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Robust Voice Liveness Detection and Speaker
Verification Using Throat Microphones

Md Sahidullah, Member, IEEE, Dennis Alexander Lehmann Thomsen, Rosa Gonzalez Hautamäki,
Tomi Kinnunen, Member, IEEE, Zheng-Hua Tan, Senior Member, IEEE, Robert Parts, Martti Pitkänen

Abstract—While having a wide range of applications, au-
tomatic speaker verification (ASV) systems are vulnerable to
spoofing attacks, in particular, replay attacks that are effective
and easy to implement. Most prior work on detecting replay
attacks uses audio from a single acoustic microphone (AM) only,
leading to difficulties in detecting high-end replay attacks close to
indistinguishable from live human speech. In this paper, we study
the use of a special body-conducted sensor, throat microphone
(TM), for combined voice liveness detection (VLD) and ASV in
order to improve both robustness and security of ASV against
replay attacks. We first investigate the possibility and methods
of attacking a TM-based ASV system, followed by a pilot data
collection. Secondly, we study the use of spectral features for
VLD using both single-channel and dual-channel ASV systems.
We carry out speaker verification experiments using Gaussian
mixture model with universal background model (GMM-UBM)
and i-vector based systems on a dataset of 38 speakers collected
by us. We have achieved considerable improvement in recognition
accuracy, with the use of dual-microphone setup. In experiments
with noisy test speech, the false acceptance rate (FAR) of the
dual-microphone GMM-UBM based system for recorded speech
reduces from 69.69% to 18.75%. The FAR of replay condition
further drops to 0% when this dual-channel ASV system is
integrated with the new dual-channel voice liveness detector.

Index Terms—Automatic speaker verification, anti-spoofing,
voice liveness detection, two-channel countermeasure, replay
attack, throat microphone

I. INTRODUCTION

Speech, as one of the most information-rich biosignals, is
the primary means of human communication. Besides the mes-
sage relayed through spoken words, the speech signal conveys
information of the speaker’s identity, enabling recognition of
the person both by human listeners and automatic speaker
verification (ASV) techniques [1], [2]. While the traditional
role of ASV has been in assisting forensic speaker comparison
and surveillance, there is an increasing interest to use ASV
for user authentication in consumer applications including
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smartphone log-in [3], e-commerce [4], mobile banking [5]
and physical access control1.

In contrast to other biometric technologies, such as fin-
gerprint and face recognition, ASV has a considerably wider
range of potential applications since it requires no additional
hardware investments: a speech signal can be acquired through
the native communication channel of a particular application
via landline phone, conventional cellular phone, radio phone,
satellite phone, smartphone, tablet, or a desktop PC with
a headset, to name a few. Applications range from tactical
use in military and police enforcement to telephone banking,
stockbroking, telephone calls and teleconferences. Many of
these require highest possible level of security and privacy
that can be enhanced using ASV technology. For instance,
in a telephone banking scenario, the operator can use an ASV
system to verify the caller’s identity before disclosing sensitive
information, such as bank account balance.

Unfortunately, similar to other biometric identifiers [6],
ASV systems are vulnerable to so-called presentation attacks
or spoofing attacks involving malicious effort to misguide the
ASV system so that the attacker would be falsely accepted
as another targeted speaker. The (currently known) spoofing
attacks against ASV systems fall into one of four main
categories, impersonation [7], [8], replay [9], [10], speech
synthesis and voice conversion. A detailed survey of the
vulnerabilities is provided in [11] and references therein. In
this study, we focus exclusively on replay attacks — playback
of a pre-recorded target speaker’s voice sample to the ASV
system sensor —- that have remained comparatively much
less studied [12], [13], [14], [15], despite the apparent ease
to implement them; while constructing state-of-the-art speech
synthesis and voice conversion attacks requires considerable
expert knowledge, replay attacks could, in principle, be exe-
cuted by anyone using a consumer device with a loudspeaker
and a device to play audio files — such as a smart-phone.

A. Replay attack countermeasures, their pros and their cons

To increase general trust to the security of ASV systems,
continued quest for countermeasures to detect and reject
spoofing attacks, especially replay, is critically important.
There are a number of ways to address this problem. The
first one, based on a challenge-response approach, is utterance
verification [16]: a failure to produce a text prompted by

1The recently concluded OCTAVE project https://www.octave-project.eu/
addressed both logical and physical access control scenarios.

https://www.octave-project.eu/
lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text

lt
Typewritten Text
© 2018 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

lt
Typewritten Text

lt
Typewritten Text



2

the system is an indication of a potential replay attack.
Secondly, as human can never produce the exact same speech
signal, some countermeasures use template matching or audio
fingerprinting to verify whether the input utterance was pre-
sented to the system earlier [17], [11]. Thirdly, similar to the
detection of speech synthesis and voice conversion attacks in
the ASVspoof challenge [18], some work looks into statistical
acoustic characterization of authentic and replay speech. As
replayed speech differs from an authentic speech through the
use of digital-to-analog converters, amplifiers, loudspeakers
and reverberation, these operations leave out acoustic traces,
enabling detection of replay attacks using spectral cues [19],
[20]. Finally, a fourth class of methods uses voice liveness
detection (VLD); for instance, in [21], pop noise present in
live human speech recorded with a microphone without a pop
shield but absent from replay recordings, was used to develop
a countermeasure based on two microphones.

In the same way as no single biometric modality is superior
to others, due to the complicated trade-offs [22] between
accuracy, user experience, speed, cost and other factors, no
perfect ASV spoofing countermeasure exists. All the four types
of countermeasures listed above offer some protection but have
certain limitations, too. Firstly, utterance verification or text-
prompting approach could be circumvented by recognition of
the prompted text followed by the use of voice conversion or
speech synthesis techniques.

Secondly, the audio fingerprinting approach is based on the
premise that the test speech sample is an imperfect replica of
the enrollment (or earlier) test utterances. Thus, it may fail to
detect replay samples that are strategically modified for the
purpose of avoiding to be detected, but still being accepted
as the target speaker. Most obviously, this could be done
simply by acquiring another rendition of the target speaker
pass-phrase, perhaps prepared using unit selection techniques
from publicly available speech of the target speaker (lectures,
public speeches or video uploads to social media). Alterna-
tively, one might introduce purposeful local time-frequency
modifications, such as time jitter or frame dropping during
non-speech regions. Another issue with audio fingerprinting
would be the dynamically increasing database size with the
stored “known” utterances (or their audio fingerprints), causing
potential scalability issues.

Thirdly, the statistical characterization approach may fail
if the replay sample is collected with high-quality devices in
a clean environment2, or when the replay artifacts might be
confusable with other, naturally occurring nuisance factors due
to speech coding (telephony) or natural room reverberation,
for instance. Indeed, the results from the recent ASVspoof
2017 challenge [23] outline the notoriously challenging nature
of such countermeasures, especially regarding generalization
across different replay environments. Finally, the liveness
detection approach, while potentially very accurate, requires
an additional sensor (here, a throat microphone) and therefore
may not be applicable in all application scenarios, but could
be very useful where a very high level of security is required.

2The limiting case would be an exact digital copy of a target speaker’s
recording — it cannot be detected by any such detector.

In the absence of any published comprehensive work that
compares all the four types of countermeasures, and without
published technical details of the spoofing countermeasures
used in commercial ASV systems, the authors take an agnostic
view on superiority claims of any single countermeasure over
another one. There are, however, two driving motivations why
we focus on voice liveness detection using additional sensors.
Firstly, from the four types of ASV countermeasures, it has
received least attention. Secondly, encouraged by the impres-
sive performance improvements due to throat microphone in
general ASV tasks [24], [25], [26], including the authors’
preliminary recent work [27], we got inspired to look further
into the question whether throat microphones might be useful
source for spoofing countermeasures as well. The focus of
this work, therefore, is on developing a novel VLD system
that uses joint characteristics of the signals collected using
acoustic and throat microphones to distinguish live human
voice from replay samples, and specifically, under adverse
conditions. Similar to the recently concluded ASVspoof 2017
challenge [23], we restrict our focus on text-dependent ASV,
the most relevant case in authentication applications.

B. Our contribution: both robust and secure ASV with a replay
attack countermeasure using throat microphones

Most replay countermeasures utilize audio data from a sin-
gle sensor only, i.e. an acoustic microphone (AM). By drawing
inspiration from the successful use of additional sensors in
other biometric tasks [28], [29], [30], [31] besides the primary
sensor, we propose to use a specific skin-attached non-acoustic
sensor [32], throat microphone (TM), or laryngophone, to
enhance voice liveness detection. The work closest in spirit
to ours is [21] that also uses dual-channel voice liveness
detection based on the pop noise. Different from [21] that uses
two homogenous acoustic microphones, however, our other
microphone is the contact microphone as shown in Fig. 1.

The overall goal, largely stemming from a recent industry-
driven OCTAVE project, is to enhance the robustness of both
ASV performance and voice liveness detection under adverse
conditions. Indeed, besides the recently highlighted problem
of strong performance dependency on the corpus [33], similar
to results seen in the domain of face recognition [34], recent
independent studies in [35] and [36] have revealed severe
sensitivity of the state-of-the-art statistical spoofing detectors
to even modest amounts of additive noise3. In short, most
findings reported on high-quality spoofing corpora or across
different corpora do not appear to translate well to adversarial
ASV scenarios or domain (data) mismatch.

Now, since the throat microphone is by-design more robust
against background noise compared to the acoustic micro-
phone (reviewed in Section II), it provides a viable additional
signal source for more robust and secure ASV operation
under both clean and noisy conditions. For this reason, throat
microphones have been used specifically in military, aviation,

3Even if [35] and [36] addressed noise sensitivity of a different spoofing
task, detection of voice conversion and synthetic speech (taken from the
ASVspoof challenge [18]), similar countermeasures are typically adopted with
minor modifications to detect other types of attacks, and therefore we expect
similar degradations in the case of replay attacks.
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Fig. 1: Two of the throat microphones used in this study.

law enforcement, sports and other similar scenarios where the
subjects wear helmets, masks or full-face breathing appara-
tuses. Although the use of TMs has been widely explored in
various speech processing tasks, the use in ASV [24], [25],
[26], [37], [38] is scarce.

To the best of our knowledge, this is the first work that uses
throat microphone for voice anti-spoofing, in particular for
voice liveness detection. It is of fundamental scientific interest
to find out whether throat microphones may provide additional
protection not provided by the existing countermeasures rely-
ing on acoustic microphones. Enabled by the publicly available
spoofing evaluation data through the ASVspoof [39], [23] and
the AVspoof [19] challenges, much of the recent work has been
devoted on developing advanced spoofing countermeasures
to protect ASV systems from artificial speech and replay
attacks. But since these activities have solely been focused
on the single-channel acoustic microphone countermeasures,
an accurate picture of the potential of auxiliary sensors for
voice anti-spoofing — here, a throat microphone — is thus
far missing. The purpose of this study is to fill some of that
void.

Since neither publicly available evaluation data nor com-
monly agreed, multiple-time validated countermeasures for
dual-channel ASV countermeasures exist, we define and col-
lect our custom data. This work extends our preliminary
work [27] in several respects. Firstly and foremost, [27]
addressed only baseline ASV (zero-effort impostors) without
any spoofing attack considerations, which forms the primary
focus of this work. Secondly, as there is no existing work for
the study of replay attacks against TM, we define such a replay
attack evaluation scenario, including novel attacks that involve
a physical contact of the throat microphone to various different
attack devices. Specifically, besides conventional loudspeakers,
we include replay attacks against TM using an audio exciter
device. Differently from most reported work on replay attack
assessments in the ASV context (prior to the ASVspoof 2017
challenge [23]), we collect simulated replay attacks at multiple
recording sites to account for the potential domain dependency
of results on the environment. Thirdly, besides just the usage
of TM for speech activity detector to aid ASV under noisy
conditions [27], we adopt a potentially more robust technique
by combining spectral information across the AM and the
TM sensors using ideal ratio masks (IRMs) [40]. Even if

IRMs were used in other robust speech processing tasks [41],
[42], [43], we are unaware of their prior use in the context of
dual-channel ASV tasks. Finally, we provide a comparative
assessment of two commonly used fusion strategies, score
fusion and feature fusion, for the task of voice liveness
detection. The purpose of that analysis is to gain insight as to
whether the two streams — AM and TM — should be treated
as independent, or whether the synchronized cross-microphone
information (with increased feature dimensionality) provides a
more viable starting point for replay attack countermeasures.

II. THROAT MICROPHONE: AN ALTERNATIVE
NON-ACOUSTIC MICROPHONE

A. Background and motivation
The conventional acoustic microphone picks not only the

target signal but the background noise. This has inspired the
development of many non-acoustic vibration-based sensors
to acquire speech signals more robustly [44]. For example,
physiological microphone (PMIC) with piezo-electric crystal
sensor is often used [32] to capture neck-skin vibration due
to speech production and to subsequently convert this into an
electric signal. Other than PMIC, bone microphone and in-
ear microphone are also used [45]. Besides those vibration
sensors, electromagnetic sensors such as electroglottograph
(EGG) and general electromagnetic motion systems (GEMS)
are also used. For an extensive review of such sensors, we
point the interested reader to [45].

From the various alternative non-acoustic sensors, we focus
solely on the throat microphone. The primary reasons for
this choice are technological maturity, cost efficiency and
noise robustness. As for the maturity, the history of throat
microphones dates back to the advent of the second world
war (WW2), the US patent of [46] being possibly the first
reported work. In WW2, throat microphones were used es-
pecially by the German pilots to improve communication
intelligibility in the noisy warplane cockpits. Since then,
they have been deployed commercially especially in radio
phone communication to maintain intelligible conversation
even under extreme conditions. Nowadays, many high-quality
throat microphones are available at low cost off-the-shelf
from various manufacturers for modern end-user devices [47],
[48], [49], including smart-phones. This enables cost-effective
integration of throat microphones into modern ASV use cases
enlisted in Section I. Moreover, as the sensor trunk can
be positioned quite comfortably and steadily, the throat mic
can be furnished with an efficient power source, which is
one of the main stumbling blocks of wearable technology.
While the use of an additional microphone would obviously
decrease user convenience in certain applications, they are
particularly deployable in applications where the subject wears
helmets or respiratory protection devices natively. Our primary
applications would be in office or home environments for such
teleconference or specific e-banking where a very high level
of trust to the other conversion party is required.

B. General Use of Throat Mics in Speech Processing
Techniques for robust speech recognition and speech activ-

ity detection (SAD) in highly noisy, non-stationary environ-
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Fig. 2: Conventional speaker verification setup with a single acoustic microphone (left) and the combined use of acoustic and
throat microphones (right).

ments using several heterogeneous sensors have been studied
in [50]. The hardware prototypes integrate AM with bone
microphones and TM among others into headsets. Another
wearable recording system used in [51] integrates a close-
talking, a monophonic far-field, and a TM in addition to
a 4-channel far-field microphone array to create a multi-
channel database for speech recognition. In [52], a technique
for estimating clean acoustic speech features by combining
TM and AM recordings using a probabilistic optimum filter
(POF) mapping is proposed for speech recognition. Since TM
speech is relatively less noisy compared to AM, when captured
in adverse environments, it can be used to detect speech
regions accurately. In [53] and [54], this idea is used and im-
proved recognition performance is obtained when TM speech
is used for SAD. In [55], various adaptation methods such
as maximum likelihood linear regression and sigmoid low-
pass filtering are studied in the context of whispered speech
recognition with the help of TM signal. In [56] and [57], TM is
used for voice quality assessment. Throat microphone signals
are also used in speech enhancement as clean reference signal
for the objective performance measure for speech enhancement
algorithms [58]. Though TM speech is less affected by the
ambient noise, its intelligibility is lower than AM speech [59].
For this reason, sometimes the quality of TM speech also needs
to be improved. In [60], a phone-dependent Gaussian mixture
model-based statistical mapping have been explored for this
purpose to construct probabilistic mappings between TM and
AM speech signals. Various spectral mapping techniques are
compared in [61] for the enhancement of TM speech.

C. Use in Automatic Speaker Verification

In spite of its high robustness against environmental noise,
throat microphone are studied scarcely in the ASV context.
The previous studies in throat microphone based speaker
recognition used auto-associative neural network (AANN) for
modeling target speakers [24], [25], [26]. Performance was
evaluated for closed-set speaker identification task. In our
recent work [27], we studied the performance of acoustic and
throat microphone based ASV using more modern GMM-
UBM [62] and i-vector [63] based speaker recognition, includ-
ing the use of TM as a side-information to derive robust SAD
labels and score fusion of the AM and TM signals to combine
speaker cues across the two channels. The overall system
diagram for conventional acoustic microphone and proposed
throat-microphone based dual microphone is shown in Fig. 2.

In [27], we used the TM to obtain active speech regions
for the AM signal. In this study, we consider a further alter-
native technique to benefit from the dual-channel information.
We apply so-called ideal ratio mask (IRM) [40] to weight
each frequency bin of AM, before SAD. Let the short-term
Fourier power spectrum of t-th speech frame for AM and
TM be |XAM(t, f)|2 and |XTM(t, f)|2. Here, f is the discrete
frequency bin. To this end, we apply the following weighting:

IRM(t, f) =

(
|XTM(t, f)|2

|XAM(t, f)|2

)1/β

, (1)

where β 6= 0 is a control parameter. Then, we extract
features (such as MFCCs) from the weighted power spectrum
IRM(t, f) × |XAM(t, f)|2. The special case β = 1 means
extracting features from TM only (the AM spectrum cancels
out), while limβ→∞ IRM(t, f) = 1 ensures that large values
of β imply feature extraction using the acoustic signal only.
All the other values, 1 < β < ∞ correspond to “blending”
the information across the two mics.

III. VOICE LIVENESS DETECTION USING THROAT
MICROPHONES

If an attacker deploys a high-end loudspeaker for replay, the
signal captured by an acoustic microphone might be close to
indistinguishable from a live human voice, thereby making it
impossible to detect the replay attack relying solely on acoustic
cues. This is where the throat microphone comes into help:
since a live human wears the throat microphone in his/her
neck, the frequency characteristics of this signal differs from
a replayed represented to the throat microphone. This is due
to differing conduction properties of the human tissue versus
the acoustic transfer properties of the loudspeaker and the
room. This is illustrated in Fig. 3 which displays the long-
term average spectra (LTAS) of AM and TM speech of three
different sentences for both live human and replay conditions.
The replay recordings of the acoustic microphone are similar
to the playback recording, especially at the low and middle
frequency range, while the spectra for the TM signal are
evidently different in original and playback recording.

Further, Fig. 5 displays spectrograms of a live human speech
and two replay signals from two different configurations
(sessions). The replayed signal of the acoustic microphone
signal (Fig. 5(b) and Fig. 5(c)) are similar to the live human
spectrogram (Fig. 5(a)). But for the throat microphone, the
replay recordings (Fig. 5(e) and Fig. 5(f)) are clearly distin-
guishable from the original recording (Fig. 5(d)). Hence, we
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Fig. 3: Illustration of LTAS for AM and TM signal for same speaker and three sentences. The black line shows the LTAS of
genuine recording. The black line shows the average of LTAS of replay recordings.

hypothesize that the spectral information acquired from the
throat microphone signal could be more useful in discrimi-
nating live and replayed signal in comparison to the acoustic
microphone.

A. Replay Attack Detection: State-of-the-Art Baseline

Speech-based spoofing countermeasures mostly employ
spectral features as a front-end for speech representation [64]
followed by a statistical classifier [65]. The standard mel-
frequency cepstral coefficient (MFCC) features were used in
many earlier spoofing detection studies [11]. A recent study
on comparison of features [64] suggested, however, that the
dynamic (delta and double delta) coefficients might be more
useful for discriminating spoofed and real speech. In this
study on ASVspoof 2015 corpus consisting voice conversion
and speech synthesis based spoofed data, linear frequency
cepstral coefficients (LFCCs) were found to provide the lowest
overall detection error rates. In another recent study on the
same corpus [20], the so-called constant Q cepstral coefficient
(CQCC) features further outperformed LFCCs. In the current
work under the context of dual-mic based replay attack, we
adopt these three state-of-the-art features for the detection of
replay attacks. We extract the features separately from both
microphone channels.

Given an audio recording s, presented through any of the
acoustic feature sets mentioned above, replay spoofing speech
detection task is to decide whether s belongs to a genuine

speech class (live human) — hypothesisH0, or a replay speech
class — hypothesis H1. The decision is based upon a log-
likelihood ratio score, Λ = log p(s|H0)− log p(s|H1), where
each of the two likelihoods are evaluated using Gaussian mix-
ture models (GMMs) [66] trained using maximum likelihood.
This approach was found to work consistently well on the
ASVspoof 2015 challenge data [65].

B. Proposed dual-channel countermeasures

The above description of widely-used spoofing attack
countermeasures for single-channel signals provides a strong
methodological back-bone for generalizing the methods for
dual-channels. To this end, we propose to use the joint feature
based on features extracted separately from both the channels.
The idea is to simply concatenate the features from both
channels in frame-level. This will combine information from
both the channels as well as will capture the inter-channel
correlation of the speech features. Let xAM(t) and xTM(t) to
denote the d-dimensional features at speech frame t, separately
extracted from AM and TM channels, respectively. Then the
2d-dimensional dual channel feature is given by,

xDM(t) =
[
xAM(t)> xTM(t)>

]>
. (2)

For any data fusion method, an important question is in what
ways the combined features or classifiers are complementary.
Since our AM and TM signals are synchronous and since all
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our feature extraction methods rely on power spectrum, we
gain some insight by looking into spectral correlations across
the two channels. To this end, consider a speech utterance with
T frames and let SAM(t, fi) and STM(t, fi) to denote the log-
power spectral component of t-th frame at fi frequency for
AM and TM, respectively. The cross-channel power spectrum
correlation can be expressed as,

ρ(fi, fj) =
1
T

∑T
t=1 S̃AM(t, fi)S̃TM(t, fj)√

1
T

∑T
t=1[S̃AM(t, fi)]2

√
1
T

∑T
t=1[S̃TM(t, fj)]2

,

where S̃AM(t, fi) = SAM(t, fi)− µAM(fi) and S̃TM(t, fj) =
STM(t, fi) − µTM(fj) are the mean-subtracted log-power
spectra of each channel. Here, µTM(fi) and µTM(fi) are mean
of log-power spectral component at i-th frequency.

In Fig. 4, we display the cross-channel correlation matrix of
AM and TM power spectrum for a randomly selected speech
utterance (note that this also contains the within-channel
correlations). We find that the cross-channel information is
complementary for discriminating live human and replayed
samples. Specifically, for the replay signal, the correlation
between AM and TM signals is higher than the correlations
of the two microphones for a live voice. This is because we
collect replay signals by doing playback of the same acoustic
signal. Note that this correlation information will be ignored
if we treat the data from two channels separately, e.g., score-
level fusion of two systems.

IV. EXPERIMENTAL SETUP

A. Collection of Speech Corpus

We collected the dual microphone speech data for text-
dependent ASV setting in three different sites. The data was
recorded synchronously in two channels with Scarlett 2i2
USB 2.0 audio interface manufactured by Focusrite4 and all
the recordings use a similar model of AM and TM. We
recorded the samples using a web-based user interface with
the Microsoft Edge web browser. The sampling frequency was
set at 44.1 kHz. The phrases contained in the recordings are
the same as the common phrases of Part I subcondition in
the on-going RedDots initiative [67]. We record five different
sessions for each subject, one noisy and four clean ones,

4http://us.focusrite.com/usb-audio-interfaces/scarlett-2i2

in common office environments. In our ASV experiments,
matched condition refers to the test case with clean speech
whereas test with noisy session corresponds to the mismatched
condition. We have collected speech signals in real-world
noisy conditions for the mismatch scenario. Specifically, we
collected all the data in casual home and office environments
where one might use ASV technology when attending a secure
teleconference or to access for instance tele-banking. Thus, the
types of noises in our data contains background sounds from
casual office or home environments including sounds from TV,
coffee machine, babble noise, or sounds of furniture being
moved around. In both matched and mismatched conditions,
we use clean speech for training.

Our data consists of total 38 speakers, from which 30 (23
male and 7 female) are used for the ASV experiments while
the remaining 8 are used for domain adaptation. The idea
here is to use this limited throat microphone data to represent
the acoustic space by means of domain adaptation. Three
different clean sessions are used for training text-dependent
speaker models. 10 different speaker models, corresponding to
different phrases, are trained for each target speaker, yielding a
total of 300 target models for our 30 speakers. The remaining
two sessions, one clean and one noisy, are used for testing.
Trials are designed so that the texts or spoken-content of a
target model and test segment are identical. For each condition,
there are 9000 trials, with 300 genuine or target trials and 8700
impostor or nontarget trials.

B. Collection of Replay Data

In commonly used designs to assess vulnerability of conven-
tional single-microphone ASV systems against replay attack
[14], [15], [10], the target speaker utterances are played back
and re-recorded using a microphone. But the collection of
replay data for the dual AM-TM system is slightly different:
while the attacker can use the conventional replay method for
the acoustic microphone, this is expected to be ineffective
against the throat microphone which is a physical contact
sensor and therefore the throat microphone would need to be
kept very close to the replay loudspeaker. Thus, we instead
physically attach the throat-mic to the attack loudspeaker
to collect replayed throat microphone data, as illustrated in
Figure 6 for three different replay configurations. Besides the
conventional loudspeakers shown in the left and the middle
photos, the photo on the right illustrates a replay configu-
ration that uses a specific audio exciter to excite the throat
microphone5.

The test sections of the original acoustic mic data were
played back and recorded in a different rooms using various
loudspeakers. We have done playback recording in twelve
different conditions. The details of the playback sessions are
shown in Table I. We have total 300 genuine files in each

5An audio exciter is essentially a loudspeaker lacking a membrane; instead,
it transmits the oscillations of audio signals to the surface where the exciter
is physically attached. This causes the surface to vibrate and emit the audio
signal. In our case, however the exciter is attached directly to the TM to
directly stimulate the sensor inside the TM. It should be noted that due to the
small surface area of the TM the sound produced by the exciter is not very
loud and therefore does not interfere with the acoustic signal to the AM

http://us.focusrite.com/usb-audio-interfaces/scarlett-2i2
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(a) AM original (b) AM replayed Session 9 (c) AM replayed Session 10

(d) TM original (e) TM replayed Session 9 (f) TM replayed Session 10

Fig. 5: Spectrograms of the AM and TM signal of the passphase ”Artificial intelligence is for real” from the original recording
sessions, along with the replayed versions obtained in Session 9 and 10.

TABLE I: Description of setup for replay recordings.

Session Room Loudspeaker Mic Distance
1 Room 1 (L=10m, W=8m, H=4m) Logitech S-0264B 20cm
2 Room 2 (L=6, W=6m, H=2.5m) Logitech S-0264B 15cm
3 Room 3 (L=3,5m, W=3,5m, H=2,5m) JVC UX-BS1001 15cm
4 Room 4 (L=9m, W=3m, H=2.5m) Logitech S-0264B 5cm
5

Room 5 (L=5m, W=4m, H=3m)
Creative A60 7cm, 50cm

6 GENELEC 8020C 16cm, 16cm
7 Logitech S-120 3cm, 24cm
8 Room 6 (L=20m, W=6m, H=3m) Creative A60 6cm, 10cm
9

Room 7 (L=5,7m, W=4,2m, H=2,8)

JVC SP-EX70 8cm
10 VIFA M10MD-39-08 6cm
11 Eltex 5cm
12 VIFA M10MD-39-08 with HIHX14C02-8 4cm

TM
TM

AM

AM

AM

TM

Fig. 6: Microphone setup for three replay conditions: Session
10 (left), Session 11 (middle) and Session 12 (right).

of the two test sessions. Hence we have total 3600 replay
recording files by pooling all the replay sessions. Table II
summarizes our database with the number of ASV trials for
different conditions.

TABLE II: Trial summary for experimental evaluation.

Trial Type Trial No
Genuine 300

Zero-effort Imposter 8700
Replay Imposter

3600
(300 from each of the 12 replay sessions)

C. Description of Features and Classifiers for ASV

The recorded utterances were down-sampled from 44.1
kHz to 16 kHz to match the available off-line development
data for training universal background model (UBM). We
compute mel-frequency cepstral coefficients (MFCCs) as spec-
tral features from both AM and TM signals. The MFCCs
are extracted from speech frames of 20 ms duration, with
50% overlap. 20 filters in mel scale are used to compute
20 coefficients including the energy. Then RelAtive SpecTrAl
(RASTA) processing [68] is used for suppressing linear
channel effects. We obtain 60-dimensional features including
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delta and double-delta coefficients computed with a window of
three frames. Finally, we discard the non-speech frames using
an energy-based SAD [1].

We consider two modern ASV systems, Gaussian mixture
model with universal background model (GMM-UBM) [62]
and an i-vector based system [63]. For both systems, the
UBMs is gender-independent and trained from all 6300 speech
files of the TIMIT corpus. TIMIT contains high-quality 16
kHz microphone speech in English similar in quality to our
AM evaluation speech. We also use domain adaptation to
create throat microphone UBM from TIMIT corpus. Domain
adaptation, in general, refers to methodology for adapting the
components of a well-trained recognizer (trained using large
amount of out-of-domain data), to a new domain using a small
amount of representative data from the new, or in-domain
data [69]. In our case, we treat the acoustic mic data as
out-of-domain data and the throat-mic data as the in-domain
data. This choice is well-justified, since we are short of a
large supply of throat-mic data but can first train the acoustic-
mic UBM from a large dataset (here, TIMIT corpus of 630
speakers) and adapt it for the throat-mic data with only eight
speakers. We also adapt the TIMIT UBM for limited acoustic
microphone data also since adaptation for 10 pass-phrases
could be beneficial. We train UBM of 512 Gaussians using
10 iterations of the expectation-maximization (EM) algorithm.
The target speaker models are obtained using maximum-a-
posteriori (MAP) adaptation of the Gaussian means with a
relevance factor of 14. The i-vector extractor (i.e., T-matrix)
is trained for 400 total factors with five iterations of EM. We
compute recognition score as log-likelihood ratio for GMM-
UBM and cosine similarity for the i-vector system.

D. Performance Evaluation

We use equal error rate (EER) to assess both standalone
liveness detection and ASV performance. EER corresponds to
the detection threshold with equal false alarm rate (FAR) and
false rejection rates (FRRs). We have used BOSARIS toolkit
for computing the evaluation metrics with ROC Convex Hull
method6, a method suitable to obtain EER estimates from
data with limited number of trials. We denote EERs for ASV
and VLD systems as EERasv and EERvld, respectively. Besides
EER, we also report false acceptance and false rejection rates
as in [70] for the combined systems where ASV system is
integrated with VLD method. We report two FARs separately
computed for zero-effort impostor trials (no replay attack) and
replay spoof trials. They will be referred to as FAR(Z) and
FAR(R), respectively.

V. RESULTS

A. Standalone ASV Performance

In the first experiment, we assess the accuracy of our ASV
systems under both zero-effort imposter in matched (clean)
and mismatched (noisy) condition. The results are shown in
Table III for signals from individual microphones and fused
system where scores of AM and TM are combined using equal

6https://sites.google.com/site/bosaristoolkit/

weight fusion. In the third and the fourth columns, we have
shown the results for the individual microphones as a baseline.
Next, we have shown the results for domain adaptation where
limited data of AM and TM are used to adapt the UBM trained
with TIMIT.

The performance with the domain adaptation method shows
improvement, noticeably for the throat microphone case. Then
we exploit the fact TM signals are more robust than AM in
presence of environmental noise and extract SAD labels from
the TM speech, which is also used with the AM system. This
gives improvement in recognition accuracy for AM, specially
for mismatch condition. Further improvement is obtained by
equal weight score fusion of AM and TM as reported in last
column of Table III. For both the GMM-UBM and the i-vector
systems, the AM-based system outperforms the TM-based
system under matched condition, but the order is reversed
in most cases under the noise mismatched condition. The
details of the effect of SAD and fusion were reported in our
preliminary study [27]. Our finding also agrees with another
related prior work [25].

Next, we evaluate the performance of IRM-based weighting
scheme as discussed in Section II-C. We experiment with
different values of the tuning parameter, β, with the results
shown in Table IV. The use of IRM-based enhanced signal
helps in improving the performance over single channel based
approaches. However, for the fused mode, i.e., when combined
with TM system, the performance of the proposed scheme
where TM signal is used to compute the SAD labels and final
score is computed by fusion of the AM and TM system, is still
better. Note that the IRM-based method requires optimizing of
β while the proposed dual-channel ASV method uses equal
weights fusion without any additional parameters.

In order to validate whether the proposed scheme is suit-
able for other throat microphones, we have conducted ASV
experiments with another dataset collected using a different
throat-microphone model. To this end, we collected data from
13 additional speakers with more than six sessions in the test
set compared with two sessions in our other dataset. The
speakers were enrolled with clean speech data from three
sessions similar to the previous case. The ASV performance
with the GMM-UBM system is shown in Table V. As before,
the relative degradation of TM-based ASV system in presence
of mismatch, in comparison to that of the AM-based ASV
system, is lower. Moreover, fusion helps to improve the overall
recognition accuracy.

Next, we evaluate the ASV performance for the replay spoof
condition. The results are shown in Table VI. Here, the scores
of the original recording corresponding to the correct speakers
are set as the target or genuine trials, and the scores of the
replayed version of the same segments computed for their cor-
responding original source speakers, are set as the non-target
or imposter trials. The results indicate that the performance is
remarkably better for the throat-microphone compared to the
acoustic microphone. For instance, in the matched condition,
AM-based system yields EERs of 27.71% and 32.70% for the
GMM-UBM and the i-vector systems, respectively, while the
corresponding TM-based numbers are as low as 1.24% and
2.25%. The performance is also considerably improved with

https://sites.google.com/site/bosaristoolkit/
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TABLE III: Text-dependent ASV results (% of EERasv) for licit condition. Results are shown for two separate microphones
(AM and TM) for different setups with two different classifiers. We have also shown the performance of dual-mic system
when equal weighted scores from AM (with TM for SAD) and TM based systems are combined.

ASV system Condition
Baseline Domain Adaptation AM with Fused

AM TM AM TM TM-SAD (AM+TM)

GMM-UBM
Matched 0.06 2.72 0.33 1.58 0.06 0.20

Mismatched 10.33 6.67 8.67 4.40 4.40 1.44

i-vector
Matched 1.33 4.31 0.67 1.87 0.23 0.30

Mismatched 12.67 9.00 9.72 4.38 7.10 1.71

TABLE IV: ASV performance using GMM-UBM system with
IRM-based dual channel speech enhancement and and its score
fusion with TM. The last row shows the results for proposed
AM-based system using TM-based SAD and its fusion with
TM-based system.

β
IRM-based enhanced AM Fused with TM
Matched Mismatched Matched Mismatched

1 1.76 4.58 1.72 4.39
2 0.22 1.96 0.48 2.27
3 0.12 1.89 0.29 1.84
4 0.12 2.32 0.23 1.73
5 0.10 2.59 0.21 1.60
6 0.10 3.17 0.20 1.59
7 0.10 3.41 0.21 1.54
8 0.10 3.62 0.22 1.50
9 0.10 3.73 0.22 1.49

10 0.10 3.81 0.22 1.49
Proposed 0.06 4.40 0.20 1.44

TABLE V: Text-dependent ASV results (% of EERasv) for licit
condition for a different dataset of 13 speakers collected with
a different throat-microphone.

ASV system Condition AM TM Fused

GMM-UBM
Matched 0.55 5.47 0.94

Mismatched 4.99 7.08 3.41

dual-mic based ASV system. However, for the spoof condition,
TM-based system alone yields the lowest EER.

TABLE VI: Text-dependent ASV results for spoof condition.
Results are shown in terms of EER (in %) for two separate
microphones (AM and TM) using two different classifiers and
their combined mode with equal weight fusion. SAD labels
are always extracted with TM signals.

ASV system Condition AM TM Fused

GMM-UBM
Matched 27.71 1.24 6.78

Mismatched 28.46 2.50 17.67

i-vector
Matched 32.70 2.25 5.34

Mismatched 41.53 5.38 11.89

In another experiment, we varied the distance between the
throat microphone and the replay loudspeaker to investigate
which position of the throat microphone is the most difficult
condition for the ASV systems. We keep the position of
AM fixed. The EERs for clean, noisy and their averages
are shown in Fig. 7 for four different distances: 0 cm (i.e.,
attached), 3 cm, 6 cm and 9 cm. We find that the scenario

0 3 6 9
0

2

4
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8

Distance (in cm)

E
E

R
 (
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 %

)

 

 

Clean Noisy Average

Fig. 7: Performance of proposed dual-mic ASV system (with
GMM-UBM as a classifier) for different configurations of
replay setup. Here the distance between the TM and the
playback loudspeaker is varied but the position of AM is fixed.

when the TM is attached to the loudspeaker is relatively the
most difficult condition. However, we have not observed any
considerable difference by keeping the throat-microphone in a
small distance apart.

B. Voice Liveness Detection Performance

In the replay spoofing scenario, the accuracy of standard
ASV system is usually enhanced by integrating an auxiliary
standalone countermeasure with the ASV system. Following a
common evaluation strategy in the spoofing context [71], we
first evaluate the accuracy of the countermeasures in isolation
from any ASV system. To this end, we train our countermea-
sures with speech data from a set of eight speakers. Those
eight speakers belong to two of the sites that participated in
data collection, and this set is disjoint from the 30 speakers
used in the evaluation set. The four clean sessions of these
speakers are replayed and recorded in four different conditions.
These four conditions are the last four replay sessions of
Table I, i.e., Sessions 9 through 12. In total, we used 320
sentences to model the genuine class and 1280 sentences
from total four replay sessions to model the spoof class. In
test, we have total 300 genuine sentences and 3600 replay
recordings from 12 sessions. Out of these 12 sessions, the
replay settings for four of them (Sessions 9 through 12) are
present in training data (referred to as seen condition) while
the rest eight (Sessions 1 through 8) are absent in the training
data (referred as unseen condition).

We separately assess the accuracy of MFCC, LFCC, and
CQCC as the front-end spectral features with a GMM as
the back-end. The MFCC features were extracted using 20
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filters. 60-dimensional feature vector were formed by append-
ing the delta and double-delta coefficients with the static
coefficients. As for the CQCC and LFCC features, we extract
40-dimensional features by considering only the dynamic (i.e.,
delta and double-delta) coefficients. We apply neither feature
normalization nor speech activity detection. In the back-end,
512 Gaussians are used to model both live human and the
replay classes.

TABLE VII: Standalone voice liveness detection performance
(EERvld for clean/noisy) for MFCC, LFCC and CQCC features
using GMM-ML classifier with 512 mixtures. We have also
shown the performance for combined dual-mic based system
using equal weight score fusion and proposed joint feature.

Channel System Seen Unseen Pooled
AM MFCC-60 3.31 / 16.14 19.97 / 37.84 15.67 / 30.96
TM MFCC-60 0.00 / 0.00 6.83 / 3.27 5.55 / 2.57

Dual
Score Fusion 0.00 / 0.00 7.01 / 4.98 15.67 / 3.72
Joint Feature 0.00 / 0.00 4.76 / 6.10 3.65 / 4.93

AM LFCC-40 30.10 / 31.90 35.23 / 36.28 34.00 / 35.58
TM LFCC-40 0.22 / 1.21 2.03 / 3.67 1.67 / 3.06

Dual
Score Fusion 0.27 / 1.68 1.84 / 2.96 1.46 / 2.64
Joint Feature 0.00 / 0.00 0.00 / 0.04 0.00 / 0.03

AM CQCC-40 21.58 / 24.92 30.53 / 31.40 27.53 / 29.67
TM CQCC-40 5.10 / 9.71 7.33 / 12.83 6.83 / 12.00

Dual
Score Fusion 3.75 / 7.91 6.67 / 11.69 5.76 / 10.47
Joint Feature 0.00 / 0.43 0.33 / 2.09 0.33 / 1.78

The performance of the stand-alone countermeasures is
shown in Table VII for the seen and unseen conditions
separately, as well as for the combined or ‘pooled’ case. Voice
liveness detection accuracy is higher for the seen condition,
as expected. The results further indicate that voice liveness
detection performance of TM-based method systematically
outperforms the AM-based approach by a large margin. This
confirms our hypothesis that the TM signal is much harder to
spoof.

The performance is also improved by combining the AM
and the TM systems. Contrasting the score fusion and feature
feature strategies, the latter is clearly more effective. The time-
aligned joint distribution of AM and TM features distinguishes
live and replay voices in a more efficient manner by capturing
useful correlation across the two sensors. For this reason, the
EERs are drastically reduced and sometimes even equal to
zero7. We have also found that LFCCs are more efficient than
baseline MFCC and state-of-the-art CQCC features.

C. Integration of ASV and Voice Liveness Detector

While the evaluation of the spoofing detector in isolation
from an ASV system is instructive, the main question of in-
terest is the accuracy of the final, integrated system. Integration
of countermeasures with recognition system is an interesting
open research problem within biometrics [72]. In this work, we
adopt a simple decision-fusion method presented e.g. in [70],

7Similar to any corpus-based empirical speech processing research, this
should be taken as an encouraging preliminary result, rather than a general
claim of a solved problem, given the relatively small corpus size.

[73]. This is accomplished by ‘AND’ing the decisions from
ASV and VLD module which were computed with separate
thresholds. For the ASV system, we set the detection threshold
to the EER operating point using the 13 disjoint speakers that
are not part of the evaluation. For the voice liveness detection
system, in turn, we set the decision threshold to zero following
the methodology used in [74].

TABLE VIII: Speaker verification performance in terms of %
of FAR and % of FRR for standalone and integrated system.
Here, Baseline refers to the system with only acoustic mic.
FAR(Z) and FAR(R) denote the false alarm rate for zero-effort
imposter trials and replay imposter trials.

System Condition FAR(Z) FAR(R) FRR

Baseline ASV
Matched 0.10 84.25 0.00

Mismatched 4.25 69.69 4.67

Baseline ASV with CM
Matched 0.10 18.17 10.33

Mismatched 0.87 7.03 72.00

Dual-Mic ASV
Matched 0.03 39.67 0.67

Mismatched 0.60 18.75 3.33

Dual-Mic ASV with CM
Matched 0.03 0.00 0.67

Mismatched 0.60 0.00 4.33

We consider only the GMM-UBM based ASV system
for this integration exercise, as shown in Table VIII. The
baseline AM-based system is combined with the best AM-
only countermeasure, i.e., MFCC-60 shown in Table VII. On
the other hand, the dual-mic system is combined with the
best liveness detector that uses concatenated 80-dimensional
LFCCs from AM and TM.

The results shown in Table VIII indicate that combining
the countermeasure with ASV systems considerably helps
in reducing the FAR(R). For example, FAR(R) drops from
84.25% to 18.17% for baseline AM-based system in matched
condition. Similarly, for proposed dual-mic system, FAR(R)
reduces from 39.67% (matched) and 18.75% (mismatched) to
zero percent. Note that the performances in Table VIII are
shown by pooling all trials from seen and unseen conditions.

VI. CONCLUSIONS

Conventional single-channel acoustic microphone ASV sys-
tems without any countermeasures are easily spoofed using
replay attacks. Most of the existing study on replay attack
detection report results of speech countermeasures with single
microphone based systems. For improved protection of the
ASV system from replay attacks, especially under adverse
conditions, we proposed the use of an additional contact
sensor, a throat microphone, to enhance ASV robustness and to
enhance security under replay attacks. By its inherent nature,
the throat microphone signal is difficult to spoof. Our exper-
imental results agree well with our hypotheses. Specifically,
we have found that (1) replay attack detection performance
is considerably improved using throat microphones, (2) the
joint use of information from two microphones also further
helps in detecting replayed speech, consistently across clean
and noisy conditions considered, and finally, (3) integrating the
throat mic based robust countermeasure with the ASV system
notably reduces the false acceptance rate.
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Our work has a few limitations that should be addressed
in future research. As there were no prior work or off-the-
shelf corpus available to study replay attacks against throat-
microphone based dual channel ASV systems, it was necessary
to define the attack scenarios and collect a custom data
consisting of a relatively low number of subjects (38). A larger
scale testing is needed to claim generality of the results beyond
our speaker population.

Nevertheless, advancing on most prior work on replay
evaluations that almost exclusively used clean enviroments
or homogenous rooms across training and test sets, we have
demonstrated reasonable generality beyond training environ-
ments and -speakers. Our preliminary but encouraging findings
clearly warrant further investigations to the general use of
throat microphones, and potentially other non-acoustic sen-
sors, in the ASV context under spoofing attacks. For instance,
it would be interesting to study text-independent ASV sce-
narios, and to devise simplified energy- or correlation based
countermeasures to benefit more effectively from the cross-
channel information.
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