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Synthesis of Tongue Motion and Acoustics From
Text using a Multimodal Articulatory Database

Ingmar Steiner, Sébastien Le Maguer, and Alexander Hewer

Abstract—We present an end-to-end text-to-speech (TTS) syn-
thesis system that generates audio and synchronized tongue
motion directly from text. This is achieved by adapting a 3D
model of the tongue surface to an articulatory dataset and
training a statistical parametric speech synthesis system directly
on the tongue model parameters. We evaluate the model at
every step by comparing the spatial coordinates of predicted
articulatory movements against the reference data. The results
indicate a global mean Euclidean distance of less than 2.8 mm,
and our approach can be adapted to add an articulatory modality
to conventional TTS applications without the need for extra data.

Index Terms—Text-to-speech, multimodal synthesis, tongue
modeling, articulatory animation, electromagnetic articulography

I. INTRODUCTION

THE sound of human speech is the direct result of pro-
duction mechanisms in the human vocal tract. Air flows

from the lungs through the glottis, whose vocal folds can
be set to vibrate, the sound of which is then filtered by the
shape of the tongue, lips, and other articulators, generating
what we perceive as audible signals such as spoken language.
Researchers in phonetics and linguistics have studied these
speech production mechanisms for many years, but while
the acoustic signal and facial movements can be observed
and measured directly, doing the same for partially or fully
hidden articulators such as the tongue and glottis is not as
straightforward.

Consequently, sensing and imaging techniques have been
applied to the challenge of observing speech production mech-
anisms in vivo, which has greatly improved our understanding
of these processes. The corresponding modalities include,
fluoroscopy [1], ultrasound tongue imaging (UTI) [2], X-
ray microbeam (XRMB) [3], electromagnetic articulography
(EMA) [4], [5], and real-time magnetic resonance imaging
(MRI) [6], [7], among others. Some of these involve health
hazards (due to ionizing radiation), and all are more or less
invasive, but they produce biosignals which, in combination
with simultaneous acoustic recordings, represent multimodal
articulatory speech data. The benefits are tempered by the
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challenges of processing the imaging and/or point-tracking
data, which in the field of speech processing has created new
opportunities for collaboration with areas such as medical
imaging and computer vision.

The biosignals that can be obtained using such modalities
to record spoken language, provide opportunities to greatly
enhance models of speech by integrating measurements of the
underlying processes directly with the acoustic signal. This
leads to more elegant and powerful approaches to speech
analysis and synthesis [8]–[10]. However, it must be borne
in mind that all of the biosignals produced by the modalities
mentioned above represent a sampling of the articulators that
is sparse in the temporal domain, the spatial domain, or both.

Depending on the manner in which the data is used for
analysis or applications, the resolution may need to be in-
creased, but the missing samples cannot be restored without
prior knowledge, typically provided by a statistical model
trained on other data.

In this study, we present an approach to multimodal text-
to-speech (TTS) synthesis that generates the fully animated,
three-dimensional (3D) surface of the tongue, synchronized
with synthetic audio, using data from a single-speaker, ar-
ticulatory corpus that includes EMA motion capture of three
tongue fleshpoints [11]. The audio and articulatory motion are
synthesized using the hidden Markov model (HMM) based
synthesis (HTS) framework [12], while the surface restoration
is performed by means of a multilinear statistical tongue model
[13] trained on a multi-speaker, volumetric MRI dataset [14].
The potential application domains of this approach include
audiovisual speech synthesis and computer-assisted pronunci-
ation training (CAPT), among others.

A. Background
Deriving models suitable for producing speech related

tongue motion is an active field of research. Such models can,
for example, help to analyze and understand articulatory data
that is very sparse in the spatial domain. Ideally, such tongue
models should offer a good compromise between accuracy
of the generated shape and the available degrees of freedom
(DoF) for manipulating it. This means that biomechanical
models such as those presented by Lloyd et al. [15], Xu et al.
[16], Wrench and Balch [17], or Yu et al. [18] might be too
complex for this purpose. While such models aim to simulate
the underlying mechanics of the human tongue as closely as
possible, and can be used to visualize existing articulatory
data, they can be challenging to control efficiently.

Geometric tongue models are less complex than their
biomechanical counterparts. Here, we distinguish between
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generic and statistical tongue models. Generic tongue models
are 3D models of the tongue that may be deformed and
animated by using standard methods in computer graphics.

Statistical tongue models, on the other hand, are constructed
by analyzing the DoF of the tongue shape in recorded ar-
ticulatory data, such as MRI recordings of speech related
vocal tract shapes. Roughly speaking, such an analysis can be
carried out in two ways. The first variant investigates shape
variations related to the tongue pose that are specific for speech
production. Examples of such approaches are the works by
Engwall [19] and Badin et al. [20], and Badin and Serrurier
[21], who examined those variations in 3D MRI scans from a
single speaker, respectively. These methods only estimate the
DoF that are tongue pose related, while shape variations that
may describe anatomical differences are missing.

Another class of methods aims at investigating those
anatomy and tongue pose related shape variations separately.
This paradigm offers several advantages: First, the results give
access to tongue models that may be adapted to new speakers.
Second, this type of analysis may also provide insight into
how anatomical differences affect human articulation. For two-
dimensional (2D) MRI, such work was conducted, e.g., by
Hoole et al. [22] and Ananthakrishnan et al. [23]. Zheng et
al. [24] investigated those variations in a sparse point cloud
extracted from 3D MRI. Most recently, we performed such
an analysis on mesh representations of the tongue that were
extracted from 3D MRI scans [13].

Such geometrical models have been successfully used in
previous work to generate animations from provided articula-
tory data: Katz et al. [25] presented a real-time visual feedback
system that deforms a generic tongue model using EMA
data. However, due to the generic nature of the model, their
approach did not take anatomical differences into account. A
statistical model was used in the approach by Badin et al.
[26], who used volumetric imaging data of one speaker to
derive the tongue model, and EMA data of the same speaker
to animate it. Engwall [27] followed a similar approach. Our
own previous work utilized a multilinear statistical model to
visualize EMA data, which allowed it to be adapted to different
speakers [28].

Independently, there is a growing body of work on
application-oriented research to combine articulatory data, and
features derived from it, with speech technology applica-
tions, such as to recover articulatory movements from the
acoustic signal (“articulatory inversion mapping”, cf. [29],
[30] for examples), provide articulatory control for reactive
TTS synthesis (e.g., [31], [32]), or predict sparse articulatory
movements from a symbolic representation (e.g., [9], [33]).

Early studies on animating full 3D tongue surface models
using EMA data for multimodal speech synthesis, such as
those of Engwall [34] or Fagel and Clemens [35], used
concatenative TTS systems. Other approaches (e.g., [36])
for HMM based TTS with intra-oral animation also rely
on acoustic-articulatory inversion mapping. However, to our
knowledge, no previous study has presented an end-to-end
system to directly synthesize acoustics and the motion of a
full 3D model of the tongue surface from text using statistical
parametric speech synthesis, particularly with a tongue model

that can be easily adapted to the anatomy of different speakers.

II. METHOD

A. Multilinear Shape Space Model

In our approach, we utilize a multilinear model to describe
different tongue shapes. This is achieved by using this model
to create a function

f : Rm × Rn →M (1)

that maps the parameters ~s ∈ Rm and ~p ∈ Rn to a polygon
mesh M = (V, F ) ∈M. Such a mesh consists of a vertex set
V := {~vi} that contains positional data ~vi ∈ R3 and a face
set F that uses these vertices to form the collection of surface
patches of the represented shape. We note that these meshes
M have the same face set and only differ in the positional
data of their vertices. The used parameters in the function
describe two distinct sets of features: On the one hand, the
speaker parameter ~s determines the anatomical features of the
generated tongue. The pose parameter ~p, on the other hand,
represents the shape properties that are related to articulation.

To compute the multilinear model, we use a database that
consists of MRI scans of m speakers showing their vocal tract
configuration for n different phonemes. By means of image
processing and template matching methods, we extract tongue
meshes M ∈ M from the MRI data, such that in the end,
for each speaker, one mesh is available for each considered
phoneme. This processing is described in detail by Hewer
et al. [13], [37]. We then proceed to derive the DoF of the
anatomy and speech related variations. To this end, we center
the obtained meshes and turn them into feature vectors by
serializing the positional data of their vertices. Afterwards, we
construct a tensor A of third order consisting of these feature
vectors, such that the first mode of the tensor corresponds to
the speakers, the second one to the considered phonemes, and
the third one to the positional data.

In a final step, we apply higher order singular value de-
composition (HOSVD) [38] to obtain the following tensor
decomposition:

A = C ×1 U1 ×2 U2 (2)

In this decomposition, the tensor C is of third order and
represents our multilinear model. The operation C ×n U is
the n-th mode multiplication of the tensor C with the matrix
U . The two matrices U1 ∈ Rm×m and U2 ∈ Rn×n contain
the parameters for reconstructing the original feature vectors:
Each row of U1 is a speaker parameter and each row of U2 a
pose parameter. Basically, each speaker parameter represents
a point in the m-dimensional speaker subspace and each pose
parameter a point in the n-dimensional pose subspace that are
linked together by the tensor C. We remark that, compared to a
principal component analysis (PCA) model, such a multilinear
model offers the advantage that it aims at capturing anatomical
and articulation related shape variations separately.

The tensor C can be used to create new positional data for
provided parameters ~s and ~p:

v(~s, ~p) = µ+ C ×1 ~s×2 ~p (3)
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Fig. 1. Rendered tongue model mesh, highlighting three vertices selected to
correspond to the tongue coils in the EMA data; pink: T1, yellow: T2, purple:
T3 (cf. Fig. 3).

where µ is a feature vector consisting of the positional data that
corresponds to the mean mesh of the tongue shape collection.
This generated information can be utilized to construct a new
tongue shape: We reconstruct the vertex set by using the
created positional data and combine it with the original face
set to obtain our mesh. More details on how the model was
derived and evaluated can be found in [13].

In our framework, we use this model to register data of an
EMA corpus in order to obtain the corresponding parameters,
which is done as follows: In a first step, we manually align the
EMA data to the model space by using a provided reference
coil. As we want to register the EMA data, we have to decide
which coil corresponds to which vertex of the model mesh.
This process is done in a semi-supervised way: The parameters
are first set to random values and the associated mesh f(~s, ~p)
is generated. Next, for each considered coil the nearest vertex
on the mesh is found. We then refine these correspondences
iteratively by fitting the model to the coils and updating the
nearest vertices. In the end, we keep the correspondences that
resulted in the smallest average Euclidean distance. Finally,
we inspect the result manually and repeat the experiment if
the correspondences appear to be wrong. The tongue model
mesh is shown in Fig. 1, highlighting the vertices selected
to correspond with the three tongue coils in the EMA data.
With these estimated correspondences, we fit the multilinear
model to each considered EMA data frame of the corpus by
minimizing the energy:

E(~s, ~p) = EData(~s, ~p) + α ESC(~s) + β EPS(~p) (4)

The data term EData(·) measures the distances between the
selected vertices of the generated mesh f(~s, ~p) and the corre-
sponding coil positions. The speaker consistency term ESC(·)
weighted by α > 0 generates energy if the current speaker
parameter differs from the one of the previous time step. The
remaining term, the pose smoothness term EPS(·) weighted by
β > 0 fulfills a similar role: It penalizes changes of the pose
parameter over time. As a minimizer of this energy is the best
compromise between those mentioned assumptions, the fitting
results will be close to the data and show smooth transitions
over time. The degree of smoothness can be controlled by
adjusting the weights α and β. As the multilinear model can
be used to measure the probability of generated shapes, we
can also choose how far the results are allowed to deviate
from the model mean: We limit the possible values for each
entry of the parameters to an interval [mi − c σi,mi + c σi]

where c > 0, mi is the mean and σi the standard deviation of
the corresponding entry in the training set of tongue meshes.
In order to obtain a minimizer, we use a quasi-Newton solver
[39] that supports limiting the solution to the given intervals.

B. Multimodal Statistical Parametric Speech Synthesis

The HMM based synthesis (HTS) framework first presented
by Zen and Toda [40] is a standard statistical parametric
speech synthesis system. The architecture comprises four main
parts:

1) the parametrization of the signal,
2) the training of the models,
3) the parameter generation, and
4) the signal rendering.
The focus of our study impacts the parametrization (a) and

the rendering (d) stages. Therefore, we use the standard train-
ing stage (b), described in [40], and the standard parameter
generation algorithms (c), described in [41].

The parametrization of the signal can be performed using
any suitable signal processing tool, as long as it is kept
consistent with the signal rendering. In the standard procedure,
this is generally accomplished by coupling STRAIGHT [42]
with a mel log spectrum approximation (MLSA) filter [43].
First, STRAIGHT is used to extract the spectral envelope, the
fundamental frequency (F0), and the aperiodicity. Generally,
the F0 values are transformed into the logarithmic domain, to
be more consistent with human hearing. Since the number of
coefficients used of the spectral envelope and the aperiodicity
is too high, the MLSA filter is used to parametrize these coef-
ficients and to obtain the mel-generalized cepstral coefficients
(MGC) and the aperiodicity per band (BAP), respectively.

In this study, we propose to not only consider the paramet-
rization of the acoustic signal but also the parametrization of
speech articulation. In previous studies [8], [9], [44], EMA
data was used as the articulatory representation. In the present
study, we work towards replacing the EMA data by the tongue
model parameters. Therefore, our goal is to train on the
trajectories of the tongue model parameters using the standard
HTS framework as presented by Zen and Toda [40]. The
training models in HTS are HMMs, at a phone level, whose
observations are composed by decision trees. The leaves of
the decisions trees are Gaussian mixture models (GMMs)
which are used to produce the parameters at the generation
level. The generation level consists of applying the algorithm
presented by Tokuda et al. [41]. Fig. 2 presents the details of
the modified architecture.

III. EXPERIMENTS

A. Multilinear Model

As the database for deriving the multilinear model, we used
MRI data from the Ultrax project [14] (11 speakers) and
combined it with the data of Baker [45] (1 speaker), which was
recorded as part of the Ultrax project, but released separately.
In the end, the resulting tongue mesh collection contained, for
each speaker, estimated shapes for the phone set [i, e, E, a,
A, 2, O, o, u, 0, @, s, S]. Accordingly, the resulting multilinear
model has 12 DoF and 13 DoF for the anatomy and tongue
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Fig. 2. Architecture for multimodal HMM based synthesis adapted from
[40]; the multimodal extensions are highlighted.

pose, respectively. The tongue mesh we used for the template
matching was manually extracted from one MRI scan, made
symmetric to remove some bias towards the original speaker,
and finally remeshed to be more isotropic. It consists of 3100
vertices, 6102 faces, and has a spatial resolution of 1.87 mm.

B. Database

The data used for the experiments in this study is taken
from the mngu0 corpus, specifically the “day 1” EMA subset
[11], which contains acoustic recordings, time-aligned pho-
netic transcriptions, and EMA motion capture data (sampled
at 200 Hz using a Carstens AG500 articulograph).1 We selected
the “basic” (as opposed to the “normalized”) release variant of
the EMA data, because it preserves the silent (i.e., non-speech)
intervals, as well as the 3D nature and true spatial coordinates
of the sensor data (after head motion compensation). The EMA
coil layout for this data is shown in Fig. 3; the coils are
explained in Table I.

In order to manipulate the EMA data more flexibly, the files
were first converted from the binary Edinburgh Speech Tools
(EST) format to a JSON structure. Invalid values (i.e., NaN)
were replaced by linear interpolation. No further modification,
in particular no smoothing, was applied.

From the provided acoustic data, signal parameters were
extracted using STRAIGHT [42] with a frame rate of 200 Hz,
matching that of the EMA data. As we follow the standard
HTS methodology, we also kept the same parameters. There-
fore, our signal parameters are 50 MGC, 25 BAP, and one
coefficient for the F0.

From the 1354 utterances in the data, 152 (11.20 %, around
10 min) were randomly selected and held back as a test set;
the remaining 1202 utterances (around 105 min) were used as
the training set to build HTS synthesis voices. A comparison
of phone distributions in the training and test sets shows a
satisfactory match (cf. Fig. 4).

C. Acoustic Synthesis

As a baseline, we first built a conventional TTS system
using the acoustic data only. This served mainly to validate

1From the mngu0 website, http://mngu0.org, we downloaded the following
distribution packages:

1) Day1 basic audio data downsampled to 16 kHz (v1.1.0)
2) Day1 basic EMA data, head corrected and unnormalized (v1.1.0)
3) Day1 transcriptions, Festival utterances and ESPS label files (v1.1.1)

y

z

x

upperlip

lowerlip

ref

jaw

T1
T2 T3

Fig. 3. EMA coil layout in the “day 1” subset of the mngu0 corpus. All coils
are close to the mid-sagittal plane. The ref coil on the upper incisors forms the
origin of the coordinate space; the horizontal and vertical axes represent the y
and z dimensions in the data, respectively, while the x axis is perpendicular
to the image plane. Adapted from [11].

Table I
EMA Coil Labels and Locations in the “Day 1” Subset

of the mngu0 Corpus.

Label Location

T1 Tongue tip
T2 Tongue body
T3 Tongue dorsum
upperlip Upper lip
lowerlip Lower lip
ref Upper incisor
jaw Lower incisor

our voicebuilding process and ensure that the transcriptions
provided, and labels generated from them, along with the
acoustic signal parameters, were able to generate audio of
sufficient quality. Accordingly, we did not undertake a formal
subjective listening test, and instead evaluated this baseline
experiment using objective measures only.

We synthesized the 152 utterances in the test set using
two conditions. The first condition is the standard synthesis
process. This condition allows us to evaluate the duration
accuracy. For the second condition, we imposed the acoustic
phone durations from the provided transcriptions to allow
direct comparison with the natural recordings. For the follow-
ing experiments, we synthesized both conditions as well. The
objective evaluation was conducted based on the following
metrics.

For the duration evaluation, we calculated the duration root
mean square error (RMSE) at the phone level (in ms) between
the reference duration and the one synthesized using the first
condition.

Considering the other coefficients, we compared the syn-

Table II
Global Evaluation Measures for the Acoustic Synthesis Baseline Conditions.

id mean std. dev. conf. int.

F0 RMSE (cent) 188.52 76.92 12.33
F0 RMSE (Hz) 10.77 5.47 0.88
VUV (%) 12.03 3.94 0.63
MCD (dB) 2.45 0.22 0.04

dur. RMSE (ms) 42.00 18.29 2.93

http://mngu0.org
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Fig. 4. Distribution of phones across the training and test sets.

thesis result (s), achieved using the second condition, to the
reference (r) present in the test corpus. As the duration was
imposed, we have the same number T of frames for the
produced utterance and the reference one. To evaluate the
F0, we used three measures: the voiced-unvoiced (VUV) error
rate percentage V UV (r, s) (6) to check the prediction of the
F0, the RMSE in Hz (7), and the RMSE in cent (8). The
latter measure focuses on the frames which are voiced in both
conditions (original and predicted F0). Furthermore, it is a log
scale measure adapted to the human perception.

v(x, y) =

{
0 x & y are both voiced/unvoiced
1 otherwise (5)

V UV (r, s) = (

T∑
t=1

v(rt, st)/T ) ∗ 100 (6)

RMSEHz(r, s) =

√√√√ T∑
t=1

(rt − st)2/T (7)

RMSEcent(r, s) =

√√√√1200 ∗
T∑

t=1

(log(rt)− log(st))2/T (8)

Finally, to evaluate the spectral envelope production, we com-
puted the mel cepstral distortion (MCD) between the MGC
vectors of dimension M in dB:

d(x, y) =

M∑
m=2

(x(m)− y(m))2 (9)

MCD(r, s) =
10

ln 10
∗
√
2 ∗

√√√√ T∑
t=1

d(rt, st)/T (10)

Except for the duration, all parameters were evaluated at
the frame level. Based on these measures, we can compare
our results to previous studies, such as the one presented by
Yokomizo et al. [46].

The results of this evaluation are given in Table II and
comprise the mean, standard deviation, and confidence interval
with a p value at 5 %. Compared to [46], we achieved slightly
better results, notwithstanding the different dataset. Therefore,
we can conclude that our acoustic prediction is consistent with
the state of the art in HTS.

D. Combined Acoustic and EMA Synthesis

Adopting the paradigm of early multimodal fusion, we
combined the acoustic signal parameters with the 3D positions
of the seven EMA coils shown in Table I, increasing the
vector size by 21, to 97 parameters per frame. Using the
HTS framework, we then built another TTS system from this
multimodal data.

Synthesizing the test set in this way, we obtained, in addition
to the audio, synthetic trajectories of predicted EMA coil posi-
tions. To evaluate the combined acoustic and EMA synthesis,
we computed the same objective measures as in Section III-C.
We also computed the Euclidean distance in space between the
observed and predicted positions for the EMA coils. Finally we
computed the RMSE between the dynamics of the trajectories
of the coils using a unit of millimeters per frame (mm/frame).
The results of this evaluation are given in Table III. We see
that the differences in the acoustic measures compared to the
acoustic-only synthesis (cf. Table II) are negligible.

The comparison between the observed and predicted tra-
jectories for one test utterance is illustrated in Fig. 5. The
observed and predicted (synthesized) positions of the three
tongue coils are shown in each of the three dimensions in the
data, along with the Euclidean distance. Silent intervals and
consonants classified as coronal [t, d, n, l, s, z, S, Z, T, D] and
dorsal [g, k, N], based on the provided phonetic transcription,
have been highlighted. This helps visualize the correspondence
between gestures of the tongue tip (coil T1) and tongue
back (coils T2 and T3) for coronal and dorsal consonants,
respectively, and the phonetic units they produce.

Several points merit discussion. First of all, there are large
mismatches between the observed and predicted tongue EMA
coil positions during the silent (pause) intervals at the begin-
ning and end of the utterance. This can be attributed to the
fact that the wide range of the speaker’s tongue movements
during non-speech intervals are not distinguished in the pro-
vided annotations, but invariably labeled with the same pause
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symbol. However, there are at least two very distinct shapes
for the tongue during such silent intervals, including a “rest”
and a “ready” position (just before speech is produced), in
addition to other complex movements such as swallowing. In
the absence of distinct labels corresponding to these positions
and movements, none of this silent variation can be captured
by the HMMs trained on this data; instead, the tongue coils
are unsurprisingly predicted to hover around global means.

Secondly, there is noticeable oversmoothing and target
extrema are not always quite reached. This can typically be
attributed to the HMM based synthesis technique, despite the
integration of global variance. The dynamics, however, are
well represented, and the predicted positional trajectories, as
well as their derivatives, match the observed reference quite
closely.

The x axis appears to suffer from a greater amount of
prediction error than the y or z axes. However, it should
be noted that the positional variation along the x axis is an
order of magnitude smaller than that along the y axis. It must
also be borne in mind that nearly all of the speech-related
movements occur in the mid-sagittal plane, represented by the
y (anterior/posterior) and z (inferior/superior) axes; variation
along the x axis corresponds to lateral movements, which are
infrequent during speech.2 Having said that, the x axis can
serve to illustrate the physical coil locations on the tongue in
the “day 1” recording session; to wit, the tongue tip coil is
actually attached out of plane, a few millimeters to one side.

The Euclidean distances during speech are in the millimeter
range, indicating that the predictions of EMA coil positions
are accurate to within the precision of the EMA measurements
themselves. However, there appears to be a certain amount of
fluctuation with a more or less regular range and shape. The
peaks of this fluctuation appear to correlate with spikes in the
rms channels of the provided EMA data, which supports the
hypotheses that it is either an artifact of the algorithm which
calculates the coil positions and orientations from the raw
amplitudes [47], or measurement noise in the articulograph
itself [48], or, conceivably, a combination of both factors. Of
course, the noise in the Euclidean distance analysis is a direct
consequence of our decision to refrain from smoothing the
provided EMA data.3

E. EMA Synthesis

While the combined acoustic and EMA synthesis produced
satisfactory results, the requirement to train the system on
a multimodal dataset such as mngu0 represents a significant
drawback; compared to the reasonably wide availability of
conventional, acoustic databases designed for speech synthe-
sis, the number of suitable articulatory databases is extremely
low. Encouraged by the practical equivalence in the evaluation
of the acoustic measures described in Sections III-C and III-D,
we therefore considered the question of decoupling the EMA
synthesis completely from the acoustic data. Accordingly, we

2Incidentally, the “normalized” release variant of the mngu0 EMA dataset
follows this rationale and consists of flattened, 2D data, with all coil positions
projected onto the mid-sagittal plane.

3Perhaps the rms jitter in the unsmoothed measurements could also be
exploited in adaptive EMA denoising.

Table III
Global Evaluation for the Combined Acoustic and EMA Synthesis.

id mean std. dev. conf. int.

F0 RMSE (cent) 188.43 63.70 10.21
F0 RMSE (Hz) 10.66 4.91 0.79
VUV (%) 12.14 3.84 0.62
MCD (dB) 2.45 0.23 0.04

dur. RMSE (ms) 41.93 19.04 3.05

Eucl. dist. T3 (mm) 2.14 1.47 8.57×10−3

Eucl. dist. T2 (mm) 2.10 1.54 9.00×10−3

Eucl. dist. T1 (mm) 2.17 1.62 9.44×10−3

Eucl. dist. ref (mm) 0.22 0.12 6.97×10−4

Eucl. dist. jaw (mm) 1.26 0.65 3.80×10−3

Eucl. dist. ulip (mm) 0.72 0.38 2.21×10−3

Eucl. dist. llip (mm) 1.45 0.93 5.45×10−3

RMSE T3 (mm/frame) 3.79×10−4 5.50×10−3 3.21×10−5

RMSE T2 (mm/frame) 3.64×10−4 5.60×10−3 3.27×10−5

RMSE T1 (mm/frame) 4.89×10−4 4.58×10−3 2.68×10−5

RMSE ref (mm/frame) 1.23×10−6 1.92×10−5 1.12×10−7

RMSE jaw (mm/frame) 1.59×10−4 5.32×10−4 3.11×10−6

RMSE ulip (mm/frame) 3.83×10−5 2.21×10−4 1.29×10−6

RMSE llip (mm/frame) 1.84×10−4 1.35×10−3 7.91×10−6

Table IV
Global Evaluation for the EMA-Only Synthesis.

id mean std. dev. conf. int.

dur. RMSE (ms) 53.73 20.74 3.32

Eucl. dist. T3 (mm) 2.18 1.42 8.32×10−3

Eucl. dist. T2 (mm) 2.17 1.54 9.01×10−3

Eucl. dist. T1 (mm) 2.26 1.61 9.44×10−3

Eucl. dist. ref (mm) 0.22 0.12 6.80×10−4

Eucl. dist. jaw (mm) 1.27 0.66 3.87×10−3

Eucl. dist. ulip (mm) 0.71 0.37 2.19×10−3

Eucl. dist. llip (mm) 1.47 0.92 5.36×10−3

RMSE T3 (mm/frame) 3.94×10−4 4.20×10−3 2.45×10−5

RMSE T2 (mm/frame) 3.85×10−4 4.84×10−3 2.83×10−5

RMSE T1 (mm/frame) 5.37×10−4 4.09×10−3 2.39×10−5

RMSE ref (mm/frame) 1.15×10−6 1.72×10−5 1.01×10−7

RMSE jaw (mm/frame) 1.67×10−4 5.52×10−4 3.23×10−6

RMSE ulip (mm/frame) 3.99×10−5 2.16×10−4 1.27×10−6

RMSE llip (mm/frame) 2.04×10−4 1.28×10−3 7.47×10−6

used the HTS framework to build another TTS system trained
only on the EMA data, without the acoustic parameters.

Under this condition, the evaluation of the duration RMSE
and Euclidean distances between the predicted and observed
EMA coils, computed using the formula given by (7), is given
in Table IV. As we can see, the results are nearly identical to
those in Table III, which confirms the validity of this approach.
Fig. 6 visualizes the comparison between the observed and
predicted trajectories for one test utterance.

Table V
Global Evaluation for the EMA-Only Synthesis Restricted to the Tongue

Coils.

id mean std. dev. conf. int.

Eucl. dist. T3 (mm) 2.21 1.45 8.46×10−3

Eucl. dist. T2 (mm) 2.18 1.50 8.76×10−3

Eucl. dist. T1 (mm) 2.25 1.56 9.12×10−3

RMSE T3 (mm/frame) 4.20×10−4 4.55×10−3 2.66×10−5

RMSE T2 (mm/frame) 4.04×10−4 4.89×10−3 2.86×10−5

RMSE T1 (mm/frame) 5.63×10−4 3.94×10−3 2.30×10−5
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Fig. 5. Observed and predicted position trajectories (along the x, y, and z axis), and Euclidean distance (top), for the tongue EMA coils (T1, T2, T3) for
one test utterance, using combined acoustic and EMA synthesis. The utterance is “Because these deer are gregarious, they go about in groups”. Based on the
provided transcriptions, intervals containing silent (pause) and coronal and dorsal consonants have been highlighted.

T1 T2 T3

E
uc.dist.

x
y

z

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.10
0.15
0.20
0.25
0.30

0.0
0.1
0.2
0.3
0.4

2
3
4
5
6

-1.0
-0.5
0.0
0.5

Time (s)

Po
si

tio
n

(c
m

)

class coronal consonant dorsal consonant pause type Euclidean dist. predicted observed

Fig. 6. One test utterance produced using EMA-only synthesis; all other details are the same as in Fig. 5.
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Fig. 7. One test utterance produced using EMA-only synthesis restricted to the tongue coils; all other details are the same as in Fig. 5.
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Table VI
Global Evaluation for the Tongue Model Parameters Synthesis.

id mean std. dev. conf. int.

Eucl. dist. T3 (mm) 2.61 1.61 9.43×10−3

Eucl. dist. T2 (mm) 2.80 1.74 0.01
Eucl. dist. T1 (mm) 2.91 1.85 0.01
RMSE T3 (mm/frame) 6.77×10−4 5.48×10−3 3.20×10−5

RMSE T2 (mm/frame) 7.53×10−4 5.77×10−3 3.38×10−5

RMSE T1 (mm/frame) 1.01×10−3 4.79×10−3 2.80×10−5

F. Tongue-only EMA Synthesis

In order to focus on the tongue in the following section,
we first needed to investigate how far the tongue coil EMA
positions can be predicted in isolation from the remaining
EMA coils. To this end, we created a modified version of the
TTS system described in the previous section, by including
only the tongue coils (T1, T2, and T3), and excluding the rest
of the EMA data from the training set.

Table V gives the evaluation of the EMA synthesis restricted
to the three tongue coils. Comparing these results with those
in Table IV, we observe that the values are virtually identical,
which confirms the validity of this approach. As before, the
comparison between the observed and predicted trajectories for
one test utterance is shown in Fig. 7. It should be noted that
despite the removal of the EMA coil on the lower incisor, some
residual jaw motion is implicitly retained in the movements of
the tongue coils.

G. Model-based Tongue Motion Synthesis

At last, having verified that the HTS framework can be
used to synthesize audio and predict the movements of three
tongue EMA coils using separate models trained on the mngu0
database, we prepared a new kind of TTS system to predict the
shape and motion of the entire tongue surface, by integrating
the multilinear model into the process.

To this end, we first estimated the anatomical features ~s (cf.
Section II-A) of the speaker in the mngu0 dataset as follows:
We used the upper incisor coil as a reference and estimated the
correspondences between the three tongue coils and the model
vertices, chosen as described in Section II-A. During this cor-
respondence optimization, we used c = 0.25. Thus, we limit
the admissible values for each entry of the model parameters
to the interval [mi − 0.25 σi,mi + 0.25 σi] where mi is the
mean and σi the standard deviation of the corresponding model
parameter. By using such a small interval, we try to prevent
overfitting during this step. Afterwards, we fitted the model to
all EMA data frames and stored the obtained parameter values.
Here, we used the speaker consistency weight α = 20 and the
pose smoothness weight β = 10 in the fitting energy. Thus, we
demanded very smooth transitions in this case and especially
penalized changes of the speaker’s anatomy over time. In this
step, we used c = 3 to give the approach some freedom during
the fitting. We then averaged all obtained speaker parameters
to get an estimate of the considered speaker’s anatomical
features.

Next, we again fitted the model to all EMA data frames
where, this time, we fixed the speaker parameter ~s to the
estimated anatomy. We note that this approach causes the

multilinear model to behave like a single-speaker PCA model.
This time, we used the weight β = 1 to increase the influence
of the data term. However, we decided to use c = 2 this time
to motivate the approach to consider more plausible shapes.

We note that the settings for the fitting were selected
manually by an expert. Of course, this selection might be
optimized for the used EMA dataset by performing a thorough
analysis.

The pose parameters resulting from this fitting step were
taken as the training data, and we used the HTS framework
to build a new TTS system that predicts the tongue model
parameter values directly from the input text.

To evaluate the performance of this system against the
reference EMA data, we extracted the spatial coordinates of
the vertices assigned during the adaptation step (see above) to
produce synthetic trajectories that served as a virtual surrogate
for predicted EMA data.

We evaluated this synthetic EMA data against the reference
as before; Table VI provides the Euclidean distances between
the predicted and observed EMA coils, and one test utterance
is visualized in Fig. 8. It should be noted that the tongue model
itself contains a temporal smoothing term, which ensures that
a noisy sequence of input frames does not cause the 3D mesh
to change shape or position too rapidly; however, this extra
smoothing contributes to widespread target undershoot in the
comparison. Overall, the results of this evaluation are very
promising, and we can confirm that as far as possible, with
only three surface points on the tongue, the animation of the
full tongue appears to closely match the observed reference.

Finally, in order to compare the three experimental TTS
systems (trained without acoustic data), we analyzed the
distribution of Euclidean distances between each system and
the observed reference data over the entire test set; the results
are shown in Fig. 9. The distances are slightly greater when the
non-tongue EMA coils are excluded, and greater still when the
EMA prediction is replaced by the direct synthesis of tongue
model parameters. However, overall, the distances remain
in the same range, which indicates that the latter approach
perform no worse than synthesis of EMA data – while adding
the full 3D tongue surface into the synthesis process.

IV. CONCLUSION

In this study, we have presented a new process of synthe-
sizing acoustic speech and synchronized animation of a full
3D surface model of the tongue. We used the HTS framework
with a single-speaker, multimodal articulatory database con-
taining EMA motion capture data. First, we demonstrated a
conventional, fused multimodal approach, then separated the
two modalities while ensuring that the objective evaluation
measures remained comparable. Finally, we adapted a multi-
linear statistical model of the tongue and integrated it into
the TTS process, and evaluated its accuracy by comparing
the spatial coordinates of vertices on the model surface to
the reference EMA data from the original speaker’s tongue
movements. The results are very encouraging, and we believe
that this will enable multimodal TTS applications that provide
tongue animation with human-like performance.
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Fig. 8. One test utterance produced using the tongue model parameters synthesis; all other details are the same as in Fig. 5.
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Fig. 9. Distributions of Euclidean distances between observed and predicted tongue EMA coil positions for each experimental TTS setup, split by phone
class and tongue EMA coil.

It should be noted that the acoustic synthesis and predicted
phone durations need not come from the same corpus as the
one used for training the tongue model parameter synthesis
system. Under certain conditions, it would be straightforward
to use a different, conventional TTS system with speech
recordings from a different speaker in combination with this
tongue model parameter synthesis, perhaps adapting it in the
speaker subspace automatically or by hand, to generate a mul-
timodal TTS application with plausible, speech-synchronized
tongue motion, without the requirement of having articulatory
data available for the target speaker. In this way, it is possible
to first synthesize the acoustic speech signal, and to provide
the predicted acoustic durations to guide the synthesis of
corresponding tongue model parameters, which are then used
to render the animation of the 3D tongue model in real time.

However, there is clearly more work to be done, and in
future research, we intend to refine and improve our system,
and to evaluate it using human subjects who will rate it
perceptually. Such a study can include intelligibility, such as

the contribution of visible tongue movements during degraded,
noisy, or absent audible speech. However, we also plan to
assess the impact on perceived naturalness by integrating the
tongue model into a realistic talking avatar (e.g., [49], [50]),
and investigating the importance of naturalistic tongue move-
ments for the overall impression of such avatars in multimodal
spoken interaction scenarios with artificial characters. This
may also lead us to model distinct non-speech poses for the
tongue, such as separate “rest” and “ready” positions.

Regarding the tongue model integration, we plan to further
investigate such factors as the impact of reducing the dimen-
sionality of the model subspaces on synthesis performance, op-
timizing the vertex correspondence with EMA data, improving
the fitting results by adjusting the weights for the smoothness
terms, and exploring speaker adaptation using volumetric data,
such as the MRI subset of the mngu0 corpus [51].
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