trained RNNLMs, the computational
cost incurred at the output layer can be significantly reduced.
The statistical significance test was also carried out for various
training criteria. It reveals that the WER performance differ-
ence between CE and VR is insignificant, while the difference
between CE and NCE is significant.

As expected, the NCE training speed is also largely invari-
ant to the size of the output layer, thus improves the scala-
bility of RNNLM training when a very large output vocab-
ulary is used. This highly useful feature is clearly shown in
Table VIII, where CE training speed is decreased rapidly when
the output layer size increases. In contrast, the NCE training
speed remains constant against different output layer vocabulary
sizes.

4) Experiment on Dual GPU Pipelined Training: In this sec-
tion, the performance of a dual GPU based pipelined F-RNNLM
training algorithm is evaluated. In the previous experiments, a
single NVidia GeForce GTX TITAN GPU (designed for a work-
station) was used. For the pipelined training experiments, two
slightly slower NVidia Tesla K20m GPUs housed in the same
server were used. Table IX shows the training speed, perplexity
and WER results of pipelined CE training for F-RNNLMs. As
is shown in the table, Pipelined training gave a speed up of a
factor of 1.6 times and performance comparable to a single GPU
based training.

CHEN et al.: EFFICIENT TRAINING AND EVALUATION OF RNNLMs FOR ASR 2155

TABLE X
PERPLEXITY PERFORMANCE OF RNNLMS ON GOOGLE’S ONE BILLION (FOR

ASR (PROVIDED BY CANTAB RESEARCH) CORPUS) WORD CORPUS

LMs Train crit Train speed(w/s) PPL

+NG5

NG5 – – – 83.7

+F-RNN CE 6.7 k 104.4 65.8
NCE 11.3 k 107.3 66.0

B. Google’s One Billion Word Experiment

A new benchmark corpus was released by Google for mea-
suring performance of statistical LMs [54]. Two categories of
text normalisation are provided. One is for machine translation
(StatMT) and the other is for ASR (by Cantab Research).5 The
later was used to further evaluate the performance and scalability
of NCE based RNNLM training in this experiment for training
RNNLMs on large corpus. The former will be used to build LM
in the next experiment. A total of 800 million words were used
in LM training. A test set of 160 k words (obtained from the
first split from held-out data) was used for perplexity evalua-
tion. A modified KN smoothed 5-gram LM was trained using
the SRILM toolkit [56] with zero cut-offs and no pruning. In
order to reduce the computational cost in training, an input layer
vocabulary of 60 k most frequent words and a 20 k word out-
put layer shortlist were used. RNNLMs with 1024 hidden layer
nodes were either CE or NCE trained on a GPU using a bunch
size of 128. The other training configurations were the same as
the experiments presented in Section VI-A3. A total of 10 epochs
were required to reach convergence for both CE and NCE based
training. The perplexity performance of these two RNNLMs are
shown in Table X. Consistent with the trend found in Table VII,
the CE and NCE trained RNNLMs gave comparable perplex-
ity when interpolated with the 5-gram LM. A large perplexity
reduction of 21% relative over the 5-gram LM was obtained.

In order to further investigate the scalability of NCE based
RNNLM training, an additional set of experiments comparable
to those presented in Table X were conducted using a much
larger, full output layer vocabulary of 793 k words as used in
previous research [52]. It is worth mentioning that the corpus
used in this experiment is for machine translation, which is dif-
ferent to the corpus used for ASR provided by Cantab Research
in previous experiment. Due to the large size of such output
layer vocabulary, the speed of standard CE training of a full out-
put layer based RNNLM is as slow as 200 words per second. It
is therefore computationally infeasible in practice to train such
a baseline RNNLM. The training speed and perplexity score of
a NCE trained RNNLM with a 793 k vocabulary are presented
in Table XI, together with the baseline 5-gram LM’s perplexity
performance. A total of 1024 hidden nodes and a bunch size
of 128 were used. The stand alone NCE trained RNNLM gave

5All sources are available in https://code.google.com/p/1-billion-word-lang-
uage-modeling-benchmark/. The machine translation normalized version of this
data was previously used in [54] for RNNLM training.

TABLE XI
PERPLEXITY PERFORMANCE OF RNNLMS ON GOOGLE’S ONE BILLION WORD

CORPUS USING 793 K VOCABULARY

LMs Train crit Train speed(w/s) Test speed(w/s) PPL

+NG5

NG5 – – – 70.9 –
F-RNN NCE 6.5 k 37.1 77.3 52.6

The train is run on GPU and test is on CPU

a perplexity score of 77.3. This was further reduced to 52.6
after an interpolation with the 5-gram LM.6 Note that in order
to ensure stable convergence during NCE training, additional
gradient clipping step was also applied. In combination with
drawing noise samples over a much larger output layer, this ad-
ditional operation led to only a moderate decrease in the training
speed from 11.3 k to 6.5 k words per second, when compared
with the NCE trained 20 k vocabulary RNNLM in Table X. The
relative increase in training time is much lower than that of the
output layer vocabulary size, by approximately 40 times.

VII. CONCLUSION

RNNLMs are becoming increasingly important for a range of
speech and language processing applications. Several new ap-
proaches are presented in this paper to improve both the training
and evaluation efficiency for RNNLMs. These include a modi-
fied F-RNNLM architecture with a non-class based, full output
layer structure; a novel spliced sentence bunch mode paral-
lelization of F-RNNLM training on GPU; VR and NCE based
training to specifically reduce the computation associated with
the RNNLM output layer softmax normalisation term; and a
pipelined training algorithm using multiple GPUs to further im-
prove the training speed. The training time of F-RNNLMs is
reduced by up to a factor of 53 on a single GPU over the stan-
dard CPU based RNNLM toolkit on a large vocabulary CTS
recognition task. A 56 times speed up in test time evaluation on
a CPU was obtained over the baseline F-RNNLMs. A further
1.6 times increase of training speed was achieved using
pipelined training on 2 GPUs. Improved scalability to larger data
sets was also obtained using NCE based RNNLM training. The
code and related resources for RNNLM training can be down-
loaded from http://mi.eng.cam.ac.uk/projects/cued-rnnlm/.

REFERENCES

[1] X. Chen, Y. Wang, X. Liu, M. Gales, and P. C. Woodland, “Efficient train-
ing of recurrent neural network language models using spliced sentence
bunch,” in Proc. ISCA Interspeech, 2014, pp. 641–645.

[2] X. Chen, X. Liu, M. Gales, and P. C. Woodland, “Improving the training
and evaluation efficiency of recurrent neural network language models,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2015, pp. 5401–
5405.

[3] X. Chen, X. Liu, M. Gales, and P. C. Woodland, “Recurrent neural net-
work language model training with noise contrastive estimation for speech
recognition,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2015, pp. 5411–5415.

6The log file for perplexity computation is also available in
http://mi.eng.cam.ac.uk/projects/cued-rnnlm/ppl.h1024.log

https://code.google.com/p/1-billion-word-language-modeling-benchmark/
https://code.google.com/p/1-billion-word-language-modeling-benchmark/
http://mi.eng.cam.ac.uk/projects/cued-rnnlm/
http://mi.eng.cam.ac.uk/projects/cued-rnnlm/ppl.h1024.log

2156 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2016

[4] X. Chen, X. Liu, M. Gales, and P. Woodland, “CUED-RNNLM an open-
source toolkit for efficient training and evaluation of recurrent neural
network language models,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2015, pp. 6000–6004.

[5] Y. Bengiom, R. Ducharme, P. Vincent, and C. Jauvin, “A neural prob-
abilistic language model,” J. Mach. Learn. Res., vol. 3, pp. 1137–1155,
2003.

[6] H. Schwenk, “Continuous space language models,” Comput. Speech
Lang., vol. 21, no. 3, pp. 492–518, 2007.

[7] J. Park, X. Liu, M. J. F. Gales, and P. C. Woodland, “Improved neural
network based language modelling and adaptation,” in Proc. ISCA Inter-
speech, 2010, pp. 1041–1044.

[8] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur, “Re-
current neural network based language model.” in Proc. ISCA Interspeech,
2010, pp. 1045–1048.

[9] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural networks for
language modeling,” in Proc. ISCA Interspeech, 2012, pp. 194–197.

[10] H.-S. Le, I. Oparin, A. Allauzen, J. Gauvain, and F. Yvon, “Structured
output layer neural network language models for speech recognition,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 1, pp. 197–206,
Jan. 2013.

[11] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur,
“Extensions of recurrent neural network language model,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2011, pp. 5528–5531.

[12] A. Deoras, T. Mikolov, S. Kombrink, M. Karafiát, and S. Khudanpur,
“Variational approximation of long-span language models for LVCSR,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2011, pp. 5532–
5535.

[13] G. Lecorvé and P. Motlicek, “Conversion of recurrent neural network
language models to weighted finite state transducers for automatic speech
recognition,” Idiap, Martigny, Switzerland, Tech. Rep. Idiap-RR-21-2012,
2012.

[14] A. Deoras, T. Mikolov, S. Kombrink, and K. Church, “Approximate
inference: A sampling based modeling technique to capture complex
dependencies in a language model,” Speech Commun., vol. 55, no. 1,
pp. 162–177, 2013.

[15] M. Sundermeyer, I. Oparin, J.-L. Gauvain, B. Freiberg, R. Schluter, and
H. Ney, “Comparison of feedforward and recurrent neural network lan-
guage models,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Vancouver, BC, Canada, May 2013, pp. 8430–8434.

[16] Y. Si, T. Li, J. Pan, and Y. Yan, “Prefix tree based n-best list re-scoring
for recurrent neural netowrk language model used in speech recognition
system.” in Proc. ISCA Interspeech, 2013, pp. 3419–3423.

[17] X. Liu, Y. Wang, X. Chen, M. Gales, and P. C. Woodland, “Efficient lattice
rescoring using recurrent neural network language models,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 4908–4912.

[18] Z. Huang, G. Zweig, and B. Dumoulin, “Cache based recurrent neural
network language model inference for first pass speech recognition,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 6354–
6358.

[19] T. Hori, Y. Kubo, and A. Nakamura, “Real-time one-pass decoding with
recurrent neural network language model for speech recognition,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 6364–6368.

[20] W. Williams, N. Prasad, D. Mrva, T. Ash, and T. Robinson, “Scaling recur-
rent neural network language models,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2015, pp. 5391–5395.

[21] W. De Mulder, S. Bethard, and M.-F. Moens, “A survey on the application
of recurrent neural networks to statistical language modeling,” Comput.
Speech and Lang., vol. 30, no. 1, pp. 61–98, 2015.

[22] M. Sundermeyer, R. Schlüter, and H. Ney, “From feedforward to recurrent
LSTM neural networks for language modeling,” IEEE/ACM Trans. Audio,
Speech Lang. Process., vol. 23, no. 3, pp. 517–529, Mar. 2015.

[23] X. Liu, X. Chen, M. Gales, and P. C. Woodland, “Paraphrastic recur-
rent neural network language models,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2015, pp. 5406–5410.

[24] X. Chen et al., “Recurrent neural network language model adaptation
for multigenre broadcast speech recognition,” in Proc. ISCA Interspeech,
2015, pp. 6151–6155.

[25] X. Liu, F. Flego, L. Wang, C. Zhang, M. Gales, and P. C. Woodland, “The
Cambridge University 2014 BOLT conversational telephone mandarin
chinese LVCSR system for speech translation,” in Proc. ISCA Interspeech,
2015, pp. 3145–3149.

[26] K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu, “Recurrent neural
networks for language understanding,” in Proc. ISCA Interspeech, 2013,
pp. 2524–2528.

[27] G. Mesnil, X. He, L. Deng, and Y. Bengio, “Investigation of recurrent-
neural-network architectures and learning methods for spoken language
understanding,” in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2013,
pp. 3771–3775.

[28] M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint language and transla-
tion modeling with recurrent neural networks,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2013, pp. 1044–1054.

[29] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation mod-
els,” in Proc. Conf. Empirical Methods Natural Lang. Process., 2013,
pp. 1700–1709.

[30] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and J. Makhoul, “Fast
and robust neural network joint models for statistical machine translation,”
in Proc. Assoc. Comput. Linguistics, 2014, pp. 1370–1380.

[31] A. Hannun et al., “Deep speech: Scaling up end-to-end speech recogni-
tion,” 2014, arXiv:1412.5567.

[32] D. Yu et al., “An introduction to computational networks and the compu-
tational network toolkit,” Microsoft Research, Redmond, WA, USA, Tech.
Rep. MSR, 2014. [Online]. Available: http://codebox/cntk

[33] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[34] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide, “Pipelined back-
propagation for context-dependent deep neural networks,” in Proc. Annu.
Conf. Int. Speech Commun. Assoc., 2012, pp. 26–29.

[35] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network lan-
guage model,” in Proc. Int. Workshop Artif. Intell. Stat., 2005, pp. 246–252.

[36] Y. Shi, M.-Y. Hwang, K. Yao, and M. Larson, “Speed up of recurrent
neural network language models with sentence independent subsampling
stochastic gradient descent,” in Proc. Interspeech, 2013, pp. 1203–1207.

[37] Z. Huang, G. Zweig, M. Levit, B. Dumoulin, B. Oguz, and S. Chang,
“Accelerating recurrent neural network training via two stage classes and
parallelization,” in Proc. IEEE Workshop Automat. Speech Recog. Under-
standing, 2013, pp. 326–331.

[38] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using
context-dependent deep neural networks,” in Proc. Interspeech, 2011,
pp. 437–440.

[39] G. Zweig and K. Makarychev, “Speed regularization and optimality in
word classing,” in Proc. IEEE Int. Conf. Spoken Lang. Process., 2013,
pp. 8237–8241.

[40] H.-K. Kuo, E. Arisoy, A. Emami, and P. Vozila, “Large scale hierarchical
neural network language models,” in Proc. Interspeech, 2012, pp. 1081–
1084.

[41] Y. Shi, W.-Q. Zhang, M. Cai, and J. Liu, “Efficient one-pass decoding
with NNLM for speech recognition,” Signal Process. Lett., vol. 21, no. 4,
pp. 377–381, 2014.

[42] Y. Shi, W.-Q. Zhang, M. Cai, and J. Liu, “Variance regularization of
RNNLM for speech recognition,” in Proc. IEEE Int. Conf. Spoken Lang.
Process., 2014, pp. 4893–4897.

[43] A. Sethy, S. Chen, E. Arisoy, and B. Ramabhadran, “Unnormalized ex-
ponential and neural network language models,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2015, pp. 5416–5420.

[44] M. U. Gutmann and A. Hyvärinen, “Noise-contrastive estimation of unnor-
malized statistical models, with applications to natural image statistics,”
J. Mach. Learn. Res., vol. 13, no. 1, pp. 307–361, 2012.

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Represen-
tations by Back-Propagating Errors. Cambridge, MA, USA: MIT Press,
1988.

[46] A. Emami and L. Mangu, “Empirical study of neural network language
models for Arabic speech recognition,” in Proc. IEEE Workshop Automat.
Speech Recog. Understanding, 2007, pp. 147–152.

[47] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cernocky, “Recur-
rent neural network language modeling toolkit,” in Proc. IEEE Automat.
Speech Recog. Understanding Workshop, 2011, pp. 1–4.

[48] A. Mnih and Y. W. Teh, “A fast and simple algorithm for training neural
probabilistic language models,” in Proc. 29th Int. Conf. Mach. Learn.,
2012, pp. 1751–1758.

[49] A. Vaswani, Y. Zhao, V. Fossum, and D. Chiang, “Decoding with large-
scale neural language models improves translation,” in Proc. Conf. Em-
pirical Methods Natural Lang. Process., 2013, pp. 1387–1392.

[50] H. Schwenk, “Efficient training of large neural networks for language
modelling,” in Proc. IEEE Int. Joint Conf. Neural Netw., 2002, pp. 3059–
3064.

[51] Y. Shi, W.-Q. Zhang, M. Cai, and J. Liu, “Temporal kernel neural network
language modeling,” in Proc. IEEE Int. Conf. Spoken Lang. Process.,
2013, pp. 8247–8251.

CHEN et al.: EFFICIENT TRAINING AND EVALUATION OF RNNLMs FOR ASR 2157

[52] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “On parallelizability of
stochastic gradient descent for speech DNNs,” in Proc. IEEE Int. Conf.
Spoken Lang. Process., 2014, pp. 235–239.

[53] G. Evermann et al., “Training LVCSR systems on thousands of hours of
data,” in Proc. Int. Conf. Spoken Lang. Process., 2005, vol. 1, pp. 209–212.

[54] C. Chelba et al., “One billion word benchmark for measuring progress in
statistical language modeling,” Google, Mountain View, CA, USA, Tech.
Rep., 2013. [Online]. Available: http://arxiv.org/abs/1312.3005

[55] I. Bulyko, M. Ostendorf, and A. Stolcke, “Getting more mileage from web
text sources for conversational speech language modeling using class-
dependent mixtures,” in Proc. North American Chapter Assoc. Comput.
Linguistics, Human Language Technol., 2003, pp. 7–9.

[56] A. Stolcke et al.,“SRILM-an extensible language modeling toolkit,” in
Proc. Int. Conf. Spoken Lang. Process., 2002, pp. 901–904.

Xie Chen (M’12) received the Bachelor’s degree
from Xiamen University, Xiamen, China, in 2009,
and the M.Phil. degree in electronic engineering
from Tsinghua University, Beijing, China, in 2012.
He is currently working toward the Ph.D. degree
on automatic speech recognition supervised by Prof.
M. Galesat the Machine Intelligence Laboratory. He
joined the Cambridge University Engineering De-
partment in 2012. His current research interests in-
clude large vocabulary continuous speech recogni-
tion, meeting transcription, and language modeling.

He is a Student Member of ISCA.

Xunying Liu (M’06) received the Bachelor’s de-
gree from Shanghai Jiao Tong University, Shanghai,
China, the M.Phil. degree in computer speech and
language processing, and the Ph.D. degree in speech
recognition, both from the University of Cambridge,
Cambridge, U.K. He has been a Senior Research As-
sociate at the Machine Intelligence Laboratory, Cam-
bridge University Engineering Department, and from
2016 an Associate Professor in the Department of
Systems Engineering and Engineering Management,
the Chinese University of Hong Kong, Shatin, Hong

Kong. He received the best paper award at the ISCA Interspeech 2010. His cur-
rent research interests include large vocabulary continuous speech recognition,
language modelling, noise robust speech recognition, speech synthesis, speech
and language processing. He is a Member of ISCA.

Yongqiang Wang (M’08) received the B.Eng. de-
gree in electronic engineering from the University of
Science and Technology of China, Hefei, China, the
M.Phil. degree in computer science from the Uni-
versity of Hong Kong, Pok Fu Lam, Hong Kong,
and the Ph.D. degree in engineering from the Univer-
sity of Cambridge, Cambridge, U.K. He is currently
working as a Senior Speech Scientist in Microsoft,
Redmond, WA, USA. His research interest in-
cludes robust speech recognition and large-scale deep
learning.

Mark J. F. Gales (F’11) received the B.A. degree in
electrical and information sciences from the Univer-
sity of Cambridge, Cambridge, U.K., in 1988. Fol-
lowing graduation he worked as a Consultant at Roke
Manor Research Ltd. In 1991, he worked as a Re-
search Associate in the Speech Vision and Robotics
group in the Engineering Department, Cambridge
University. In 1995, he completed his doctoral thesis:
Model-Based Techniques for Robust Speech Recog-
nition supervised by Prof. S. Young. From 1995 to
1997, he was a Research Fellow at Emmanuel Col-

lege Cambridge. He was then a Research Staff Member in the Speech group
at the IBM T.J. Watson Research Center until 1999 when he returned to Cam-
bridge University, Engineering Department as a University Lecturer. He was
appointed a Reader in Information Engineering in 2004. He is currently a Pro-
fessor of Information Engineering and a College Lecturer and Official Fellow
of Emmanuel College. He is a Member of the Speech and Language Processing
Technical Committee (2015–2017, previously a member from 2001–2004). He
was an Associate Editor for IEEE SIGNAL PROCESSING LETTERS from 2008
to 2011 and IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PRO-
CESSINGfrom 2009 to 2013. He is currently on the Editorial Board of Computer
Speech and Language. He has been awarded a number of paper awards, includ-
ing the 1997 IEEE Young Author Paper Award for his paper on Parallel Model
Combination and the 2002 IEEE Paper Award for his paper on Semi-Tied Co-
variance Matrices.

Philip C. Woodland (F’13) is a Professor of Infor-
mation Engineering at the University of Cambridge
Engineering Department, where he leads the Speech
Group, and a Professorial Fellow of Peterhouse. He
has published almost 200 papers in speech technol-
ogy, including the most cited paper in Computer
Speech and Language. He developed techniques for
speaker adaptation and discriminative training that
have now become standard in speech recognition.
His research team developed speech recognition sys-
tems which have frequently been the most accurate

in international research evaluations organised by the U.S. Government. He is
well known as one of the original coauthors of the widely used HTK toolkit and
has continued to play a major role in its development. He has been a Member
of the editorial board of Computer Speech and Language (1994–2009), and a
current editorial board member of Speech Communication. One of his current
major interests is developing flexible systems that can adapt to a wide range of
speakers, acoustic conditions, and speaking styles with relatively limited train-
ing resources. His current work also includes techniques for improved language
modelling and confidence estimation. An increasing trend in his work is the use
of deep neural networks for both acoustic models and language models. He is a
Fellow of ISCA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

