
Newcastle University ePrints - eprint.ncl.ac.uk 

Al-Tmeme A, Woo WL, Dlay SS, Gao B. Underdetermined Convolutive Source 

Separation using GEM-MU with Variational Approximated Optimum Model 

Order NMF2D. IEEE/ACM Transactions on Audio, Speech and Language 

Processing 2016 

Copyright: 

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including reprinting/republishing this material for advertising 

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works. 

Date deposited: 

19/10/2016 

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=228792
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=228792
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=228792


1 

 

Abstract — An unsupervised machine learning algorithm 

based on nonnegative matrix factor 2D deconvolution (NMF2D) 

with approximated optimum model order is proposed. The 

proposed algorithm adapted under the hybrid framework that 

combines the generalized EM algorithm with multiplicative 

update (GEM-MU). As the number of parameters in the 

NMF2D grows exponentially as the number of frequency basis 

increases linearly, the issues of model order fitness, initialization 

and parameters estimation become ever more critical. This 

paper proposes a variational Bayesian method to optimize the 

number of components in the NMF2D by using the 

Gamma-Exponential process as the observation-latent model. In 

addition, it is shown that the proposed Gamma-Exponential 

process can be used to initialize the NMF2D parameters. Finally, 

the paper investigates the issue and advantages of using different 

window length. Experimental results for the synthetic 

convolutive mixtures and live recordings verify the competence 

of the proposed algorithm.  

 

Index Terms — Audio source separation, variational 

Bayesian, nonnegative matrix factorization, optimum model 

order selection, generalized expectation-maximization algorithm 

I. INTRODUCTION 

NONNEGATIVE matrix factorization (NMF) [1, 2] is an 

important machine learning method in many scientific fields 

[3-10]. One such field that uses NMF extensively is audio 

source separation. Audio source separation means estimating 

the sources from their mixtures and if there is no information 

about the sources, then the separation will be achieved blindly 

and the technique will be called blind audio source separation 

(BSS) [11-13], or it can be achieved in supervised way using 

the deep neural network (DNN) [14-16] that models the 

nonlinear relationship between the trained parameters of the 

targeted speech signal and the mixture signal. Until now audio 

source separation is an open problem as it does not have the 

same ability of humans to listen and distinguish between 

different sources. 
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Audio source separation can be classified according to (i) 

Input representation: It is related to the time-frequency (TF) 

representation of the signal, whether it is linear; such as the 

short time Fourier transform (STFT) [17-20], or quadratic; 

such as the equivalent rectangular bandwidth (ERB) scale 

[21]. (ii) Problem dimensionality: It is related to the number 

of channels and number of sources together; whether the 

sources are less, equal or greater than the number of channels, 

and whether the channel is single, or not. Let J be the number 

of sources and I be the number of channels, then, the 

following cases can be considered: If I=1; then it is a single 

channel case [22-25]. If 1<I<J; then it is the underdetermined 

[17-21]. If I≥J; then it is the Over-determined case [26]. (iii) 

Mixture: It is related to the type of mixtures; whether it is 

linear [17-21] or non-linear [27], and the mixing operation; 

whether it is convolutive [17, 19-21] or instantaneous [28]. 

The convolutive case is more realistic than the instantaneous 

one because it considers the reverberation of the channel. 

In addition to the above classification, nonnegative matrix 

factor 2D deconvolution (NMF2D) [29-33], can be appended 

to the above classification. These methods consider a single 

channel with linear instantaneous mixture. The problem of 

NMF2D is that it uses single frequency basis (single 

component) for each source that is convolved in both time and 

frequency by a time–pitched weighted matrix [29-33]. It is 

more suitable for simple musical instruments than complex 

sound e.g. speech. To overcome this problem, multiple 

frequency basis (multiple components) are needed; in other 

words, NMF2D with multiple components where each 

component is similarly convolved in both time and frequency 

by a different time-pitched weighted matrix. Consequently, in 

this paper, a NMF2D with multiple components will be used. 

Most methods on BSS that uses the NMF2D are largely 

confined to instantaneous mixture. Hence there seems to be a 

gap to the applicability of NMF2D for convolutive mixture. 

This is not surprising due to the inherent inseparability 

between the convolutive channel and the convolutive factor 

used in NMF2D. This paper is an attempt to rigorously 

overcome this limitation. This paper will also tackle a more 

challenging case of underdetermined convolutive mixture. 

The proposed NMF2D with adaptive sparsity will be 

developed within the framework of the GEM-MU algorithm 

[34]. The sparsity is the penalty on the activation matrix that 

ensures only a few units (out of a large population) will be 

active at the same time [35]. Furthermore, we control the 

factors that effect on the NMF2D including the cost function, 

initialization, windows length, and convolutive parameters. 

Itakura-Saito divergence is considered due its advantage of 

scale invariance properties [36]. This is important because 

Underdetermined Convolutive Source Separation 

using GEM-MU with Variational Approximated 

Optimum Model Order NMF2D 

Ahmed Al-Tmeme, W.L. Woo
1
, Senior Member, IEEE, S.S. Dlay and B. Gao 



2 

 

source separation requires us to deal with the low and high 

energy components equally. Compared with the Least Square 

(LS) distance and Kullback-Leibler (KL) divergence, both 

methods favor the high energy components but suppress the 

low energy ones. Furthermore, as each musical instrument has 

its own characteristics in terms of the spectral and temporal 

features e.g., drum instrument has a high pitch with low 

temporal note while the opposite is true for the piano; then 

different windows length will be considered in the separation. 

To understand the effects of the convolutive parameters on the 

separation performance, we briefly describe how the NMF2D 

works. Let 𝐶(𝑛, 𝑚)  be a data matrix of size 𝑁 × 𝑀  with 

nonnegative entries, then 𝐶(𝑛, 𝑚) is approximated with two 

nonnegative tensors 𝐴(𝑛, 𝑘, 𝜏)  and 𝐵(𝑘, 𝑚, 𝜙)as 𝐶(𝑛, 𝑚) ≈

∑ ∑ ∑ 𝐴(𝑛 − 𝜙, 𝑘, 𝜏)𝐵(𝑘, 𝑚 − 𝜏, 𝜙)
𝜙𝑚𝑎𝑥−1
𝜙=0

𝜏𝑚𝑎𝑥−1
𝜏=0

𝐾
𝑘=0 . From 

the auditory point of view 𝐴(𝑛, 𝑘, 𝜏) represents the spectral 

basis and 𝐵(𝑘, 𝑚, 𝜙) represents the temporal code for each 

spectral basis, the terms K, 𝜏𝑚𝑎𝑥  and 𝜙𝑚𝑎𝑥 are the number of 

components, and the number of the convolutive parameters 𝜏 

and 𝜙, respectively. If 𝜏𝑚𝑎𝑥  and 𝜙𝑚𝑎𝑥 are chosen more than 

the actual requirement, then they will break the structure of 

the audio signal, i.e., 𝐴(𝑛, 𝑘, 𝜏) and 𝐵(𝑘, 𝑚, 𝜙) will be shifted 

more than the actual requirement. This will generate 

undesirable spurious artefacts to the audio signal and 

subsequently leads to interference. Therefore, in this paper a 

novel method will be proposed to estimate the convolutive 

parameter. Another dimension for consideration is 

initialization which forms an integral part of the NMF and 

NMF2D. Good initialization of the model parameters is 

required for faster convergence to the desired solution. 

The novelty of this paper can be summarized as follows: 

Firstly, a variational Bayesian estimation method using the 

Gamma-Exponential observation process is proposed to 

estimate the model order of NMF2D i.e. the optimal number 

of components, 𝐾 and the number of convolutive parameters 

(𝜏𝑚𝑎𝑥 , 𝜙𝑚𝑎𝑥). Secondly, we propose an initialization scheme 

for the spectral and temporal parameters in NMF2D. To the 

best of our knowledge, this is the first research paper that 

investigates model order estimation and initialization of 

parameters in NMF2D. Thirdly, the NMF2D with adaptive 

sparsity will be developed using the GEM-MU algorithm for 

faster convergence and ensuring the non-negativity of the 

parameters is preserved. Finally, most current research on 

NMF2D has been limited to instantaneous mixture [29-33], 

the present work fills the missing gap by developing the 

NMF2D with approximated optimum model order for 

underdetermined convolutive mixture.  

The paper is organized as follows: The details of the source 

model and the development of GEM-MU algorithm to work 

with NMF2D and adaptive sparsity will be presented in 

Section II. Section III presents the proposed 

Gamma-Exponential process for estimating the numbers of 

components and convolutive parameters, and the initialization 

of the NMF2D. Experimental results will be presented in 

Section IV. The effects of the sparsity, initialization, and 

model order selection on the proposed separation algorithm 

will be shown in Section V. Finally, conclusions are drawn in 

Section VI. 

II. PROPOSED GEM-MU BASED ADAPTIVE SPARSE NMF2D 

ALGORITHM 

Consider the underdetermined channel with convolutive 

mixture, namely:  

�̃�𝑖(𝑡) = ∑ ∑ �̃�𝑖𝑗

𝐿−1

𝜏=0

𝐽

𝑗=1

(𝜏)�̃�𝑗(𝑡 − 𝜏) + �̃�𝑖(𝑡).                 (1) 

where �̃�𝑖(𝑡)(𝑖 = 1, … , 𝐼, 𝑡 = 1, … , 𝑇) is the sampled mixture 

signal and 𝐼  is number of channels, �̃�𝑗  (𝑗 = 1, … , 𝐽)  is the 

source signal and 𝐽 is the number of sources, �̃�𝑖𝑗(𝜏) is the 

finite-impulse response of some (causal) filter, and �̃�𝑖(𝑡) is 

some additive noise. By assuming that the mixing channel is 

time-invariant then the short-time Fourier transform (STFT) 

of (1) can be expressed as  

𝑥𝑖,𝑓𝑛 ≈ ∑ 𝑎𝑖𝑗,𝑓𝑠𝑗,𝑓𝑛 + 𝑏𝑖,𝑓𝑛

𝐽

𝑗=1

                      (2𝑎) 

and in matrix form 

𝑋𝑓 ≈ 𝐴𝑓𝑆𝑓 + 𝐵𝑓                                  (2𝑏) 

where 𝑋𝑓 = [𝑥𝑖,𝑓𝑛]
𝑓

∈ ℂ𝐼×𝑁 , 𝐴𝑓 = [𝑎𝑖𝑗,𝑓]
𝑓

∈ ℂ𝐼×𝐽 , 𝑆𝑓 =

[𝑠𝑗,𝑓𝑛]
𝑓

∈ ℂ𝐽×𝑁, and 𝐵𝑓 = [𝑏𝑖,𝑓𝑛]
𝑓

∈ ℂ𝐼×𝑁 and 𝑓 = 1, … , 𝐹 is 

the index of a frequency bin. As the NMF2D with multiple 

components will be considered as the spectral variance model 

in this paper instead of the NMF spectral model [36], then 

each source in the STFT can be expressed by  𝐾𝑗  

complex-valued latent components, i.e., 𝑠𝑗,𝑓𝑛 = ∑ 𝑐𝑘,𝑗,𝑓𝑛

𝐾𝑗

𝑘=1 , 

and can be modeled as realization of proper complex 

zero-mean variables: 

 𝑐𝑘,𝑗,𝑓𝑛~𝒩𝑐(0, 𝜎𝑘,𝑗,𝑓𝑛
2 ) 

= 𝒩𝑐 (0, ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

𝜙𝑚𝑎𝑥,𝑘−1

𝜙=0

𝜏𝑚𝑎𝑥,𝑘−1

𝜏=0

)               (3) 

where 𝒩𝑐(𝜇, Σ) is the proper complex Gaussian distribution 

[37], 𝑤𝑓,𝑘
𝜏,𝑗

 represents the spectral basis of the j
th

 source, and 

ℎ𝑘,𝑛
𝜙,𝑗

 represents the temporal code for each spectral basis 

element of the j
th

 source, for 𝑓 = 1, … , 𝐹, 𝑛 = 1, … , 𝑁, 𝑗 =
1, … , 𝐽, and 𝑘 = 1, . . .  𝐾𝑗 . The terms 𝜏𝑚𝑎𝑥,𝑘  and 𝜙𝑚𝑎𝑥,𝑘  refer 

to the number of temporal and frequency shifts of the 𝑘-th 

component in the NMF2D model. The noise 𝑏𝑖,𝑓𝑛 is assumed 

to be stationary and spatially uncorrelated, i.e. 

𝑏𝑖,𝑓𝑛~𝒩𝑐 (0, 𝜎𝑖,𝑓
2 

 
) ,    and    𝛴𝑏,𝑓 = 𝑑𝑖𝑎𝑔[𝜎𝑖,𝑓

2 ].            (4) 

In this work, the parameters to be estimated are 

𝐴𝑓 , 𝛴𝑏,𝑓 , 𝜦 , 𝐶 = {𝑐𝑘,𝑗,𝑓𝑛}, 𝑾 = {𝑤𝑓,𝑘
𝜏,𝑗

}, and 𝑯 = {ℎ𝑘,𝑛
𝜙,𝑗

}  

which are obtained via the posterior probability: 

       𝑃(𝐶, 𝑾 , 𝑯 |𝑋𝑓 , 𝐴𝑓 , 𝛴𝑏,𝑓 , 𝜦 ) 

=  
𝑃(𝑋𝑓|𝐶, 𝐴𝑓 , 𝛴𝑏)𝑃(𝐶|𝑾 , 𝑯 )𝑃(𝑾 , 𝑯 |𝜦)

𝑃(𝑋𝑓|𝐴𝑓 , 𝛴𝑏,𝑓)
.      (5) 

and their negative log-posterior probabilities are given by 

       −log 𝑃(𝐶, 𝑾 , 𝑯 |𝑋𝑓 , 𝐴𝑓 , 𝛴𝑏,𝑓 , 𝜦) 

    = −log 𝑃(𝑋𝑓|𝐶, 𝐴𝑓 , 𝛴𝑏,𝑓) − log 𝑃(𝐶|𝑾 , 𝑯 )                   

− log 𝑃(𝑾 , 𝑯 |𝜦) + 𝑐𝑜𝑛𝑠𝑡.                          (6) 

where 𝛬={𝜆𝑘,𝑛
𝜙,𝑗

} is a 4-dimensional tensor ℝ𝐾×𝑁×𝜙𝑚𝑎𝑥×𝐽 that 

contains the sparsity terms.  The sparsity is the penalty on the 



3 

 

activation matrix that ensures only a few units (out of a large 

population) will be active at the same time, which can be 

added as a constraint to the cost function [35].  
The GEM-MU combines both the expectation maximization 

(EM) algorithm and the multiplicative update (MU) algorithm 

[34]. The source power spectrogram posterior estimates 

( �̂�𝑗,𝑓𝑛)  (see (8)), the mixing parameters, and the noise 

covariance will be estimated in the E-step of the EM 

algorithm, while the parameters 𝑾  and 𝑯  will be estimated 

in the M-step of the EM algorithm by using the MU algorithm 

coupled with adaptive sparsity.  
 

A. E-Step: Conditional expectations of natural statistics 

The negative log-likelihood in the right hand side of (6) can be 

expressed as 

− log 𝑃(𝑋𝑓|𝐶, 𝐴𝑓 , 𝛴𝑏,𝑓) 

= ∑ (𝒙𝑓𝑛 − 𝐴𝑓𝒔𝑓𝑛)
𝐻

𝛴𝑏,𝑓
−1(𝒙𝑓𝑛 − 𝐴𝑓𝒔𝑓𝑛) + ∑ log  |𝛴𝑏,𝑓|𝑓𝑓𝑛   

= 𝑁 ∑ 𝑡𝑟{𝛴𝑏,𝑓
−1𝑅𝑋𝑋,𝑓}𝑓 − 𝑁 ∑ 𝑡𝑟{𝐴𝑓

𝐻𝛴𝑏,𝑓
−1𝑅𝑋𝑆,𝑓}𝑓   

−𝑁 ∑ 𝑡𝑟 {𝛴𝑏,𝑓
−1𝐴𝑓(𝑅𝑋𝑆,𝑓)

𝐻
}𝑓 + 𝑁 ∑ 𝑡𝑟{𝐴𝑓

𝐻𝛴𝑏,𝑓
−1𝐴𝑓𝑅𝑆𝑆,𝑓}𝑓  

+ ∑ log |𝛴𝑏,𝑓|𝑓                                                                      (7) 

where the superscript 𝐻 is the Hermitian transpose, 𝑅𝑋𝑋,𝑓 =
1

𝑁
∑ 𝒙𝑓𝑛𝒙𝑓𝑛

𝐻
𝑛 , 𝑅𝑆𝑆,𝑓 =

1

𝑁
∑ 𝒔𝑓𝑛𝒔𝑓𝑛

𝐻
𝑛 , 𝑅𝑋𝑆,𝑓 =

1

𝑁
∑  𝑛 𝒙𝑓𝑛𝒔𝑓𝑛

𝐻 .The 

source power spectrogram posterior estimates  is as follows:  

�̂�𝑗,𝑓𝑛 = �̂�𝑆𝑆,𝑓𝑛(𝑗, 𝑗)                             (8) 

where  

�̂�𝑆𝑆,𝑓𝑛 = 𝔼[𝒔𝑓𝑛
 ]𝔼[𝒔𝑓𝑛

𝐻 ] + �̂�𝑠,𝑓𝑛 = �̂�𝑓𝑛
 �̂�𝑓𝑛

𝐻 + �̂�𝑠,𝑓𝑛     (9) 

�̂�𝑓𝑛 = 𝛴𝑠,𝑓𝑛𝐴𝑓
𝐻𝛴𝑥,𝑓𝑛

−1 𝒙𝑓𝑛                                                 (10) 

�̂�𝑠,𝑓𝑛 = (𝐼𝐽 − 𝛴𝑠,𝑓𝑛𝐴𝑓
𝐻𝛴𝑥,𝑓𝑛

−1 𝐴𝑓)𝛴𝑠,𝑓𝑛                          (11) 

𝛴𝑋,𝑓𝑛 = 𝐴𝑓𝛴𝑠,𝑓𝑛𝐴𝑓
𝐻 + 𝛴𝑏,𝑓                                            (12) 

𝛴𝑠,𝑓𝑛 = 𝑑𝑖𝑎𝑔 ([∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗

𝑤𝑘,𝑛−𝜏
𝜙,𝑗

𝜙𝑚𝑎𝑥,𝑘−1

𝜙=0

𝜏𝑚𝑎𝑥,𝑘−1

𝜏=0

𝐾𝑗

𝑘=1

]

𝑗

)  (13) 

Detailed derivations of (9) - (13) follow immediately from the 

linear Gaussian process model [37]. 
 

B. M Step: Update of parameters  

To find 𝐴𝑓 𝑎𝑛𝑑 𝛴𝑏,𝑓, we set  

𝜕

𝜕𝐴𝑓

log 𝑃(𝐶, 𝑾 , 𝑯 |𝑋𝑓 , 𝐴𝑓 , 𝛴𝑏,𝑓 ) = 0                         (14) 

which leads to   
𝐴𝑓 = �̂�𝑋𝑆,𝑓�̂�𝑆𝑆,𝑓

−1 .                                                             (15) 

Similarly, 
𝜕

𝜕𝛴𝑏,𝑓
−1 log 𝑃(𝐶, 𝑾 , 𝑯 |𝑋𝑓 , 𝐴𝑓 , 𝛴𝑏,𝑓 ) = 0                         (16) 

which leads to 

𝛴𝑏,𝑓 = 𝑑𝑖𝑎𝑔(�̂�𝑋𝑋,𝑓 − �̂�𝑋𝑆,𝑓�̂�𝑆𝑆,𝑓
−1 �̂�𝑋𝑆,𝑓

𝐻 ).                        (17) 

where �̂�𝑋𝑆,𝑓 =
1

𝑁
∑  𝑛 𝒙𝑓𝑛𝐸[𝒔𝑓𝑛

𝐻 ] =
1

𝑁
∑  𝑛 𝒙𝑓𝑛�̂�𝑓𝑛

𝐻 , �̂�𝑆𝑆,𝑓 =
1

𝑁
∑  𝑛 �̂�𝑆𝑆,𝑓𝑛  and �̂�𝑋𝑋,𝑓 = 𝑅𝑋𝑋,𝑓 . As �̂�𝑗,𝑓𝑛  is estimated from 

the E-step, the second term in the right hand side of (6) can be 

written in term of �̂�𝑗,𝑓𝑛  and expressed with Itakura-Saito 

divergence as 

−log 𝑃(�̂�|𝑾 , 𝑯 ) = ∑ 𝐷𝐼𝑆 (�̂�𝑗,𝑓𝑛| ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

 

𝑘,𝜏,𝜙

)

𝑗,𝑓,𝑛

     (18) 

where �̂� = {�̂�𝑗,𝑓𝑛}
𝑗,𝑓𝑛

. The third term in the right hand side of 

(6) is the prior information on 𝑾  and 𝑯 . An improper prior 

is assumed for 𝑾 and factor-wise normalized to unit length 

i.e. 𝑝(𝑾) = ∏ 𝛿(‖𝑾𝑗‖
2

− 1)𝑗  where 𝑾𝑗 = {𝑤𝑓,𝑘
𝜏,𝑗

}  is the 

spectral basis that belongs to the 𝑗-th source. Each element of 

𝑯  has independent decay parameter 𝜆𝑘,𝑛
𝜙,𝑗

 with exponential 

distribution: 

      𝑝(𝑯|𝜦) = ∏ 𝑝(𝐻𝑘
𝑗
|𝛬𝑘

𝑗
)

𝑗,𝑘

= ∏ 𝑝(ℎ𝑘,𝑛
𝜙,𝑗

|𝜆𝑘,𝑛
𝜙,𝑗

)

𝑗,𝑘,𝑛,𝜙

  

= ∏ 𝜆𝑘,𝑛
𝜙,𝑗

𝑒𝑥𝑝(−𝜆𝑘,𝑛
𝜙,𝑗

ℎ𝑘,𝑛
𝜙,𝑗

)

𝑗,𝑘,𝑛,𝜙

                            (19) 

The negative log-likelihood for prior on 𝑯  is derived such as 

 − log 𝑝(𝑯|𝜦) = − log ( ∏ 𝜆𝑘,𝑛
𝜙,𝑗

𝑒𝑥𝑝(−𝜆𝑘,𝑛
𝜙,𝑗

ℎ𝑘,𝑛
𝜙,𝑗

)

𝑗,𝑘,𝑛,𝜙

)  

= ∑ (𝜆𝑘,𝑛
𝜙,𝑗

ℎ𝑘,𝑛
𝜙,𝑗

− log 𝜆𝑘,𝑛
𝜙,𝑗

)

𝑗,𝑘,𝑓,𝑛

                      (20) 

By adding (20) to IS divergence derived in (18), we obtain 
 

−log 𝑃(𝐶|𝑾 , 𝑯 ) − log 𝑃(𝑾 , 𝑯 |𝜦) 

= ∑ 𝐷𝐼𝑆 (�̂�𝑗,𝑓𝑛| ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

 

𝑘,𝜏,𝜙

) − ∑ log 𝛿 (‖𝑾𝑗‖
2

− 1)

𝑗𝑗,𝑓,𝑛

+  ∑ (𝜆𝑘,𝑛
𝜙,𝑗

ℎ𝑘,𝑛
𝜙,𝑗

− log𝜆𝑘,𝑛
𝜙,𝑗

)

𝑗,𝑘,𝑛,𝜙

 

= ∑ (
�̂�𝑗,𝑓𝑛

∑ (𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

)𝜏,𝜙

− log
�̂�𝑗,𝑓𝑛

∑ (𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

)𝜏,𝜙

− 1)

𝑗,𝑘,𝑓,𝑛

  

 

− ∑ log 𝛿 (‖𝑾𝑗‖
2

− 1)

𝑗

+ ∑ 𝜆𝑘,𝑛
𝜙,𝑗

ℎ𝑘,𝑛
𝜙,𝑗

−
𝑗,𝑘,𝑛,𝜙

∑ log𝜆𝑘,𝑛
𝜙,𝑗

𝑗,𝑘,𝑛,𝜙

.  (21) 

Let 

𝑣𝑗,𝑓𝑛  = ∑ ∑ ∑ 𝑤𝑓−𝜙,𝑘
𝜏,𝑗

  

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

   

∅𝜏𝑘

                           (22) 

then the derivatives of individual component for proposed 

model with respect to 𝑤𝑓,𝑘
𝜏,𝑗

 and ℎ𝑘,𝑛
𝜙,𝑗

 can be derived as: 

  
𝜕

𝜕𝑤
𝑓′,𝑘′
𝜏′,𝑗′ log 𝑃(𝐶, 𝑾 , 𝑯 |𝑋𝑓 , 𝐴𝑓 , 𝛴𝑏,𝑓 ) 

   = − ∑ �̂�𝑗′,𝑓′+𝜙,𝑛𝑣𝑗′,𝑓′+𝜙,𝑛
−2  ℎ

𝑘′,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

 + ∑ 𝑣𝑗′,𝑓′+𝜙,𝑛
−1 ℎ

𝑘′,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

 

  

(23) 

Similarly, 

 
𝜕

𝜕ℎ
𝑘′,𝑛′
𝜙′ ,𝑗′ log 𝑃(𝐶, 𝑾 , 𝑯 |𝑋𝑓 , 𝐴𝑓 , 𝛴𝑏,𝑓 ) 

  = − ∑ �̂�𝑗′,𝑓,𝑛′+𝜏𝑣𝑗′,𝑓,𝑛′+𝜏
−2  

𝑤
𝑓−𝜙′,𝑘′
𝜏,𝑗′

 

𝑓,𝜏

+ ∑ 𝑣𝑗′,𝑓,𝑛′+𝜏
−1 𝑤

𝑓−𝜙′,𝑘′
𝜏,𝑗′

 

𝑓,𝜏

 

 

       + 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′

                                                                                (24) 

For each individual component, the standard gradient descent  

method is applied with 𝑤𝑓′ ,𝑘′
𝜏′,𝑗′

← 𝑤
𝑓′ ,𝑘′
𝜏′ ,𝑗′

− 𝜂𝑤

𝜕𝐶𝐼𝑆

𝜕𝑤
𝑓′,𝑘′
𝜏′,𝑗′  and  

ℎ
𝑘′,𝑛′
𝜙′ ,𝑗′

← ℎ
𝑘′,𝑛′
𝜙′,𝑗′

− 𝜂ℎ

𝜕𝐶𝐼𝑆

𝜕ℎ
𝑘′,𝑛′
𝜙′,𝑗′  where  𝜂𝑤  and 𝜂ℎ  are the positive 

learning rate. Based on [2], the positive learning rate can be 

set as  𝜂𝑤 = 𝑤
𝑓′ ,𝑘′
𝜏′ ,𝑗′

∑ 𝑣𝑗′,𝑓′+𝜙,𝑛
−1 ℎ

𝑘′,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛⁄   and 𝜂ℎ =
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ℎ
𝑘′,𝑛′
𝜙′ ,𝑗′

(∑ 𝑣𝑗′,𝑓,𝑛′+𝜏
−1 𝑤

𝑓−𝜙′,𝑘′
𝜏,𝑗′

 

𝑓,𝜏

 

+ 𝜆
𝑘′,𝑛′
𝜙′,𝑗′

)⁄ . This gives the 

multiplicative update (MU) rules for 𝑤𝑓,𝑘

𝜏,𝑗
: 

𝑤
𝑓′,𝑘′
𝜏′,𝑗′

← 𝑤
𝑓′,𝑘′
𝜏′ ,𝑗′

(
∑ �̂�𝑗′,𝑓′+𝜙,𝑛𝑣𝑗′ ,𝑓′+𝜙,𝑛

−2 ℎ
𝑘′,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

∑ 𝑣𝑗′,𝑓′+𝜙,𝑛
−1 ℎ

𝑘′,𝑛−𝜏′
𝜙,𝑗′

 

𝜙,𝑛

)    (25) 

In order to satisfy the constraint 𝛿 (‖𝑾𝑗‖
2

− 1), each spectral 

dictionary is explicitly normalized to unity i.e. 𝑤𝑓,𝑘
𝜏,𝑗

=

𝑤𝑓,𝑘
𝜏,𝑗 √∑ (𝑤𝑓,𝑘

𝜏,𝑗
)

2

𝑓,𝜏,𝑘⁄ . Similarly, for ℎ𝑘,𝑛

𝜙,𝑗′

 we have 

ℎ
𝑘′,𝑛′
𝜙′ ,𝑗′

← ℎ
𝑘′,𝑛′
𝜙′ ,𝑗′

(
∑ �̂�𝑗′,𝑓,𝑛′+𝜏𝑣𝑗′,𝑓,𝑛′+𝜏

−2  
𝑤

𝑓−𝜙′,𝑘′
𝜏,𝑗′

 

𝑓,𝜏

∑ 𝑣𝑗′,𝑓,𝑛′+𝜏
−1 𝑤

𝑓−𝜙′,𝑘′
𝜏,𝑗′

 

𝑓,𝜏 + 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′

).          (26) 

For the sparsity term, the update is obtained by driving the 

derivative with respect to 𝜆𝑘,𝑛
𝜙,𝑗

 to zero: 

𝜕

𝜕𝜆
𝑘′,𝑛′
𝜙′,𝑗′ log 𝑃(𝐶, 𝑾 , 𝑯 |𝑋𝑓, 𝐴𝑓, 𝛴𝑏,𝑓 )

=

𝜕 (∑ (
�̂�𝑗,𝑓𝑛

𝑣𝑗,𝑓,𝑛
− 𝑙𝑜𝑔

�̂�𝑗,𝑓𝑛

𝑣𝑗,𝑓,𝑛
− 1)𝑓𝑛 + ∑ ℎ𝑘,𝑛

𝜙,𝑗
𝜆𝑘,𝑛

𝜙
𝑛,𝜙 − ∑ log𝜆𝑘,𝑛

𝜙,𝑗
𝑛,𝜙 )

𝜕𝜆
𝑗′,𝑛′
𝜙′    

= ℎ
𝑘′,𝑛′
𝜙′,𝑗′

−
1

𝜆
𝑘′,𝑛′
𝜙′,𝑗′                                                                        (27) 

Therefore, the solution for 𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′

is given by 

𝜆
𝑘′,𝑛′
𝜙′ ,𝑗′

=
1

ℎ
𝑘′,𝑛′
𝜙′,𝑗′

+ 𝜖
                                                           (28) 

where 𝜖 is a small positive random value to prevent division 

by zero when ℎ
𝑘′,𝑛′
𝜙′,𝑗′

= 0 . The introduction of 𝜖  in (28) is 

necessary to ensure ℎ𝑘,𝑛

𝜙,𝑗
 remains sparse while 𝜆𝑘,𝑛

𝜙,𝑗
 finite. 

 

C. Components Reconstruction 

The estimated sources (�̂�𝑓𝑛 ) can be reconstructed by using 

Wiener filtering (10) or signal presence probability [38]), and 

due to the linearity of the STFT, the inverse-STFT can be used 

to transform it to the time domain.   
 

III. ESTIMATING THE OPTIMUM NUMBER OF COMPONENTS 

AND NUMBER OF CONVOLUTIVE PARAMETERS IN NMF2D 
 

A. Variational Bayesian Formulation 

The determination of the number of components in NMF has 

been previously investigated in [39] by means of 

nonparametric statistical fit, and in [40] by a Bayesian model 

based on automatic relevance determination (ARD). These 

methods have their own merits. However, they may not 

suitable for NMF2D model as the number of convolutive 

parameters and number of components will be lumped into a 

single entity and thus will estimate an overfit model. In this 

paper, we propose a constrained Gamma-Exponential process 

to estimate the convolutive parameters and the number of 

components of the NMF2D. The proposed 

Gamma-Exponential process introduces a hidden tensor of 

nonnegative values 𝜃𝑘
𝜏,𝜙

 that weight each element of the 

factor model (∑ 𝜃𝑘
𝜏,𝜙

𝑗,𝑘,𝜏,𝜙 |𝑎𝑖𝑗,𝑓|2𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

) such that the 

number of components and convolutive parameters are 

inferred automatically based on the mixture power 

spectrogram 𝑝𝑖,𝑓𝑛
𝑥  which can estimated from the observations 

as |𝑥𝑖,𝑓𝑛|2 . The model order 𝑘, 𝜏, and 𝜙  are assigned to a 

large integer values (ideally infinity) and the proposed model 

will retain a finite number of each subset corresponding to the 

active elements in 𝜃. To the best of our knowledge, this is the 

first proposed method to estimate the number of convolutive 

parameters of the NMF2D model. 

The generative process of the mixture power spectrogram is 

assumed to follow the Gamma-Exponential process as 

𝑝𝑖,𝑓𝑛
𝑥 ~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (∑ 𝜃𝑘

𝜏,𝜙

𝑗,𝑘,𝜏,𝜙
𝑟𝑖𝑗,𝑓𝑤𝑓−𝜙,𝑘

𝜏,𝑗
ℎ𝑘,𝑛−𝜏

𝜙,𝑗
)   (29) 

𝑤𝑓,𝑘
𝜏,𝑗

~𝐺𝑎𝑚𝑚𝑎(𝑎𝑘
𝜏,𝑗

, 𝑎𝑘
𝜏,𝑗

)                                                        (30) 

ℎ𝑘,𝑛
𝜙,𝑗

~𝐺𝑎𝑚𝑚𝑎(𝑏𝑘
𝜙,𝑗

, 𝑏𝑘
𝜙,𝑗

)                                                      (31) 

𝑟𝑖𝑗,𝑓~𝐺𝑎𝑚𝑚𝑎(𝑐𝑖𝑗 , 𝑐𝑖𝑗)                                                           (32) 

𝜃𝑘
𝜏,𝜙

~𝐺𝑎𝑚𝑚𝑎 (
𝛼𝑘

𝜏,𝜙

𝐿 + 𝜙𝑚𝑎𝑥 + 𝜏𝑚𝑎𝑥

, 𝛼𝑘
𝜏,𝜙

𝑑)                      (33) 

where 𝑟𝑖𝑗,𝑓 = |𝑎𝑖𝑗,𝑓|2 , 𝐿  is the truncation level, 𝑘  is the 

number of components, α , 𝑎 , 𝑏 , and 𝑐  are the shape 

parameters, and 𝑑  is the inverse shape parameter 𝑑 =
1

�̅�
, 

where �̅� is the empirical mean of 𝑝𝑖,𝑓𝑛
𝑥  expressed as: 

𝔼𝑝[𝑝𝑖,𝑓𝑛
𝑥 ] = ∑ 𝔼𝑝[𝜃𝑘

𝜏,𝜙
]𝔼𝑝[𝑟𝑖𝑗,𝑓]𝔼𝑝[𝑤𝑓−𝜙,𝑘

𝜏,𝑗
]𝔼𝑝[ℎ𝑘,𝑛−𝜏

𝜙,𝑗
]

𝑗,𝑘,𝜏,𝜙

 

=
1

𝑑
                                                                    (34) 

We approximate the posterior distribution of parameters 

Ω =  {{𝜃𝑘
𝜏,𝜙

}, {𝑟𝑖𝑗,𝑓}, {𝑤𝑓,𝑘
𝜏,𝑗

}, {ℎ𝑘,𝑛
𝜙,𝑗

}}  by resorting to the 

generalized inverse Gaussian (GIG) distribution, the 

statistical properties of the GIG can be found in [41]. The PDF 

of the GIG distribution is given by 

𝐺𝐼𝐺(𝑦; 𝛾, 𝜌, 𝛽) =
𝑦𝛾 −1 exp (−𝜌𝑦 −

𝛽
𝑦

) (
𝜌
𝛽

)

𝛾
2

2𝒦𝛾(2√𝜌𝛽)
      (35) 

 

where 𝒦𝛾(∙) is the modified Bessel function of the second 

kind and 𝑦 ≥  0, 𝜌 ≥  0, and 𝛽 ≥  0. Using the GIG, the 

approximate distribution assumes the form of 𝑞(Ω) =

 𝑞({𝜃𝑘
𝜏,𝜙

}, {𝑟𝑖𝑗,𝑓}, {𝑤𝑓,𝑘
𝜏,𝑗

}, {ℎ𝑘,𝑛
𝜙,𝑗

}) = 𝑞(𝜃𝑘
τ,ϕ

)𝑞(𝑟𝑖𝑗,𝑓)𝑞(𝑤𝑓,𝑘
𝜏,𝑗

) 

𝑞(ℎ𝑘,𝑛
𝜙,𝑗

) where 
 

𝑞(𝑤𝑓,𝑘
𝜏,𝑗

) = 𝐺𝐼𝐺(𝛾𝑤,𝑓,𝑘
𝜏,𝑗

, 𝜌𝑤,𝑓,𝑘
𝜏,𝑗

, 𝛽𝑤,𝑓,𝑘
𝜏,𝑗

)                       (36) 

𝑞(ℎ𝑘,𝑛
𝜙,𝑗

) = 𝐺𝐼𝐺(𝛾ℎ,𝑘,𝑛
𝜙,𝑗

, 𝜌ℎ,𝑘,𝑛
𝜙,𝑗

, 𝛽ℎ,𝑘,𝑛
𝜙,𝑗

)                         (37) 

𝑞(𝑟𝑖𝑗,𝑓) = 𝐺𝐼𝐺(𝛾𝑟,𝑖𝑗𝑓 , 𝜌𝑟,𝑖𝑗𝑓 , 𝛽𝑟,𝑖𝑗𝑓)                          (38) 

𝑞(𝜃𝑘
τ,ϕ

) = 𝐺𝐼𝐺(𝛾𝜃,𝑘
τ,ϕ

, 𝜌𝜃,𝑘
τ,ϕ

, 𝛽𝜃,𝑘
τ,ϕ

)                                (39) 

The variational Bayesian solution is given by 

log 𝑞∗(Ω𝑎) = 𝔼𝑞(Ω/𝑎)[log 𝑝(𝑝𝑓𝑛 , Ω)]                      (40) 

where 

𝔼𝑞(Ω/𝑎)[log 𝑝(𝑝𝑖,𝑓𝑛
𝑥 , Ω)] = ∫ log 𝑝(𝑝𝑖,𝑓𝑛

𝑥 , Ω) ∏ 𝑞(Ω𝑏)

𝑏≠𝑎

𝑑Ω𝑏  

is the expectation of the logarithm of the joint probability of 

the mixture power spectrogram and the NMF2D model 

parameters. The marginal likelihood of 𝑝𝑖,𝑓𝑛
𝑥  can be shown to 

be lower bounded given by 

       log 𝑝(𝑝𝑖,𝑓𝑛
𝑥 |𝛼𝑘

𝜏,𝜙
, 𝑎𝑘

𝜏.𝑗
, 𝑏𝑘

𝜙,𝑗
, 𝑐𝑖𝑗)  ≥ 
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𝔼𝑞[log 𝑝(𝑝𝑖,𝑓𝑛
𝑥 |𝑤𝑓,𝑘

𝜏,𝑗
, ℎ𝑘,𝑛

𝜙,𝑗
, 𝑟𝑖𝑗,𝑓 , 𝜃𝑘

𝜏,𝜙
)]                       

 +𝔼𝑞[log 𝑝(𝑤𝑓,𝑘
𝜏,𝑗

|𝑎𝑘
𝜏,𝑗

)] − 𝔼𝑞[log 𝑞(𝑤𝑓,𝑘
𝜏,𝑗

)]                 

+𝔼𝑞[log 𝑝(ℎ𝑘,𝑛
𝜙,𝑗

|𝑏𝑘
𝜙,𝑗

)] − 𝔼𝑞[log 𝑞(ℎ𝑘,𝑛
𝜙,𝑗

)]                 

+𝔼𝑞[log 𝑝(𝑟𝑖𝑗,𝑓|𝑐𝑖𝑗)] − 𝔼𝑞[log 𝑞(𝑟𝑖𝑗,𝑓)]                    

+𝔼𝑞[log 𝑝(𝜃𝑘
𝜏,𝜙

|𝛼𝑘
𝜏,𝜙

, 𝑑)] − 𝔼𝑞[log 𝑞(𝜃𝑘
𝜏,𝜙

)]. (41) 
 

The first term of the right hand side of (41) is intractable. 

However, by using first-order Taylor series expansion, it can 

be shown that this term has a closed-form expression as: 

𝔼𝑞[log 𝑝(𝑝𝑖,𝑓𝑛
𝑥 |𝑤𝑓,𝑘

𝜏,𝑗
, ℎ𝑘,𝑛

𝜙,𝑗
, 𝑟𝑖𝑗,𝑓 , 𝜃𝑘

𝜏,𝜙
)]

≥ − ∑ ∑ 𝑝𝑖,𝑓𝑛
𝑥  (𝜑𝑓,𝑛,𝑗,𝑘

𝜏,𝜙,𝑖
)

2

𝑗,𝑘,𝜏,𝜙

𝔼𝑞 [
1

𝜃𝑘
𝜏,𝜙

𝑟𝑖𝑗,𝑓𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

]

𝑓,𝑛

  

− log(𝜔𝑓,𝑛
𝑖 ) + 1 −

1

𝜔𝑓,𝑛
𝑖

𝔼𝑞[𝜃𝑘
𝜏,𝜙

𝑟𝑖𝑗,𝑓𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

]   (42) 

where 

𝜑𝑓,𝑛,𝑗,𝑘
𝜏,𝜙,𝑖

∝ 𝔼𝑞 [
1

𝜃𝑘
𝜏,𝜙

𝑟𝑖𝑗,𝑓𝑤𝑓,𝑘
𝜏,𝑗

ℎ𝑘,𝑛
𝜙,𝑗

]

−1

                  (43) 

and 

𝜔𝑓,𝑛
𝑖 = ∑ 𝔼𝑞[𝜃𝑘

𝜏,𝜙
𝑟𝑖𝑗,𝑓𝑤𝑓−𝜙,𝑘

𝜏,𝑗
ℎ𝑘,𝑛−𝜏

𝜙,𝑗
]

𝑗,𝑘,𝜏,𝜙

         (44) 

Using the variational Bayesian solution in (40), this leads to 

the following parameter updates: 

𝛾𝑤,𝑓,𝑘
𝜏,𝑗

= 𝑎𝑘
𝜏,𝑗

                                                                            (45𝑎) 

𝜌𝑤,𝑓,𝑘
𝜏,𝑗

= 𝑎𝑘
𝜏,𝑗

+ 𝔼𝑞[𝑟𝑖𝑗,𝑓] ∑
𝔼𝑞[𝜃𝑘

𝜏,𝜙
ℎ𝑘,𝑛−𝜏

𝜙,𝑗
]

𝜔𝑓,𝑛
𝑖

𝑛,𝜙

                   (45𝑏) 

𝛽𝑤,𝑓,𝑘
𝜏,𝑗

= 𝔼𝑞 [
1

𝑟𝑖𝑗,𝑓

] ∑ 𝑝𝑖,𝑓𝑛
𝑥 (𝜑𝑓,𝑛,𝑗,𝑘

𝜏,𝜙,𝑖
)

2
𝔼𝑞 [

1

𝜃𝑘
𝜏,𝜙

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

]

𝑛,𝜙

   (45𝑐) 

𝛾ℎ,𝑘,𝑛
𝜙,𝑗

= 𝑏𝑘
𝜙,𝑗

                                                                            (46𝑎) 

𝜌ℎ,𝑘,𝑛
𝜙,𝑗

= 𝑏𝑘
𝜙,𝑗

+ ∑
𝔼𝑞[𝜃𝑘

𝜏,𝜙
𝑟𝑖𝑗,𝑓𝑤𝑓−𝜙,𝑘

𝜏,𝑗
]

𝜔𝑓,𝑛
𝑖

𝑓,𝜏

                           (46𝑏) 

𝛽ℎ,𝑘,𝑛
𝜙,𝑗

= ∑ 𝑝𝑖,𝑓𝑛
𝑥 (𝜑𝑓,𝑛,𝑗,𝑘

𝜏,𝜙,𝑖
)

2
𝔼𝑞 [

1

𝜃𝑘
𝜏,𝜙

𝑟𝑖𝑗,𝑓𝑤𝑓−𝜙,𝑘
𝜏,𝑗

]

𝑓,𝜏

            (46𝑐) 

𝛾𝑟,𝑖𝑗𝑓 = 𝑐𝑖𝑗                                                                                (47𝑎) 

𝜌𝑟,𝑖𝑗𝑓 = 𝑐𝑖𝑗 + ∑
𝔼𝑞[𝜃𝑘

𝜏,𝜙
𝑤𝑓−𝜙,𝑘

𝜏,𝑗
ℎ𝑘,𝑛−𝜏

𝜙,𝑗
]

𝜔𝑓,𝑛
𝑖

𝑛,𝑘,𝜏,𝜙

                      (47𝑏) 

𝛽𝑟,𝑖𝑗𝑓 = ∑ 𝑝𝑖,𝑓𝑛
𝑥 (𝜑𝑓,𝑛,𝑗,𝑘

𝜏,𝜙,𝑖
)

2
𝔼𝑞 [

1

𝜃𝑘
𝜏,𝜙

𝑤𝑓−𝜙,𝑘
𝜏,𝑗

ℎ𝑘,𝑛−𝜏
𝜙,𝑗

]

𝑛,𝑘,𝜏,𝜙

    (47𝑐) 

𝛾𝜃,𝑘
τ,ϕ

=
𝛼𝑘

τ,ϕ

𝐿 + 𝜙𝑚𝑎𝑥 + 𝜏𝑚𝑎𝑥

                                                     (48𝑎) 

𝜌𝜃,𝑘
τ,ϕ

= 𝛼𝑘
𝜏,𝜙

𝑑 + ∑
𝔼𝑞[𝑟𝑖𝑗,𝑓𝑤𝑓,𝑘

𝜏,𝑗
ℎ𝑘,𝑛

𝜙,𝑗
]

𝜔𝑓,𝑛
𝑖

𝑓,𝑛,𝑗

                               (48𝑏) 

𝛽𝜃,𝑘
τ,ϕ

= ∑ 𝑝𝑖,𝑓𝑛
𝑥 (𝜑𝑓,𝑛,𝑗,𝑘

𝜏,𝜙,𝑖
)

2
𝔼𝑞 [

1

𝑟𝑖𝑗,𝑓𝑤𝑓,𝑘
𝜏,𝑗

ℎ𝑘,𝑛
𝜙,𝑗

]

𝑓,𝑛,𝑗

                   (48𝑐) 

The expectations over 𝑞(Ω) can be computed by 

𝔼𝑞[𝑦] =
𝒦𝛾+1(2√𝜌𝛽)√𝛽

𝒦𝛾(2√𝜌𝛽)√𝜌
                             (49) 

𝔼𝑞 [
1

𝑦
] =

𝒦𝛾−1(2√𝜌𝛽)√𝜌

𝒦𝛾(2√𝜌𝛽)√𝛽
                             (50) 

Once the GIG statistics are computed, the model order of the 

NMF2D can be readily estimated and these will be detailed in 

Section IV (see (52)-(58)). The Gamma-Exponential process 

should be executed before the proposed estimation algorithm 

in order to tune the convolutive parameters and number of 

components.   
 

B. Initialization 

The initialization is an essential part for the separation since 

the NMF2D and its variants are very sensitive to the 

initialization. We propose the initialization for the spectral 

basis and temporal code as the variational approximated 

posterior mean i.e., 𝔼𝑞 [𝑤𝑓,𝑘
𝜏,𝑗

] and 𝔼𝑞 [ℎ𝑘,𝑛
𝜙,𝑗

] given by: 

 

𝑤𝑓,𝑘
𝜏,𝑗(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

=

√𝛽𝑤,𝑓,𝑘
𝜏,𝑗

/𝜌
𝑤,𝑓,𝑘

𝜏,𝑗
𝒦

𝛾
𝑤,𝑓,𝑘

𝜏,𝑗
+1

(2√𝜌
𝑤,𝑓,𝑘

𝜏,𝑗
𝛽𝑤,𝑓,𝑘

𝜏,𝑗
)

𝒦
𝛾

𝑤,𝑓,𝑘

𝜏,𝑗 (2√𝜌
𝑤,𝑓,𝑘

𝜏,𝑗
𝛽𝑤,𝑓,𝑘

𝜏,𝑗
)

    (51a) 

ℎ𝑘,𝑛
𝜙,𝑗(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

=

√𝛽ℎ,𝑘,𝑛
𝜙,𝑗

/𝜌
ℎ,𝑘,𝑛

𝜙,𝑗
𝒦

𝛾
ℎ,𝑘,𝑛

𝜙,𝑗
+1

(2√𝜌
ℎ,𝑘,𝑛

𝜙,𝑗
𝛽ℎ,𝑘,𝑛

𝜙,𝑗
)

𝒦
𝛾

ℎ,𝑘,𝑛

𝜙,𝑗 (2√𝜌
ℎ,𝑘,𝑛

𝜙,𝑗
𝛽ℎ,𝑘,𝑛

𝜙,𝑗
)

     (51b) 

 

Table I summarizes the main steps of the proposed algorithm. 
 

 

Table I: Proposed algorithm 

1. Estimate the number of components and convolutive 

parameters by using the proposed Gamma-Exponential 

process in (45)-(48) and compute 𝔼𝑞[𝜃𝑘
𝜏,𝜙

]. 

2. Initialize 𝑤𝑓,𝑘
𝜏,𝑗

 and ℎ𝑘,𝑛
𝜙,𝑗

 with the proposed 

Gamma-Exponential process spectral and temporal 

tensors in (51a) and (51b), and initialize 𝜆𝑘,𝑛
𝜙,𝑗

 with positive 

value. 

3. E-step: compute �̂�𝑗,𝑓𝑛 and �̂�𝑓𝑛 using (8) and (10). 

4. M-step: compute 𝐴𝑓 , 𝛴𝑏,𝑓 , 𝑤𝑓,𝑘
𝜏,𝑗 , ℎ𝑘,𝑛

𝜙,𝑗
 and  𝜆𝑘,𝑛

𝜙,𝑗
 using (15), 

(17), (25), (26), and (28). 

5. Normalize 𝑤𝑓,𝑘
𝜏,𝑗

= 𝑤𝑓,𝑘
𝜏,𝑗 √∑ (𝑤𝑓,𝑘

𝜏,𝑗
)

2

𝑓,𝑘,𝜏⁄ . 

6. Repeat E- and M-steps, and the normalization until 

convergence is achieved i.e. rate of cost change is below a 

prescribed threshold, 𝜓. 

7. Take inverse STFT of �̂�𝑗,𝑓𝑛 to obtain  �̃�𝑗(𝑡). 
 

 

IV. RESULTS AND DISCUSSIONS 

The effect of the sparsity on the separation performance will be 

investigated by comparing between the uniform sparsity and 

the adaptive sparsity. The experiment has been ran for 

different values of the uniform sparsity for three sources that 

are convolutively mixed in stereo mixture. The latter has 1m 

space between the microphones, 130ms reverberation time, 

and with 16 kHz sampling frequency. The following 

parameters were set for the proposed algorithm; 𝐾𝑗 = 5 

components per source, 𝜏𝑚𝑎𝑥,𝑘 = 5 , and 𝜙𝑚𝑎𝑥,𝑘 = 2 . 

Furthermore, in order to focus on the sparsity effects only an 

oracle initialization (where the input parameters are known) 
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Fig. 1: Average SDR w.r.t different sparsity values 

has been used.  Fig. 1 shows the average signal-to-distortion 

ratio (SDR) [42] with respect to the different values of 

sparsity. The SDR shows a total separation performance that 

includes a degree of separation and absence of nonlinear 

distortion. It is clear from Fig. 1 that the adaptive sparsity 

gives the highest SDR as it has a specific sparsity value for 

each element of the tensor 𝑯 = {ℎ𝑘,𝑛
𝜙,𝑗

}  instead of constant 

value as in the case of constant uniform sparsity. Furthermore, 

the spectrogram of one of the estimated source for adaptive 

sparsity, over-sparsity, and the under-sparsity is shown in Fig. 

2. It is clear from Fig. 2 that the over-sparsity has nullified 

many parts of the spectrums from the estimated source, as it 

assigned far too many zero values to the 𝑯 tensor. On the 

other hand, the under-sparsity setting has given rise to 

redundant spectrum due to the unrestrained elements in the 𝑯 

tensor. This issue is addressed through the adaptive sparsity 

by specifying a correct sparsity to each element of the 𝑯 

tensor according to (28). 

The proposed algorithm will be compared with the standalone 

EM and MU based algorithms [19], GEM–MU based NTF 

[34] with adaptive sparsity, the GEM-MU based NMF (this is 

obtained by setting the convolutive parameters of the 

proposed algorithm to zero i.e.  𝜏𝑚𝑎𝑥 = 1  and 𝜙𝑚𝑎𝑥 = 1) 

with adaptive sparsity and proposed initialization, Adiloglu et 

al. [43], and Sawada et al. [44]. As our results will be 

compared with the benchmark MU and EM algorithms of 

[19], we will consider the same datasets of the synthetic 

convolutive and the live recording (convolutive) stereo 

mixture of three sources vocal, percussive musical 

instruments, and non-percussive (pitched) musical 

instruments, which matches with the dataset dev2 of 

SiSEC’08 “under-determined speech and music mixtures”. 

All the mixtures were 10s long, and sampled at 16 kHz. Also, 

they have 130ms of  reverberation time with 1m space 

between their microphones. Different windows length will be 

used in the STFT with 50% overlaps. To evaluate the 

proposed algorithm the performance will be measured using 

the SDR which measures an overall sound quality of the 

source separation where it combines the signal-to-interference 

ratio (SIR), signal-to-noise ratio (SNR), and the 

signal-to-artifact ratio (SAR) into one measurement. Three 

dataset will be used in the experiments: 

A. Synthetic convolutive dataset: This dataset consist of two 

groups. The wdrum group which consists of three percussive 

instruments, and the ndrum group which consists of three 

non-percussive instruments.  
 

(1) wdrum case: As all the musical instruments are percussive 

that have short temporal then the STFT with window length of 

512-sample is selected. Firstly we will investigate the effect 

of the proposed Gamma-Exponential process in estimating 

the number of components and the convolutive parameters. 

The bounds of the proposed Gamma-Exponential process set 

as follows: 𝜏 = {0, 1, 2, . . . , 10} , 𝜙 = {0,1,2, . . . ,10} , and 

𝐾 = 24 . The results of the proposed Gamma-Exponential 

process are shown in Figs. 3 and 4. We propose that the 

number of effective components in the NMF2D is estimated 

according to the hidden latent variable in (29) as 

 𝔼𝑞[𝜃𝑘] = ∫ 𝜃𝑘 𝑞(𝜃𝑘)𝑑𝜃𝑘 

           = ∫ ∑ ∑ 𝜃𝑘  𝑞(𝜃𝑘|𝜏, 𝜙)𝑞(𝜏)𝑞(𝜙)
𝜙𝑚𝑎𝑥−1
𝜙=0

𝜏𝑚𝑎𝑥−1
𝜏=0 𝑑𝜃𝑘 

=
1

𝜏𝑚𝑎𝑥𝜙𝑚𝑎𝑥
∑ ∑ 𝔼𝑞[𝜃𝑘

𝜏,𝜙
]

𝜙𝑚𝑎𝑥−1
𝜙=0

𝜏𝑚𝑎𝑥−1
𝜏=0               (52)  

where 

𝔼𝑞[𝜃𝑘
𝜏,𝜙

] = ∫ 𝜃𝑘 𝑞(𝜃𝑘|𝜏, 𝜙)𝑑𝜃𝑘 

=

√𝛽
𝜃,𝑘
𝜏,𝜙

/𝜌
𝜃,𝑘
𝜏,𝜙

𝒦
𝛾

𝜃,𝑘
,𝜏,𝜙

+1
(2√𝜌

𝜃,𝑘
𝜏,𝜙

𝛽
𝜃,𝑘
𝜏,𝜙

)

𝒦
𝛾

𝜃,𝑘
,𝜏,𝜙(2√𝜌

𝜃,𝑘
𝜏,𝜙

𝛽
𝜃,𝑘
𝜏,𝜙

)

                      (53)  

The above statistics are obtained from the GIG distribution. It 

is assumed that both 𝑞(𝜏) and 𝑞(𝜙) are uniformly distributed. 

We define the effective component as  

𝑘∗ = arg
𝑘

{ 𝔼𝑞[𝜃𝑘] ∑ 𝔼𝑞[𝜃𝑘]

𝐾

𝑘=1

⁄  ≥ 휀 }             (54) 

where 휀  is a small constant. Through the experiments we 

found that selecting 휀 = 0.1  will best fit the proposed 

algorithm. Therefore, we treat 𝔼𝑞[𝜃𝑘]  as a histogram and 

select the effective component as those that exceeds 10% of 

the overall sum. Fig. 3 shows the values of 𝔼𝑞[𝜃𝑘]  for 

𝑘 = 1, … ,24  which are predominantly zero except for 

𝑘 = 3, 8, 11 and 20 whose 𝔼𝑞[𝜃𝑘] values are 1.46, 0.07, 2.1 

and 3.23 , respectively. The term ∑ 𝔼𝑞[𝜃𝑘]𝐾
𝑘=1  has been 

calculated to be 6.86 and thus, the effective components are 

only 𝑘∗ = 3, 11 and 20. Let 𝐾∗ = # 𝑘∗, that is, the number of 

effective components e.g. in Fig. 3 this corresponds to 

𝐾∗ = 3. Since there are 𝐽 = 3 sources, then 𝐾𝑗 = 𝐾∗ 𝐽⁄ = 1 

for 𝑗 = 1, 2, 3. In addition, for each 𝑘∗ effective component, 

we have determined distribution for (𝜏, 𝜙) which is given by 

Fig. 2: Effects of sparsity on the estimated source. 
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𝔼𝑞[𝜃𝑘=𝑘∗

𝜏,𝜙
]. These are shown in Fig. 4. We select the optimum 

model for (𝜏, 𝜙)  by treating each 𝔼𝑞[𝜃𝑘=𝑘∗

𝜏,𝜙
]  for various 

values of (𝜏, 𝜙) as a histogram. Thus the optimum model for 

(𝜏, 𝜙) is given by the average of non-zero components: 

�̂�𝑚𝑎𝑥,𝑘∗
=

∑ 𝐹𝑙
(𝜏)𝜙𝑚𝑎𝑥−1

𝑙=0

#(𝐹𝑙
(𝜏)

≠0,∀𝑙)
                                 (55) 

�̂�𝑚𝑎𝑥,𝑘∗
=

∑ 𝐹𝑙
(𝜙)𝜏𝑚𝑎𝑥−1

𝑙=0

# (𝐹𝑙

(𝜙)
≠ 0, ∀𝑙)

                       (56) 

where 

𝐹𝑙
(𝜏)

= #𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 
𝔼𝑞[𝜃𝑘=𝑘∗

𝜏,𝜙=𝑙
]

∑ 𝔼𝑞 [𝜃𝑘=𝑘∗

𝜏,𝜙=𝑙
]𝜏

≥ 휀         (57) 

𝐹𝑙
(𝜙)

= #𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 
𝔼𝑞[𝜃𝑘=𝑘∗

𝜏=𝑙,𝜙
]

∑ 𝔼𝑞 [𝜃𝑘=𝑘∗

𝜏=𝑙,𝜙
]𝜙

≥ 휀         (58) 

The term 𝐹𝑙
(𝜏)

 counts the number of 𝜏  components in the 

normalized 𝔼𝑞[𝜃𝑘
𝜏,𝜙=𝑙

]  that exceeds 휀, and #(𝐹𝑙
(𝜏)

≠ 0, ∀𝑙) 

counts the number of entries of 𝐹𝑙
(𝜏)

 that is non-zero. The 

same interpretation is applied to 𝐹𝑙
(𝜙)

 and #(𝐹𝑙
(𝜙)

≠ 0, ∀𝑙) 

for determining the model order 𝜙𝑚𝑎𝑥. Thus from Fig. 4, we 

calculate that �̂�𝑚𝑎𝑥,𝑘∗
= 5  and �̂�𝑚𝑎𝑥,𝑘∗

= 11  for all 𝑘∗ . 

Hence, the optimum model order for the NMF2D model in (3) 

is given by 𝐾𝑗 = 1, 𝜏𝑚𝑎𝑥,𝑘 = 5 and 𝜙𝑚𝑎𝑥,𝑘 = 11.  

The tensors of the Gamma-Exponential process (51a) and 

(51b) are used to initialize the GEM-MU based NMF2D 

algorithm, and the separation performance is tabulated in 

Table II. It can be seen that the SDRs of the proposed 

GEM-MU based NMF2D is better than the other algorithms. 

This shows that by using the proposed Gamma-Exponential 

process, we are able to estimate the number of components, 

convolutive parameters, and initialize the separation 

algorithm. Furthermore, we plot the cost function (i.e. (6)) 

versus number of iteration in Fig. 5 (a constant value has been 

added to the curve to ensure positivity). Fig. 5 shows the 

convergence trajectory of the tested algorithms. The plot is 

obtained by evaluating the cost function in (6) and averaging 

over 200 independent runs. The plot shows that the proposed 

algorithm has better convergence than both the MU and EM 

algorithms. It converges in less than 40 iterations. Finally the 

waveforms of the estimated sources are shown in Fig. 6. 

 

Table II: Convolutive mixture with drum (wdrurm) 

 

(2) ndrum case: Since most musical instruments are pitched 

(non-percussive) and have long temporal characteristics then 

the STFT with window length of 2048-sample will be 

selected. By following the same procedure of the wdrum case, 

the number of components and convolutive parameters are 

selected from Fig. 7 and Fig. 8, respectively. From Fig. 7, it is 

calculated that 𝐾∗ = 5  and the effective components are 

𝑘∗ = {3, 7, 11, 13, 20}. Since there are 3 sources, there is a 

Algorithm 

 

Parameters SDRs Avrg 

SDR s1 s2 s3 

EM NMF 

[19]
 

Window=512 6.89 -4.83 1.75 1.27 

MU NMF 

[19]
 

Window=512 5.10 -9.87 2.46 -0.77 

GEM-MU 

NTF [34] 

Window=512 6.18 -1.32 3.00 2.62 

GEM-MU 

NMF 

Window=512 5.54 -0.28 1.21 2.16 

Proposed 

algorithm  𝐾𝑗 = 1 ∀𝑗 

𝜏𝑚𝑎𝑥,𝑘 = 5 

𝜙𝑚𝑎𝑥,𝑘 = 11 

Window=512 7.99 0.22 3.86 4.02 

Fig. 3: Number of estimated components. 

𝑘 

Fig. 4: Convolutive parameters distribution of 𝜃𝑘
𝜏,𝜙

 

corresponding to (a) 𝑘 = 3, (b) 𝑘 = 11, and (c) 𝑘 = 20 

in Fig. 3. 

Fig. 5: Convergence of the cost functions. 
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Fig. 6: Waveforms of the estimated sources for drum case. 

Fig. 7: Number of estimated components. 

𝑘 

Fig. 8: Convolutive Parameters distribution corresponding 

to each effective component in Fig. 7. 

need to determine which component belongs to which source. 

To this end, we perform the k-means clustering using 

Kullback-Leibler divergence on the estimated set of effective 

spectral basis i.e., {𝔼𝑞[𝑤𝑓,𝑘=𝑘∗

𝜏,𝑗
]} in (51a). Subsequently, this 

leads to the partition of 𝐾∗  into 𝐾1 = 𝐾2 = 2  and 𝐾3 = 1 . 

Also from Fig. 8, the convolutive model order are determined 

as follows: (�̂�𝑚𝑎𝑥,𝑘=3 = 11, �̂�𝑚𝑎𝑥,𝑘=3 = 11) , (�̂�𝑚𝑎𝑥,𝑘=7 =

1, �̂�𝑚𝑎𝑥,𝑘=7 = 11) , (�̂�𝑚𝑎𝑥,𝑘=11 = 11, �̂�𝑚𝑎𝑥,𝑘=11 = 11) , 

(�̂�𝑚𝑎𝑥,𝑘=13 = 1, �̂�𝑚𝑎𝑥,𝑘=13 = 11),  and (�̂�𝑚𝑎𝑥,𝑘=20 =

4, �̂�𝑚𝑎𝑥,𝑘=20 = 11). The waveforms of the estimated sources 

is shown in Fig. 9. Furthermore, all the results are tabulated in 

Table III. It can be seen that the average SDRs of the proposed 

algorithm with window 2048-sample are better than other 

algorithms.  

B. Live recording (convolutive) dataset: This dataset is more 

complicated than the Synthetic convolutive case as it contains 

different musical instruments with vocal signal. It consists of 

two groups: (1) wdrum group which consists of vocal and 

musical instrument with drum, and (2) ndrum group which 

consists of vocal and musical instruments without drum.  

(1) wdrum case: By following similar procedure in the 

previous section, window length of 2048-sample is selected 

for the STFT, the number of components and convolutive 

parameters are selected from Fig. 10 and Fig. 11, respectively. 

From Fig. 10, it is calculated that the effective number of 

components is 𝐾∗ = 8. By using the k-means clustering, this 

leads the partition of 𝐾∗  into 𝐾1 = 𝐾3 = 3  and 𝐾2 = 2.The 

convolutive model orders are determined from Fig. 11 as 

follows: (�̂�𝑚𝑎𝑥,𝑘=3 = 1, �̂�𝑚𝑎𝑥,𝑘=3 = 6) , (�̂�𝑚𝑎𝑥,𝑘=5 =

2, �̂�𝑚𝑎𝑥,𝑘=5 = 2) , (�̂�𝑚𝑎𝑥,𝑘=6 = 3, �̂�𝑚𝑎𝑥,𝑘=6 = 2) , (�̂�𝑚𝑎𝑥,𝑘=10 =

2, �̂�𝑚𝑎𝑥,𝑘=10 = 4) , (�̂�𝑚𝑎𝑥,𝑘=11 = 2, �̂�𝑚𝑎𝑥,𝑘=11 = 4) , 

(�̂�𝑚𝑎𝑥,𝑘=15 = 2, �̂�𝑚𝑎𝑥,𝑘=15 = 3) , (�̂�𝑚𝑎𝑥,𝑘=16 = 2, �̂�𝑚𝑎𝑥,𝑘=16 =

3)  and (�̂�𝑚𝑎𝑥,𝑘=17 = 1, �̂�𝑚𝑎𝑥,𝑘=17 = 6) . Fig. 12 shows the 

convergence of the proposed algorithms by averaging 200 

independent runs. Additionally, all the results are tabulated in 

Table IV which shows that the SDRs of the proposed 

algorithm have been superior. Finally the waveforms of the 

estimated sources in are shown in Fig. 13. 

 

(2) ndrum case: Since this dataset contains pitched 

instruments and vocal, and as the vocal sound acts like 

percussive instrument in long window, then a long window of 

4096-sample is selected for the STFT. The number of 

components and convolutive parameters are selected from 

Fig. 14 and Fig. 15, respectively. From Fig. 14, it is calculated 

that K∗ = 15 and using the k-means clustering this leads the 

partition of K∗  into Kj = 5  for j = 1,2,3 . The convolutive 

model orders are determined from Fig. 15. It is interesting to  
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Fig. 12: Convergence of cost functions. 

 

Table III: Synthetic convolutive without drum (ndrum). 

 

Table IV: Live recording with drum (wdrum).  

note that, on average, we have τmax,k = 1  or 2 

while 𝜙𝑚𝑎𝑥,𝑘 = 6 or 7. All the result has been tabulated in 

Table V. Finally, the waveforms of the estimated sources are 

shown in Fig. 16. 

 

C. Adiloglu et al. algorithm [43]: In this subsection the 

proposed algorithm will be compared with Adiloglu et al. 

Algorithm Parameters 
SDRs Avrg 

SDR s1 s2 s3 

EM NMF 

[19] 
Window=2048 4.18 1.02 -1.8 1.10 

MU NMF 

[19] 
Window=2048 2.89 1.04 -2.09 0.61 

GEM-MU 

NTF [34] 
Window=2048 2.93 3.09 1.57 2.53 

GEM-MU 

NMF 
Window=2048 2.98 2.57 1.15 2.23 

Proposed 

algorithm 

Window=2048 

𝐾1 = 𝐾2 = 2, 

and 𝐾3 = 1 

4.75 3.93 4.75 4.48 

Algorithm Parameters SDRs Avr 

SDR s1 s2 s3 

EM NMF 

[19] 

Window=2048 4.96 5.55 8.03 6.18 

MU NMF 

[19] 

Window=2048 4.19 4.50 7.58 5.42 

GEM-MU 

NTF [34] 

Window=2048 5.89 7.90 7.68 7.16 

GEM-MU 

NMF 

Window=2048 

 

5.99 7.74 7.58 7.10 

Proposed 

algorithm  

Window=2048 

𝐾1 = 𝐾3 = 3, 

𝐾2 = 2  

6.98 8.85 8.92 8.25 

Fig. 11: Convolutive parameters distribution 

corresponding to each effective component in Fig. 10. 

Fig. 10: Number of estimated components. 

𝑘 

Fig. 9: Waveforms of the estimated sources for no drum case. 
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Fig. 13: Waveforms of the estimated sources for the live recording with drum case. 

algorithm [43] that considers the fully Bayesian source 

separation algorithm based on variational inference method 

[45], the time difference-of-arrival (TDOA) as an 

initialization algorithm [46], and the multi-level-NMF [7] as a 

source variance. It consists of two groups: (i) live recording 

wdrum group which consists of musical instruments with 

drum and (ii) live recording ndrum group which consists of 

musical instruments without drum. Both groups have 250 ms 

reverberation time, and 5 cm and 1 m microphone spacing 

which matches with the dataset dev1 of SiSEC’13 

“under-determined speech and music mixtures”. First, the 

Gamma-Exponential process is used to estimate the number 

of components and convolutive parameters. The proposed 

separation algorithm is initialized using the estimated values 

from the Gamma-Exponential process. The final separation 

results are tabulated in Table VI. It is seen that the proposed 

algorithm achieved higher SDRs than Adiloglu et al. 
algorithm which emphasizes that with the correct 

initialization and correct number of components, the 

NMF2D-based algorithm can yield high separation 

performance.  

 

Table V: Live recording without drum (ndrums) 

 

D. Sawada et al. algorithm [44]: In this subsection the 

proposed algorithm will be compared with Sawada et al. 

algorithm [44], which is an underdetermined convolutive 

blind source separation algorithm that carried out in two 

stages scenario. In the first stage the frequency bin-wise 

clustering is applied by using EM algorithm. While in the 

second stage the permutation ambiguities that occurred from 

the first stage is solved. It uses the same dataset of the 

previous section and by following the same procedure applied 

in previous section the results are tabulated in Table VI.  

Although the performance is still quite good, it is noted that 

the proposed algorithm achieved higher SDRs than Sawada et 

al. algorithm. This is attributed to the optimal model order 

used in NMF2D and the source estimation rendered by the 

GEM-MU framework.  

V. EFFECTS OF THE SPARSITY, INITIALIZATION, AND MODEL 

ORDER SELECTION ON THE SEPARATION PERFORMANCE 

In this section the effects of the sparsity, initialization, and 

model order selection on the performance of the proposed 

separation algorithm will be shown. This will be carried out 

on the same datasets used in experiments A and B above. 

A. Effects of the sparsity 

Three cases will be considered here, the no sparsity case by 

setting 𝜆 = 0 , fixed uniform sparsity case by setting 𝜆 =
𝑐, where c is constant value, and adaptive sparsity case by 

setting 𝜆 accoring to (28). The results are tabulated in Table 

VII. It can be seen that the best result is obtained from the 

adaptive sparsity as it assigns a specific sparsity value for 

each element in the H tensor, while the fixed uniform sparsity 

assigns fixed value for the entire elements of the H tensor. 

Assigning fixed large value causes over-sparseness (which 

removes many elements from the H) or under-sparseness 

(which retain many unwanted elements in H) if the value is 

low, as visually shown in Fig. 2. 

B. Effects of the initialization 

Depending on how to initialize 𝑾 and 𝑯 tensors three cases 

will be considered here, the random initialization ( which is 

the average of 100 runs ), the singular value decomposition 

(SVD) [47] after adapting it to work with the NMF2D, and the 

proposed Gamma-Exponential process that initializes 𝑾 and 

Algorithm SDR Avg 

SDR S1 S2 S3 

EM NMF [19] 6.02 1.68 -0.91 2.26 

MU NMF [19] 4.27 0.05 -3.14 0.39 

GEM-MU NTF [31] 7.71 3.60 -0.40 3.64 

GEM-MU NMF 6.80 2.10 -0.24 2.89 

Proposed algorithm 8.93 4.83 3.18 5.65 

Fig. 14: Number of estimated components. 

𝑘 
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Fig. 16: Waveforms of the estimated sources for the live recording no drum case. 

 𝑯 according to (51a) and (51b), respectively. The results are 

tabulated in Table VIII. The table shows that initialization 

through the Gamma-exponential process achieved the highest 

results, as the 𝑾  and 𝑯  are initialized using the 

Gamma-Exponential process which ensures that they start 

closed to the desired solution and avoid divergence. However 

it is time consuming as it is offline initialization process that 

should be run and converged before initializing the tensors of 

the proposed separation algorithm.  

C. Effects of the model order selection 

It is not straightforward to compare the proposed 

Gamma-exponential process with other methods in terms of 

estimating the model order of the NMF2D. However we 

proposed to compare with the mesh method that compute the 

SDR for each single selection of the convolutive parameter 

(for 𝜏 = {0, 1, … , 10}  and 𝜙 = {0,1, … ,20} ) and check the 

convolutive parameters that give the highest SDR. For fair 

comparison the SVD [47] has been used to initialize the 

tensors of the NMF2D. This method is time consuming and 

unrealistic as it required the original sources to compute their 

SDRs. We apply it on the case of synthetic convolutive with 

drum, as shown in Fig. 17. The figure shows the results of the 

mesh method of running the NMF2D algorithm for every 

possible case of 𝜏 and 𝜙. In total, there are 11 × 21 = 231 

possible model order. The highest SDR is obtained at SDR = 

4.08dB with  𝜏 = {0, 1, … , 9}  and 𝜙 = {0,1, … ,10}  i.e., this 

corresponds to  𝜏𝑚𝑎𝑥 = 10 and 𝜙𝑚𝑎𝑥 = 11 in the proposed 

model in (3).  In addition, the  figure  reveals  that a range of 

relatively high SDR is attained around the model order 

𝜏𝑚𝑎𝑥 = 5 to 10, and 𝜙𝑚𝑎𝑥 = 10 to 12. On the other hand, the 

result attained using the Gamma-Exponential process 

indicates a model order of 𝜏𝑚𝑎𝑥 = 5 and 𝜙𝑚𝑎𝑥 = 11  which 

gives a SDR of 3.71dB. Note that the attained model order 

using Gamma-Exponential process lies within the range of 

high SDR performance obtained by the mesh method. Thus 

Fig. 15: Convolutive parameters distribution corresponding to each effective component in Fig. 14. 

Fig. 17: Results of mesh method 
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the result shows that the Gamma-Exponential process does 

not only lead to a model order that maintain a high SDR 

performance but also a sparse model. 

 

Table VI: Adiloglu et al. and Sawada et al. algorithms 

 

Table VII: Effects of the sparsity on the proposed algorithm 

 
No 

Sparsity 

Uniform 

sparsity 

Adaptive 

sparsity 

Synthetic  

Convolutive 

with drum 

S

D

R 

𝑠1 1.89 7.40 7.95 

𝑠2 0.08 -0.02 0.22 

𝑠3 -2.47 3.80 3.90 

Avg -0.17 3.72 4.02 

Synthetic 

convolutive 

without drum 

S

D

R 

𝑠1 2.81 3.20 4.75 

𝑠2 2.68 3.36 3.93 

𝑠3 1.36 2.51 4.75 

Avg 2.28 2.69 4.48 

Live 

recording 

with drum 

S

D

R 

𝑠1 5.70 6.23 6.98 

𝑠2 7.47 8.04 8.85 

𝑠3 6.78 7.57 8.92 

Avg 6.65 7.28 8.25 

Live 

recording 

without 

drum 

S

D

R 

𝑠1 7.35 8.86 8.93 

𝑠2 3.28 4.76 4.83 

𝑠3 -0.34 -0.01 3.18 

Avg 3.43 4.54 5.65 

Avg of all 

datasets 
SDR 3.05 4.56 5.60 

 

VI. CONCLUSIONS 

In this paper, an approximated optimal NMF2D with adaptive 

sparsity has been proposed within the linear Gaussian 

framework in the time-frequency domain for separating the 

underdetermined convolutive mixture. The parameters are 

estimated using the GEM-MU algorithm which has superior 

performance to efficiently initialize the NMF2D model. 

Furthermore, a variational Bayesian approach using the 

generalized inverse Gaussian model has been developed to 

estimate the number of components and the number of 

convolutive parameters. In addition, the window length used 

in the STFT has been taken advantage to match the 

characteristics of the audio signals. It is shown that for the 

mixture containing sources that exhibit percussive-like 

characteristics, a short-time processing window will extract 

these sources more efficiently. Conversely, a larger 

processing window is more suitable for pitch-like sources. 

The efficacy of the proposed algorithm has been demonstrated 

on synthetic and live recording of underdetermined convolute 

mixture. Results have shown that the proposed algorithm is 

very promising, considerable more flexible and offers a 

considerable better approach to the EM- and MU-based NMF, 

or NTF. 

 

Table VIII: Effects of the initialization on the proposed 

separation algorithm. 
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