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Abstract 

This paper investigates the use of multi-distribution Deep 

Neural Networks (DNNs) for mispronunciation detection and 

diagnosis (MD&D). Our existing approach uses extended 

recognition networks (ERNs) to constrain the recognition 

paths to the canonical pronunciation of the target words and 

the likely phonetic mispronunciations. Although this approach 

is viable, it has some problems: (1) deriving appropriate 

phonological rules to generate the ERNs remains a challenging 

task; (2) the acoustic model (AM) and the phonological rules 

are trained independently and hence contextual information is 

lost; and (3) phones missing from the ERNs cannot be 

recognized even if we have a well-trained AM. Hence we 

propose an Acoustic Phonological Model (APM) using a 

multi-distribution DNN, whose input features include acoustic 

features and corresponding canonical pronunciations. The 

APM can implicitly learn the phonological rules from the 

canonical productions and annotated mispronunciations in the 

training data. Furthermore, the APM can also capture the 

relationships between the phonological rules and related 

acoustic features. As we do not restrict any pathways as in the 

ERNs, all phones can be recognized if we have a perfect APM. 

Experiments show that our method achieves an accuracy of 

83.3% and a correctness of 88.5%. It significantly outperforms 

the approach of forced-alignment with ERNs whose 

correctness is 75.9%. 

Index Terms: speech recognition, mispronunciation detection 

and diagnosis, L2 English speech, deep neural networks 

1. Introduction 

Automatic mispronunciation detection and diagnosis (MD&D) 

is the core of Computer-Aided Pronunciation Training (CAPT) 

systems. It can be treated as a special type of automatic phone 

recognition. When the recognized phones differ from the 

canonical productions (obtained from the text prompts 

presented to the speaker), mispronunciation detection and 

diagnosis are achieved respectively.  

      Generally speaking, there are two traditional ways to do 

MD&D. One is that we can simply treat it as a free phone 

recognition task and apply the automatic speech recognition 

(ASR) technology to it. State-of-the-art ASR systems use 

Hidden Markov Models (HMMs) to model the sequential 

structure of speech signals [1]. Traditionally, Gaussian 

Mixture Models (GMMs) are used to model the conditional 

distribution of speech signal spectrum for each HMM state. 

Recently, due to the development of highly effective learning 

techniques like Deep Neural Networks (DNNs) [2, 3], DNNs 

are used to replace GMMs as part of acoustic models and 

achieved significant improvements [4, 5, 6]. Many derivative 

types of DNNs, such as Convolutional Neural Networks 

(CNNs) [7, 8] and Recurrent Neural Networks (RNNs) [9], 

also achieved impressive improvements. Their phone 

recognition error (PRE) rates over the TIMIT corpus are below 

20% [6, 8, 9]. However, due to the deviations of second 

language (L2) speech from native productions, this method 

tends to achieve poor performance even if we adapt the 

acoustic models (AMs) with L2 English speech. One reason is 

that we do not have sufficient L2 English speech to cover all 

the deviations in the L2 acoustic space.  

Another way is that we align the phones using extended 

recognition networks (ERNs) which cover not only the 

canonical pronunciation of words, but also the likely phonetic 

mispronunciations [10, 11, 12, 13, 14]. Performing phonetic 

recognition with such ERNs involve identifying the path with 

the highest probability, which is taken as the phonetic 

transcription of the uttered word(s) by the learner. To achieve 

better performance, we should improve the AMs by using 

DNNs to replace GMMs [14], or improve the ERNs to 

incorporate as many as possible phonological rules with high 

precision and recall rates [10, 11, 12]. This method generally 

achieves better performance than the free phone recognition.  

However, there are still some problems: (1) it is difficult to 

build ERNs that incorporate as many as possible 

mispronunciation paths with high precision and recall rates. In 

[10], a set of 51 phonological rules are carefully designed by 

an expert, and the precision and recall rates are 14% and 46%, 

respectively; while in [11], a set of 216 rules are selected by a 

data-driven method from 100 native Cantonese speakers, 

whose precision and recall rates are 31% and 63%, 

respectively. Poor performances are due to misreading the text 

prompts by subjects and guessed pronunciations for words 

unfamiliar to the speakers [11, 13]. (2) Forced-alignment with 

ERNs trains the AMs and phonological rules independently; 

hence contextual information is lost. (3) Phones missing from 

the ERNs cannot be recognized even if we have a well-trained 

AM. 

To overcome the above drawbacks, we propose an 

Acoustic Phonological Model (APM) which uses a multi-

distribution DNN to incorporate acoustic features and 

phonological rules. In the CAPT system, the prompts for L2 

learners to utter are carefully designed, thus we can extract the 

canonical pronunciations. During transcription, the annotators 

are also aware of the canonical pronunciations. Based on these, 

we try to train a DNN using acoustic features and 

corresponding canonical pronunciations to infer the actual 

pronunciations of L2 learners that match the annotation results 

with the highest probability.  We believe that this DNN can 

automatically learn the phonological rules from the canonical 

pronunciations and annotation results, and can further mine the 

relationship between acoustic features and phonological rules.  

As the input features of APM include acoustic features 

(which are assumed to have Gaussian distribution) and 



corresponding canonical pronunciations (which can be set as 

binary), a multi-distribution DNN is used in this work. Multi-

distribution DNNs have been applied to speech synthesis [15] 

and lexical stress detection [16]. Similar to traditional DNNs, 

they are also constructed by stacking up multiple Restricted 

Boltzmann Machines (RBMs) on top of one another. 

Excluding the bottom RBM, all the other ones are traditional 

Bernoulli RBM (B-RBM), whose hidden and visible units are 

all binary. The bottom RBM is a type of mixed Gaussian-

Bernoulli RBM (GB-RBM), whose hidden units are binary 

while some visible units are Gaussian distributed and the other 

visible units are binary.  

In this work, we first realize traditional free phone 

recognition. A monophone AM and a 5-gram phone-based 

language model (LM) are built, both of which use DNNs. 

Then an APM incorporating acoustic features and 

phonological rules is built. The structure of our paper is 

designed as follows: Section 2 describes the free phone 

recognition for L2 English; Section 3 introduces our approach 

using the APM; Sections 4 and 5 present the experimental 

results and conclusions, respectively. 

2. Free phone recognition for L2 English 

To realize free phone recognition for L2 English, an AM and a 

LM are built, both of which use DNNs.  

2.1. Acoustic model (AM) 

To reduce complexity, we only realize a monophone AM, 

whose structure is shown in Fig. 1.  

2.1.1. MFCC features 

The speech is sampled at 16 kHz. To compensate for the high-

frequency part of speech signal, a pre-emphasis filter is 

applied to the speech, whose transform function is    
       . Then Fast Fourier Transform is performed on a 25-

ms Hamming window with a 10-ms frame shift. Finally, a set 

of 13 Mel-frequency cepstral coefficient (MFCC) features are 

computed for every 25-ms frame. These features are 

normalized to have zero mean and unit variance. 

2.1.2. Architecture of DNN 

 

Figure 1: Structure of the monophone acoustic model. 

In our experiments, we use 21 frames (10+1+10) of 

MFCCs as the input features of the DNN, thus there are 273 

Gaussian units in the bottom of the DNN. Besides the bottom 

layer, there are 4 hidden layers and one top layer. There are 

only 48 units in the top output layer, for we use a 48-phone set 

[1] and it is a monophone AM, i.e. each phone has only one 

state. Following [1], this 48-phone set will be mapped to a 39-

phone set in the final step of decoding. 

2.2. Language Model (LM) 

As we are using a monophone AM, we can simply build a LM 

to generate the probabilities of phone (state) transitions. In [1], 

it shows that a phone LM helps improve the performance of 

phone recognition. In this work, we use a DNN to construct a 

5-gram phone-based LM.  

      The structure of the DNN is shown in Fig. 2. There are 195 

binary input units indicating the presence or absence of the 

corresponding phone. The top layer is a “softmax” layer with 

39 units (phones). Note that it is different with the top layer of 

the DNN in Fig. 1, which is generated from a traditional 

sigmoid function instead of a softmax function. We treat these 

two top layers differently, because it is convenient to use the 

softmax function to “normalize” the probabilities so that the 

output probabilities of the LM sum to one. However, for the 

DNN in Fig. 1, we use a 48-phone set, in which two or more 

phones maybe mapped to the same phone in a 39-phone set, 

e.g., the phones /ix/ and /ih/ are mapped to /ih/ in the 39-phone 

set. 

 

Figure 2: Architecture of the 5-gram phone-based 

language model. 

2.3. Phone Recognition 

In Viterbi decoding, the phone (state) sequence with the 

largest conditional probability is determined as the recognized 

phone sequence, as given in Eq. (1): 

  ̂           (  |    (1) 

where X is the sequence of acoustic feature vectors, q denotes 

a phone sequence. 

The probability of q given X is: 
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where    is the acoustic feature vector of the tth frame,    

denotes the phone at the tth frame. Note that we use a 5-gram 

LM and     has a context windows of (10 + 1 + 10) frames. 

Applying Bayes’ Theorem, we have: 
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273 Gaussian units
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512 units
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128 units
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39 units

...

(Softmax)



From Eq. (2) and (3), we have: 
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where  (    is the prior probability and  (   |     is the 

posterior probability which can be calculated from the DNN of 

AM,  (   |              is the phone transition probability 

that can be computed from the 5-gram phone-based LM. 

3. Acoustic Phonological Models (APMs)  

In this section, we propose an APM which uses a multi-

distribution DNN to incorporate acoustic features and 

phonological rules. We first align the canonical pronunciation 

with L2 English speech, and then use the APM to calculate the 

posterior probabilities of each phone. In the final step we 

introduce the Viterbi decoding which is similar to the last 

section. 

3.1. Forced-alignment of canonical pronunciation 

In order to get each frame’s corresponding expected phone and 

the context phones, i.e., their preceding and following 

canonical phones, we use the AM trained in Section 2.1 to 

align the speech with their canonical pronunciation, which can 

be derived from dictionary according to the words prompted to 

readers. 

 

Figure 3: An example of L2 English speech aligned 

with canonical phones. 

3.2. Structure of APM 

 

Figure 4: Structure of the Acoustic Phonological 

Model. 

        Similar to the AM in Section 2.1, we use 273 MFCC 

features which are assumed to have Gaussian distribution. 

From the forced-alignment of canonical pronunciation, we 

have each frame’s expected canonical phone and their context 

phones. For the example in Fig. 3, the expected phone for 

frame t = 0.8s is /ao/, and its preceding and following phones 

are /n/ and /r/, respectively.  

The structure of our APM is shown in Fig. 4, which is a 

multi-distribution DNN [15, 16]. There are 273 Gaussian and 

240 binary visible units in the bottom of the DNN. The other 

layers are similar to those in Fig. 1. 

3.3. Phone Recognition 

Using the APM, the object function in Viterbi decoding is 

changed from Eq. (1) to Eq. (5): 

  ̂           (  |          (5) 

where       is the canonical pronunciation. 

Similar to Eq. (4), we can have: 
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where   
     is the corresponding canonical pronunciation with 

a context window of (2+1+2) phones at the tth frame. Note that 

 (   |      
      can be computed from the APM. 

4. Experiments 

4.1. Corpus 

Our experiments are based on the TIMIT and CHLOE 

(Chinese Learners of English) corpus. For the CHLOE corpus, 

only Mandarin learners’ data are used, which contains 110 

speakers (60 males and 50 females). There are five parts in 

CHLOE: confusable words, minimal pairs, phonemic 

sentences, the Aesop’s Fable “The North Wind and the Sun” 

and prompts from TIMIT. Excluding the TIMIT prompts, all 

the other parts are labeled by trained linguists.  

To transcribe the L2 English speech of CHLOE, we first 

built acoustic models using HTK [18] based on the TIMIT 

corpus to align the canonical pronunciations with the L2 

English speech. Then our linguists annotated the speech with 

actual pronunciations. To save labor, our linguists mainly 

focused in labeling (modifying) the phone sequences, thus the 

accuracy of the phone boundaries is not high. Hence, these 

annotated phone sequences should be re-aligned using the 

AMs described in Section 2. We do the forced-alignment and 

train the AMs iteratively until there is no significant 

improvement. 

We randomly split CHLOE by speakers into a training set 

which contains 88 speakers and a test set containing 22 

speakers (12 males and 10 females). For this training set, only 

about 30% of the data are labeled. The details of the TIMIT 

and CHLOE corpus are shown in Table 1. Note that the data of 

the TIMIT corpus are native English speech and are also used 

as part of our training data. 

Table 1. Details of corpus used in our experiments. 

 TIMIT CHLOE 

Train Train Test 

Speakers 630 88 22 

Unlabeled --- 40 h --- 

Labeled 4.5 h 15.5 h 4 h 

t=0.8s

273 Gaussian units

(13 MFCC) × (10+1+10) 

240 binary units

(48 phones) × (2+1+2)

512 units

512 units

48 units

...



4.2. DNNs training 

The DNNs training in this work is similar to [14, 16]. In the 

pre-training stage, we try to maximize the log-likelihood of 

RBMs. One-step Contrastive Divergence (CD) [2] is used to 

approximate the stochastic gradient. 20 epochs are performed 

with a batch size of 256 frames. For the parameters of GB-

RBM, a learning rate of          is used; while for the 

parameters of B-RBMs, a learning rate of          is used. 

Increment in each batch is smoothed by a momentum of 

     , thus we have the following update rule for the tth 

increment of  :   (        (    
  

  
 , where 

  

  
 is the 

gradient. In the fine-tuning stage, the standard back-

propagation algorithm [17] is performed.  

4.3. Results of phone recognition 

The experimental results of phone recognition are shown in 

Table 2. It shows that the correctness of the free phone 

recognition using the traditional AM in Section 2.1 is only 

74.0%. In [11], a method of forced-alignment using ERNs 

achieved a correctness of 75.9%, although it used GMMs as its 

acoustic models. It shows that ERNs generated by appropriate 

phonological rules improve the performance of L2 English 

phone recognition. 

      Our new approach using the APM outperforms the above 

two methods and achieves significant improvements. Its 

correctness and accuracy are 88.5% and 83.3%, respectively. 

The difference between the traditional AM and the APM is 

that the later one makes use of the canonical pronunciations. 

From the canonical pronunciations and annotated results, the 

APM can automatically learn the phonological rules. 

Furthermore, the APM can also capture the relationship 

between the acoustic features and phonological rules. Using 

the canonical pronunciations, the APM can slightly 

outperform the complicated models for free phone recognition 

of native English speech, the best accuracy of which as far as 

we know is about 82.3% [5, 8, 9]. 

If we increase the hidden units in each layer of the DNN 

from 256 to 512, the accuracy is improved from 82.1% to 

83.3%. Regardless of the limitation of computing power, 

furthermore improvement maybe gained if more units of each 

hidden layer are used.  

Table 2. Performance of phone recognition with 

different methods. 

 Nodes # Correct Acc. 

ERNs (GMMs) [11] --- 75.87% --- 

Traditional AM 256 73.96% 57.50% 

APM 
256 87.89% 82.08% 

512 88.52% 83.25% 

Note: The starting and ending silences are not counted here. 

The correctness and accuracy are calculated following [18]: 
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; where N is the total 

number of labels; while S, D and I denote for the counts of 

substitution, deletion and insertion errors, respectively. 

4.4. Preliminary results of MD&D 

As introduced in Section 1, when the recognized phones differ 

from the canonical productions, mispronunciation detection 

and diagnosis (MD&D) are achieved respectively. Thus the 

phone accuracy is one of the most important metrics to 

evaluate the performance of MD&D. In this sub section, we 

also provide more but preliminary experimental results of 

MD&D for comparing with other approaches.  

Table 3 shows the results of MD&D with different 

approaches. The AM for free phone recognition achieves poor 

performance, whose false rejection is 31.0%. Large false 

rejection is due to many insertion and substitution errors. In 

[13], the ERNs are generated not only from "phoneme-to-

mispronunciation conversion" but also from "grapheme-to-

mispronunciation conversion", and it achieves a false rejection 

of only 25.6%. The false rejection of the APM with 512 nodes 

in each hidden layer is only about 9.3%.  

Table 3. Performance of mispronunciation detection 

and diagnosis with different approaches. 

 

canonicals mispronunciations 

True 

Accept. 

False 

Rejection 

False 

Accept. 

True Rejection. 

Correct 

Diag. 

Diag. 

Error 

ERNs  [13] 74.37% 25.63% 22.80% 54.55% 45.45% 

AM 

(256) 

69.05% 30.95% 18.79% 67.64% 32.36% 

(27,548) (12,346) (1,143) (3,342) (1,599) 

APM 

(256) 

91.21% 8.79% 44.92% 76.43% 23.57% 

(36,575) (3,524) (2,771) (2,597) (801) 

APM 

(512) 

90.72% 9.28% 39.64% 80.77% 20.34% 

(36,389) (3,721) (2,452) (3,016) (718) 

Note: Only about 11% of the phones are mispronounced by L2 

learners.  

5. Conclusions 

In this paper, we investigate mispronunciation detection and 

diagnosis (MD&D) using multi-distribution DNNs. We first 

build a traditional acoustic model (AM) using a DNN to align 

the canonical pronunciations with L2 English speech. Then we 

construct an Acoustic Phonological Model (APM) also using a 

DNN, whose input features include MFCC features which are 

assumed to have Gaussian distribution, as well as the 

corresponding canonical pronunciations which are binary 

values. The APM can implicitly learn the phonological rules 

from the canonical productions and annotated 

mispronunciations in the training data. Furthermore, the APM 

can capture the relationship between phonological rules and 

related acoustic features. In the final step of Viterbi decoding, 

a 5-gram phone-based language model is built with a DNN. 

Comparing with the forced-alignment with extended 

recognition networks (ERNs), which constrains the 

recognition paths to some most possible pronunciations and 

cannot recognize the phones missing from the ERNs, our 

method is simpler and more effective. Experimental results 

show that the free phone recognition using a traditional AM 

for L2 English speech achieves poor performance with a 

correctness of 74.0% and an accuracy of 57.5%. The force-

alignment with ERNs using GMMs as AMs can achieve a 

correctness of 75.9%. Our method using an APM can gain a 

significant improvement, whose correctness and accuracy are 

88.5% and 83.3%, respectively.   
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