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A Log Domain Pulse Model

for Parametric Speech Synthesis
Gilles Degottex, Pierre Lanchantin and Mark Gales

Abstract—Most of the degradation in current Statistical Para-
metric Speech Synthesis (SPSS) results from the form of the
vocoder. One of the main causes of degradation is the recon-
struction of the noise. In this article, a new signal model is
proposed that leads to a simple synthesizer, without the need
for ad-hoc tuning of model parameters. The model is not based
on the traditional additive linear source-filter model, it adopts a
combination of speech components that are additive in the log
domain. Also, the same representation for voiced and unvoiced
segments is used, rather than relying on binary voicing decisions.
This avoids voicing error discontinuities that can occur in many
current vocoders. A simple binary mask is used to denote the
presence of noise in the time-frequency domain, which is less
sensitive to classification errors. Four experiments have been
carried out to evaluate this new model. The first experiment
examines the noise reconstruction issue. Three listening tests
have also been carried out that demonstrate the advantages of
this model: comparison with the STRAIGHT vocoder; the direct
prediction of the binary noise mask by using a mixed output
configuration; and partial improvements of creakiness using a
mask correction mechanism.

Index Terms—speech synthesis, text-to-speech, parametric
speech synthesis, acoustic model, voice, pulse model

I. INTRODUCTION

Text-to-speech is a useful technology in many industrial

applications and also has application in the area of speech im-

pairment [1]. Statistical Parametric Speech Synthesis (SPSS)

systems using waveform parametrisation (vocoding) [2], [3],

[4] offers a means to model and manipulate the voice where

concatenative synthesis [5], [6] lacks this flexibility. This

inflexibility limits the range of application area for example

when adapting a voice to another one is necessary [1]. On

the other hand, concatenative synthesis offers a perceived

quality that is still hard to reach for SPSS [7], [8] due to the

limitations of current modelling approach. Even though most

SPSS statistical models are currently trained on a signal model

(using a vocoder parametrisation), waveform level synthesis

(without vocoder) has also been proposed [9]. This offers

speech quality comparable to concatenative synthesis, but

requires a large quantity of data and computation power.

Thus, vocoder-based SPSS still offers a flexible and tractable

solutions that could be improved in terms of quality.

The quality of current vocoder-based SPSS is sufficient for

some applications (e.g. GPS devices in noisy environment).

However, it is not satisfactory for many others applications

(e.g. use in quiet environment, game and music industry). The

vocoder is responsible for a substantial part of the quality
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degradation [8]. The ability of the vocoder to resynthesize all

of the components of the speech signal is obviously important

to retain all of the perceived characteristics that the voice

can produce. This ability also needs to apply to all speaking

styles, voice qualities and attributes. Otherwise, the vocoder,

as well as the SPSS system using it, would be appropriate

for a specific set of voices, but would systematically fail at

reproducing the rest of the voice space. Within the vocoder,

the flexibility of the signal model is often limited, either in its

design or by using regularisation techniques. To compensate

for this lack of flexibility, many ad-hoc techniques currently

exists for tunning the perceived attributes of a synthesis a

posteriori (e.g. variable or constant all-pass filtering, forced

maximum voiced frequency). This is obviously a workaround

and it eludes the modelling of the attributes these techniques

target, thus limiting the range of voices that the training

process can absorb and represent. The signal model should

be flexible enough for representing all perceived attributes the

voice can have. Using a uniform representation for voiced and

unvoiced regions is a step towards this direction as it allows

independent transitions from deterministic to noisy transitions

and vice-vice versa at any time and any frequency. It also

simplifies the learning process and relieves the architecture

of the acoustic modelling. Continuous f0 modelling and uni-

form features have been suggested for this purpose[10], [11],

[12]. Finally, and not least, ad-hoc parametrisation of signal

models often lead to intractable tuning issues that depend on

very specific expertise and know-how, which can impede the

overall research methodology and progress in research about

vocoding.

STRAIGHT is currently the most used vocoder for SPSS

[13], [14]. It uses a voicing decision in order to ensure the

random excitation of unvoiced segments, similarly to other

vocoders [15], [16], [17], [18]. The noise component in

voiced segments is analyzed and reconstructed through an

aperiodicity measure, which is expressed as a noise level below

the amplitude spectral envelope. This measure computes the

difference between the harmonic peaks and spectral valleys

[14]. However, in noisy time-frequency regions of voiced

segments, this measure systematically underestimates the noise

level because the peaks-to-valleys difference is always positive

and substantial in such segments whereas it should be aligned

to the amplitude spectral envelope and not located below it.

Therefore, the synthetic noise in the generated waveform tends

to be lower than that of the original signal (as demonstrated

and illustrated in Sec. IV-A). On the one hand, this under-

estimation favours a slight buzziness in the voiced part of

the transients, while the voicing decision ensures the proper
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randomization of the fricatives and silences. Interestingly, it

has been shown that a slight buzziness (i.e. a lack of noise)

is preferred over noisiness in the transients [19]. On the other

hand, by mitigating the noise component, this noise underes-

timation tends to produce always the same voice quality, a

slightly tense and buzzy voice. This is obviously a lack of

flexibility from the vocoder since it does not yield an accurate

noise resynthesis that is necessary for good reconstruction of

breathiness and other voice qualities that involve the presence

of noise in voiced segments. As mentioned above, this is

a major limitation restricting not only the coverage of the

voice attributes, but also limits the overall perceived quality

in general.

In this article, we want to address the issues above by

suggesting a new and simple synthesizer that should reproduce

the noisy time-frequency regions more accurately than the

STRAIGHT vocoder, a well known candidate of the additive

linear source-filter model. The synthesizer, called Pulse Model

in Log-domain (PML), generates a time sequence of wide-

band pulses, in the spectral domain, as in the STRAIGHT

synthesis [13], [14], rather than the approaches adopted in

HNM[20], HMPD[12] and Ahocoder[17] that synthesise si-

nusoidal components. In both voiced and unvoiced segments,

a pulse is treated as a morphing between a Dirac function and

a short segment of Gaussian noise, followed by convolution

with a Vocal Tract Filter (VTF). Obtaining a perceptually

meaningful morphing between a Dirac and a specific time

segment of noise is far from straightforward. Inspired by the

voice production, the traditional source-filter model suggests

an additive weighting in the linear domain [21]. With this

approach, the Dirac component will disappear only when

the noise level masks it. This masking effect is far from

obvious partly because of the noise level and Dirac amplitude

are dependent on two different normalisations in the spectral

domain. Indeed, in order to control the noise component, its

level has to be normalised with respect to the energy of the

synthesis window. On the contrary, in order to control the

Dirac component, its amplitude has to be normalised with

respect to the sum of the synthesis window. The masking affect

in time domain is, thus, an indirect result of the mixture of

noise and Dirac according to the variable window length that

has to follow the fundamental period. An explicit control of

this perceived element would be obviously more convenient.

For this reason, and for the problem of underestimated ape-

riodicity mentioned above, the Dirac component tends to rise

above the noise, which often leads to extra buzziness. The

all-pass filter commonly used is then a convenient technique

for reducing this buzziness. Another workaround is to lower

the the deterministic component in noisy frequency bands

(thus complicating the synthesis process) or split the signal

into multiple bands of interleaved deterministic and noisy

contents [22], [16], [17]. The HMPD vocoder [12] does not

have this issue since it randomises the phase of the harmonics

proportionally to a Phase Distortion Deviation (PDD) feature,

which gradually scatters the deterministic content. Its quality

is nevertheless bounded by the frequency resolution given by

the fundamental frequency curve f0 [23].

In PML, we suggest to mix the deterministic and noise

components with a weighting in the log spectral domain (i.e.

multiplication in the linear spectral domain and convolution

in the time domain). We expect some advantages of this ap-

proach. Firstly, the convolution of the Dirac function with the

noise randomises the phase spectrum and avoids any possible

residual buzziness. This phase randomisation process is similar

to the structural noise mentioned in previous works [24] and

the ad-hoc all-pass filter technique. Secondly, by normalising

the noise by its energy, the noise’s amplitude is aligned to the

deterministic content. Thus, by convolution of the two, the

resulting amplitude is preserved. Finally, the convolution by

the VTF spectrum will set the final amplitude of the speech

pulse, independently of the nature of the source below it.

This is an interesting property that splits the modelling of

the amplitude from that of the nature of the phase, without

having to deal with masking effects. Thirdly, and not least, this

log-domain formulation leads to a very simple realisation of

the synthesizer as shown in the next section. In this work, we

simplify the weighting function to be a binary mask for reason

explained later on. For each time-frequency bin, the Dirac

function of each pulse is either left untouched or fully replaced

by the corresponding bin of the spectrum of a Gaussian noise.

From this perspective, the suggested vocoder is similar to the

Multi-Band Excitation vocoder (MBE)[22], except that wide-

band pulses are synthesized at each period instead of harmonic

components, and a uniform representation for the voiced and

unvoiced segments is used in PML. This binary noise mask

can also be seen as a time-frequency binary voicing decision,

which can take any shape and is not limited to time limits

(as with voicing decisions) and/or frequency limits (as with a

maximum voiced frequency [15], [16], [17]).

In Sec. II, we first describe the theory behind the synthesizer

as well as the necessary technical details of the vocoder’s

implementation. In a first experiment in Sec. IV-A, we then

demonstrate the problem of noise reduction that exists in

STRAIGHT. The remaining experiments are dedicated to

listening test results about SPSS comparing different training

configurations. A last experiment presents some results about

a correction of the noise mask for creakiness. Compared to the

first presentation of PML in [23], we dropped the comparisons

with HMPD. Even though this could have brought a second

state-of-the-art method in the experiments, the results in [23]

show clearly that PML solves all the issues of HMPD and

outperform it in the listening tests. Given its broad use, the

STRAIGHT vocoder [25], [26], [27], [28], [29], [30] seems to

be a sufficient baseline and a solid candidate of linear source-

filter model that we need for this presentation.

II. THE PML SYNTHESIZER

The synthesis process of PML needs the following features

that are illustrated in Fig. 1:

f0(t) A fundamental frequency curve, which does not ex-

hibit voicing decisions. If the provided fundamental

frequency does contain zeros, these segments can

be filled by linear interpolation between voiced seg-

ments, and extrapolated at the beginning and end of

the signal. The REAPER f0 estimator was used in

this work [31].
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V (t, ω) The VTF response, which is assumed to be minimum

phase. For reasons of comparison, the spectral enve-

lope estimate provided by the STRAIGHT vocoder

[13], [14] was used in this work.

M(t, ω) A binary mask in the time-frequency space. Here 0

is for deterministic regions and 1 for noisy regions.

In this work, this mask is derived from the Phase Dis-

tortion Deviation (PDD) [12] PDD(t, ω) as described

below. This mask can also be modified, as presented

in Sec. II-B, with the aim of improving creakiness.
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Fig. 1. From top to bottom: a recorded waveform used to extract the following
elements; The continuous fundamental frequency curve f0(t); the amplitude
spectral envelope V (t, ω); the Phase Distortion Deviation PDD(t, ω) (a
measure of phase randomness. The warmer the colour, the bigger the PDD
value and the noisier the corresponding time-frequency region); the binary
mask M(t, ω) derived from PDD, which allows to switch the time-frequency
content from deterministic (white) to random (black). The features that are
necessary for PML synthesis are only: f0(t), V (t, ω) and M(t, ω).

Since f0(t) and V (t, ω) are extracted using state-of-the-

art methods previously published (REAPER and STRAIGHT,

respectively), the rest of this section describes only how to

compute the noise mask and how to correct it for acoustic

elements that exhibit creakiness. The synthesis process of a

waveform from a given set of features then follows.

A. Estimation of the noise mask

A simple means to compute a binary mask M(t, ω) is

adopted based on a measure of harmonicity or how sinusoidal

is the speech signal in the time frequency plan. The Phase

Distortion Deviation (PDD) [12], [32], [33] is used for this

purpose and the mask is obtained by thresholding the PDD

values.

In order to compute PDD, the Phase Distortion (PD) at each

harmonic frequency is first computed [12]:

PDi,h = φi,h+1 − φi,h − φi,1 (1)

where φi,h is the phase value at frame i and harmonic h, as

measured by a sinusoidal model [34], [20], [35]. A step size

of one forth of a fundamental period was used in this work to

split the analysed signal into frames as in [12]. PDD is then

computed as the short-term standard-deviation of PD:

PDDi(ω) = std
i
(PDi(ω))

=

√

−2 log
∣
∣
∣
1
K

∑

n∈C

ej(PDn(ω))
∣
∣
∣

(2)

where C = {i− K−1
2 , · · · , i+ K−1

2 } with K = 9 in this work

and PDi(ω) is the continuous counterpart of PDi,h obtained by

linear interpolation across frequency.

In [12], it is shown that this PDD measurement saturates

below 1.0 and, thus, cannot estimate very high values of

phase variance. Consequently, a threshold of 0.75 was used

to force the variance to a fixed higher value in order to

ensure the proper randomization of the noise segments. This

threshold value is also supported by the first experiment of

this article (Fig. 4). To summarize here briefly, this experiment

shows that this threshold splits the PDD distribution computed

on speech recordings into two modes, one related to the

deterministic component and the other related to the noisy

components. Therefore, in this work the same threshold was

used for building the mask: M(t, ω) = 1 if PDD(t, ω) > 0.75
and zero otherwise. This bainry mask is also convenient

for two complementary reasons: First, estimation noise is

always present in (2) (e.g from sinusoidal estimation error,

interferences from the VTF). As a result, the PDD value

is always slightly over-estimated and a minimum of noise

will always be generated in the resynthesis, which leads to

hoarsness in voiced segments. Therefore, taking this element

into account as well as the saturation issue of PDD mentionned

above, the binary mask is also a convenient workaround that

alleviates these two problems. Future works might focus on

solving the underlying cause of these problems in order to use

a continuous value in M(t, ω). Different noise measurements

could also be interesting research directions (e.g. wavelet-

based).

Note that the phase measurement at DC is unreliable and

is forced to a zero value. Thus, the PDD computation is zero

below the 2nd harmonic and, therefore, the mask M(t, ω) is

zero in this frequency band. This implies that the first harmonic

is never randomized. This is not a problem since, in silences
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and fricatives, the corresponding amplitude is rather weak so

that this sinusoid is hardly perceived. Additionally, in voiced

segments, the first harmonic is always deterministic for all

voice qualities.

B. Mask correction for creakiness

To model voiced and unvoiced time-frequency regions, most

vocoders rely on an f0 estimate and/or voicing detection that

assume voiced segments to have sinusoidal content. However,

various segments of the speech signal are voiced with very

non-periodical characteristic of the pulse’s position, called

creakiness in this presentation, as in creaky voice phonatory

mode [36] and sometimes in transients. Thus, the correspond-

ing sinusoidal content in these segments is highly disturbed

and often wrongly classified as unvoiced segments, leading

to hoarseness and noisy transients in the synthesized voice.

This problem is a recurrent issues in SPSS, which has been

addressed by various means depending on the vocoder or

acoustic model used [29], [37], [38].

The noise mask used in this work, based on PDD, en-

counters also this problem since PDD uses a harmonic model

(Eq. 1). Therefore, in this section, we propose a correction

mechanism of the noise mask in order to improve creakiness.

An energy assignment technique is adopted for this purpose.

The correction will modify the original noise mask and the

synthesis stage will be kept untouched, as described in Sec.

II-C.

1) Time assignment: The first and fundamental step to

estimate this correction mask consists in a measurement of

energy concentration in time, which is inspired by the time

reassignment technique [39], [40]. The reassignment operator

is defined by:

t̂(t, ω) = t−
∂φ(t, ω)

∂ω
(3)

where the second term is the group delay of S(t, ω) the Fourier

transform of the speech signal at time t using an analysis

window of 3 average periods in this work. This operator

is commonly used to create the time-reassigned spectrogram

[39], [40]:

Ŝ(t, ω) =

∫
∞

−∞

|S(s, ω)|δ
(
t− t̂(s, ω), ω

)
ds (4)

In our application, the information related to the amplitude

of the signal is already modelled by the spectral envelope

estimate V (t, ω). Thus, to avoid redundancy between the

features, we consider that the reassigned amplitude is constant

for all frequencies (S(t, ω) = 1 ∀t, ∀ω) in (4) and the

reassignment processing becomes an assignment measure:

Â(t, ω) =

∫
∞

−∞

δ
(
t− t̂(s, ω), ω

)
ds (5)

In practice, the integration in (5) is obviously discrete. The

analysis instant t is limited to instants ti that are distant of

a constant step size. For Â(t, ω) to be similar enough to

its continuous counterpart, the time resolution has to be thin

enough. Based on informal experiments, we chose a step size

of 1ms, which seems enough for the targeted purpose. Once

the mask correction is finished, it can be resampled to the

5ms resolution used by the other features. An example of

Â(t, ω) is shown in Fig. 2 (second row from the top). Straight

vertical lines appear in regions of creakiness (e.g. in the blue

intervals) and plosives (e.g. in the red interval). Those straight

lines correspond to concentration of energy at a time instant

(e.g. glottal closure instant or plosive impulse).

Even though the next steps seem heuristic, they aim simply

at obtaining a mask correction that put in emphasis time

frequency regions that contain mainly creakiness.

2) Cepstral filtering: This second step aims mainly at

denoising Â(t, ω) through cepstral liftering across frequencies.

The used cepstral order is difficult to determine precisely as

it depends solely on the nature of the analysed signal, here

speech. We basically wish to denoise Â(t, ω) and avoid details

that would increase the training load of the Artificial Neural

Net (ANN) for no benefit. Based on observation of Â(t, ω) on

a few recorded utterances, we saw that when a pulse appears,

it spans a wide frequency band (e.g. in the blue intervals on

2nd plot from the top in Fig. 2). By trying different values, we

found that an 8-order liftering exhibits a good balance between

the denoising and the emphasis of the impulses, as shown in

3rd plot from the top in Fig. 2, leading to Ã(t, ω).
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Fig. 2. Construction of the creakiness correction MC(t, ω), the darker the
colour the higher the value, from top to bottom: A utterance of recorded

speech; Time assignment Â(t, ω); After cepstral liftering Ã(t, ω) in order to
remove the noise and emphasize the impulses; After thresholding and mor-
phological closure to remove the dependency on f0(t); After morphological
opening to remove isolated impulses (e.g. plosives) and dilatation.



5

3) Thresholding and morphological operations: In noisy

time-frequency regions the assignment operator distributes the

energy equally in time. Thus, in these regions, values in [0, 1]
are the most likely to appear, whereas higher values are mainly

related to time synchronous events. A first binary mask is thus

obtained by thresholding Ã(t, ω) with a value of 1.

Creakiness appears then as interleaved regions of noised

and voiced segments as in Ã(t, ω), because Ã(t, ω) is depen-

dent on the original position of the glottal closure instants.

The final feature correction should not be dependent on the

glottal closure instants because the noise feature has to be

uncorrelated from the f0 feature. To remove this dependency,

a morphological closure [41] is employed for linking the

pulses as a spectral envelope would do the same between the

harmonics in spectral content (see 4th plot from the top of

Fig. 2). The morphological closure consists of a dilatation

followed by an erosion of the same size. The size of the

closure is chosen to be that of a period of 70Hz, which is a

usual average f0 for creaky voice [36] that composes mainly

creakiness. Finally, a morphological opening (an erosion of a

period of 70Hz followed by a dilatation of the same size) is

also used to remove isolated impulses (e.g. plosives), followed

by a dilatation (of an average period) to make the first and last

impulse of a region as wide as an average pulse. These last

two operations leads to the final creaky voice mask correction

MC(t, ω) (see bottom plot of Fig. 2).

To combine the original noise mask obtained by threshold-

ing PDD with the creakiness correction MC(t, ω), it is con-

sidered that a time-frequency sample is noisy (M(t, ω) = 1)

if and only if PDD(t, ω) > 0.75 AND MC(t, ω) =0.

One can note that this procedure makes use of many

parameters that might need tuning. However, these tunning

parameters are the same for all the voices used in the experi-

ments in Sec. IV. This should better support the generality

of the results instead of hand tuned parameters for each

voice. Additionally, the parameters are used to tune the feature

computation a priori, before any statistical modelling, and not

a posteriori during the synthesis stage, as in ad-hoc vocoding

techniques. Therefore, a training system using the noise mask

has the possibility to learn all of the features’ characteristics

and their inter-correlations with other features. On the contrary,

parameters that are tunned a posteriori, as in ad-hoc vocoding

techniques, cannot be learned by the statistical model, they

would have to be tunned manually a posteriori, which would

limit the practicability.

C. Signal synthesis

The generation of the waveform follows a pulse-based pro-

cedure, similarly to the synthesis process of the STRAIGHT

vocoder. Short segments of speech signals, called pulses

(roughly the size of a glottal pulse) are generated sequentially.

In both voiced and unvoiced segments, the voice source of

each pulse is made of a morphing between a deterministic

impulse and Gaussian noise. This source is then convolved by

the Vocal Tract Filter (VTF) response and then overlapped-add

with the other pulses. This section describes the details of this

procedure.

A sequence of pulse positions ti is first generated all along

the speech signal according to the given f0(t) feature:

ti+1 = ti + 1/f0(ti) (6)

with t0 = 0. Then, to model the speech signal around each

instant ti, the following simple formula is applied:

Si(ω) = e−jωti · V (ti, ω) ·Ni(ω)
M(ti,ω) (7)

where Ni(ω) is the Fourier transform of a segment of Gaussian

noise starting at
ti−1+ti

2 and finishing at
ti+ti+1

2 , whose central

instant ti is re-centered around 0 (to avoid doubling the delay

e−jωti for the noise in Si(ω)). Additionally, the noise Ni(ω)
is normalized by its energy to avoid altering the amplitude

envelope that has to be controlled by V (t, ω) only.

To better understand the elements involved in this model,

its log-domain representation should be examined:

logSi(ω) =

Position
︷ ︸︸ ︷

−jωti +

Amplitude
︷ ︸︸ ︷

log |V (ti, ω)|+

Minimum phase
︷ ︸︸ ︷

j∠V (ti, ω)

+M(ti, ω)
︸ ︷︷ ︸

Noise mask

·
(

log |Ni(ω)|
︸ ︷︷ ︸

Noise amplitude

+ j∠Ni(ω)
︸ ︷︷ ︸

Random phase

)

(8)

The Position defines the overall position of the voice source

in the speech signal. This identifies the position of the Dirac

impulse of the deterministic source component. The Amplitude

defines the amplitude spectral envelope of all of the resulting

segment of speech, independently of the source properties.

The Minimum phase is built from the Amplitude through the

Hilbert transform using the real cepstrum, in order to delay the

energy of the pulse, as natural resonators do (see [12, Eq.(5)]

or more generaly [42]). The Noise mask provides the means

to switch between deterministic or random voice source at

any time-frequency point. As already above in this work, this

mask is a binary value. For M(t, ω) = 1, the Noise amplitude

will mainly correct the Amplitude in order to account for the

difference between deterministic and noise normalisation (sum

and energy, respectively). This ensures that the envelope of the

noise amplitude is always at the same level as that given by

the Amplitude spectral envelope |V (t, ω)|. With M(t, ω) = 1,

the Random phase will also scatter the phase of the Dirac

function and replace it by that of Gaussian noise.

In terms of model control, PML drastically simplifies the

handling of the noise compared to the traditional source filter

model. First, the low quefrency of its amplitude is only con-

trolled by |V (t, ω)|, as with the deterministic content. Thus,

the value of the noise mask does not change the perceived

amplitude, it mainly changes the nature of the phase. This

dissociates the control of the amplitude from that of the phase.

Second, the masking effects and their mastery, as seen in the

traditional additive linear source-filter model and discussed

above, are alleviated. It is enough to have M(t, ω) = 1 for

a given t and ω, to ensure the full randomization of the

corresponding spectral content. Thirdly, the value of the noise

mask is binary, making it a very simple feature to model by

statistical approaches, as shown in Sec. IV-C. Finally, this

suggested model is still a source-filter model, but with the

combination of the source and filter done in the log-domain
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instead of the linear domain (thus the chosen name Pulse

Model in Log domain).

In order to build the complete speech signal from the

pulses generated by (7), overlap and add is applied, without

any additional synthesis window, neither consideration of

windows’ sum nor normalisation:

š(t) =

I−1∑

i=0

F−1
(

Si(ω)
)

(9)

where I is the number of pulses in the synthesized signal.

It is also worth mentioning the following properties that the

suggested model satisfies:

1) If M(t, ω) = 0 ∀ω, ∀t, (7) reduces to:

Si(ω) = e−jωti · V (ti, ω) (10)

The time domain signal becomes the impulse response of the

filter delayed at the pulse position ti. In this case the signal

is fully deterministic.

2) If M(t, ω) = 1 ∀ω, ∀t, (7) reduces to:

Si(ω) = e−jωti ·Ni(ω) · V (ti, ω) (11)

The time domain signal is a filtered noise segment. After

summing the terms Si(ω), this corresponds to a concatenation

process of coloured Gaussian noise segments into a continuous

noise signal (the last noise sample of the pulse i is the sample

before the first sample of the pulse i+1). Thus, no periodicity

appears in this noise, even though the synthesis is driven by

a continuous f0(t). f0(t) influences only the time resolution

of the dynamic noise filtering through the size of the noise

segments (ti+1 − ti−1)/2. For f0 values of 70Hz, a worst

case scenario, this still allows to change the noise’s timbre

each 14ms.

III. IMPLEMENTATION DETAILS

The theoretical description of PML needs a few comple-

mentary technical remarks. Note that for the sake of repro-

ducibility, the source code of PML is available at:

https://github.com/gillesdegottex/pulsemodel

• In a traditional overlap-add stage (e.g. in PSOLA-based

techniques [43], [44]), a window covering the whole pulse

is commonly used to avoid cutting the signal too sharply

at the boundaries of the time segment. Such a window

is not necessary in the PML synthesis. The source signal

has no energy before
ti−1+ti

2 and V (ti, ω) is built as a

minimum phase filter, a window on the left of the pulse

seems thus unnecessary. However, because the Gaussian

noise segment is altered in frequency by the noise mask,

Gibbs phenomena [42] can appear before
ti−1+ti

2 in the

source signal that can lead to pre-echo effects. To avoid

these artefacts, the noise mask is first smoothed across

frequency (using a hanning window of 9 bins in the

following experiments). Then, a half-window of 1ms is

used on the left of the time segment to eliminate any

residual energy. On the opposite side of the time segment,

on the right, because of the delays introduced by V (ti, ω),
there is energy after

ti+ti+1

2 that will overlap with the

time segment of the next pulse i+1. This is not an issue

for two reasons: i) the impulse response of V (ti, ω) is

decaying exponentially, ensuring that the signal’s energy

is weak enough after some time extent (50ms is a safe

duration for the formants’ bandwidth of natural speech).

ii) Each pulse is likely to have its energy delayed in a

very similar way as the next pulse (as long as VTF is

very similar from one pulse to the next). As a result, the

tail of each pulse roughly replaces the energy which is

delayed in the next pulse, so that there is no sudden burst

of energy between two pulses.

• Instead of using a DFT size that covers the whole

synthetic signal, the DFT size used for each pulse can be

reduced in order to cover only an interval around each

instant ti (e.g. 2 periods before ti and 50ms after). This

drastically reduces the size of the DFT used in (7) and

improves the computational efficiency (A DFT size of

4096 was used for the following experiments).

• The synthesis procedure requires only 2 FFT per pulse.

One FFT is needed to compute Ni(ω), which needs a

specific duration for each pulse, and one inverse FFT to

compute the time domain signal (Eq. 9). If it is not pre-

computed and cached, the computation of the minimum

phase of the VTF ∠V (ti, ω) from a given amplitude

envelope requires also 2 extra FFT per pulse. This is

clearly efficient enough for allowing real-time synthesis.

• Finally, most estimators of amplitude spectral envelope

overestimate the DC component (often by ignoring the

lips radiation effect in the spectral envelope model [21]).

To avoid any side effect of this issue, the amplitude

spectral envelope is high-pass filtered at f0/2. This avoids

residual DC component to be cut too sharply when

overlapping the pulses in the time signal.

Note that, all the parameters mentioned above (spectral

smoothing to reduce Gibbs phenomena, half-window for anti-

pre-echo and high-pass cutoff) are used to avoid artefacts that

commonly happens in audio processing and do not alter the

perceived characteristics of the voice quality and timbre. In

other words, for PML-based synthesis only, there is no ad-hoc

tuning parameter that control the speech characteristics.

IV. EXPERIMENTS

This section presents results of various experiments using

the suggested PML synthesizer. The first one address the noise

reconstruction between STRAIGHT and PML-based vocoders,

while the rest of the experiments aim at assessing PML in

various contexts of SPSS.

A. Noise reconstruction during analysis/re-synthesis

In this first experiment, the problem that occurs with the

reconstruction of the noise component in STRAIGHT vocoder

is illustrated, as discussed in the introduction, and the solution

offered by a PML-based vocoder is compared (similar results

can be found in [23] for the HMPD vocoder [12]).

Using both STRAIGHT and PML-based vocoders, vocoded

speech utterances (i.e. analysis/resynthesis without any sta-

tistical modelling) are investigated for 6 different English

voices [45], [46], [7] (3 females and 3 males; 2 females (CLB
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Fig. 3. An example of PDD feature computed from: an original recording and
the analysis/resynthesis of STRAIGHT and PML (top to bottom). The vertical
lines show the voiced/unvoiced transitions used by STRAIGHT. Voiced and
Unvoiced segments are annotated by ’v’ and ’u’, respectively.

voice from Arctic[45] and LS from Blizzard[7]) and 2 males

voices (BDL from Arctic[45] and NI from [46]) at 32kHz

sampling rate and 1 female (CLB from Arctic[45]) and 1

male voice (RMS from Arctic[45]) at 16kHz; 4 American

(SLT,CLB,BDL,RMS) and 2 British(LS,NI)). Then, the PDD

is computed on top of the resulting vocoded signals in order

to measure how well the signal randomness is reproduced

by each vocoder. Fig. 3 illustrates an example of this PDD

computation on top of the vocoded signal. In unvoiced seg-

ments, one can see that the randomness is reasonably well

reconstructed by the two vocoders. In STRAIGHT, this is

ensured by the voicing decision that forces full randomness

in unvoiced segments no matter the aperiodicity model in

voiced segments. Conversely, for voiced segments, the PDD

feature computed from the STRAIGHT vocoded signal is often

lower than that from the original signal. The PDD feature

computed from PML vocoded signal shows a more accurate

reconstruction of the noisy time-frequency regions.

The observation on the example from Fig. 3 is supported

by the estimated probability density of PDD and aperiodicity

values in the voiced segments of 100 utterances for each of

the 6 voices mentioned above, shown in Fig. 4. For the PDD

measures, the three distributions exhibit basically 2 modes, a

small one close to zero and a larger one between 0.5 and 1.5,

which roughly correspond to deterministic and noisy time-

frequency regions, respectively. Firstly, one can see that the

lower mode of the PML’s distribution is stronger than the

others. This is due to the mask that forces the PDD values be-

low 0.75 to zero. One might actually argue that, consequently,

voiced regions might lack a minimum of randomness. Using

continuous values instead of binary values for M(t, ω) can be

a potential solution to alleviate this issue in future works, if

the pitfalls mentioned in Sec. II-A can be avoided. Secondly,

and more importantly, the higher mode of the distribution

corresponding to STRAIGHT’s PDD is clearly lower than that

of the original signal (at 0.5 instead of ∼1.2). This mode’s

maximum is below 0.75 for STRAIGHT, whereas it is above

for the original signal. It was shown in [12] that values over

this threshold are critically important for reconstructing the

noisy characteristics of the voice, otherwise the phase is too

concentrated in time and the synthesis sounds buzzy. This also

demonstrates the reduction of the noise component through

STRAIGHT’s vocoding in the voiced segments, as discussed

in the introduction. For the PML-based vocoder the higher

mode of the original distribution is better reconstructed, which

should lead to a better reconstruction of noisy components

in voiced segments. A similar observation can be made for

the aperiodicity measures in the bottom plot of Fig. 4. Even

though only one mode can be observed for each distribution,

STRAIGHT’s mode is slightly lower than that of the orignal

PML ones. On the contrary, the mode of PML is better aligned

on the mode of the original signal.

B. Subjective quality of analysis/re-synthesis

In this experiments, PML is evaluated against STRAIGHT

in terms of quality in analysis/resynthesis, thus, without any

statistical modelling of the parameters. Two versions of PML

are used in this comparison, PML with and without creakiness

correction. The REAPER f0 estimator and STRAIGHT’s

spectral envelope are extracted for both STRAIGHT and PML-

based resynthesis. The noise features then depend one the

vocoder, aperiodicity for STRAIGHT and noise mask (with

or without creakiness correction) for PML.

50 sentences are analysised and resynthesized for each

method compared and each of the 6 voices mentionned above.

A Mean Opinion Score (MOS) listening test is then carried out

to ask listeners to assess the overall quality of each resynthesis

compared to the original sound, for 6 sentences [47]. Using

crowdsourcing, workers from Amazon Mechanical Turk were

asked to take the test [48], [49]. 83 listeners took the test

and Fig. 5 shows the results (detailed results for each voice

are available in the Annex A, Fig. 11 First, PML resynthesis

exhibits a better quality compared to the baseline STRAIGHT,

with a significance level of p-value<0.001. Second, even

though a trend seems to favor PML+Creaky compared to

PML, the difference is not significantly different. As shown by

the brackets, all resynthesis are significantly different, except
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Fig. 4. Estimated probability density functions of PDD and aperiodicty values
computed on top of the vocoded signals using STRAIGHT and PML-based
vocoders. Computations on the original signals are also shown. The vertical
line illustrates the threshold of 0.75 used for building the mask in the PML
synthesizer.

Mean opinion scores (MOS)

(with the 95% confidence intervals and plain brackets showing p-value<0.001)

Fig. 5. MOS about the analysis/resynthesis quality over 6 voices comparing:
Baseline STRAIGHT; PML resynthesis; PML resynthesis using creaky voice
mask correction.

for PML+Creaky vs. PML. Experiments about resynthesis

provide obviously interesting information in terms of upper

bounds of quality vocoders can provide. However, they are

incomplete since they do not correspond to a final application,

i.e. there is no statistical modelling. The following listening

tests should bring the necessary answers. A subset of the

resyntheses can be found at: http://gillesdegottex.eu/Demos/

DegottexG2017pml/resynth

C. Phase Distortion Deviation (PDD) vs. Noise Mask (NM)

modelling

In this experiments, and the following ones, the PML

synthesizer is evaluated in the context of SPSS using systems

based on Long Short-Term Memory (LSTM) [3]. The pipeline

used is basically the same as in [3] (called Merlin[4]). Com-

paring to the results presented in [23], 3 stacked Simplified-

LSTM (SLSTM) layers [3] of 1024 units are used for the

these experiments, instead of 6 tanh layers in the previous

experiments [50]. Similarly to [23], we trained LSTM systems

for the STRAIGHT and PML-based vocoders for the 6 voices

mentioned in the previous experiment, as detailed below. For

each voice, it was first necessary to align contextual labels on

the recordings. These contextual labels are made of phonetic

contexts (2 on the left, 2 on the right) at syllable, word and

utterance level according to a question set and described in

[2]. To enable this, HTS systems [2] were first trained using

five-state, left-to-right, no-skip hidden semi-Markov models

(HSMMs [2]). STRAIGHT’s features were used for these

alignments. The features consisted of 60 Mel-cepstral coeffi-

cients [51], log f0 values, and B-band aperiodicity coefficients

(B between 21 and 24 depending on the sampling frequency),

together with the first and second derivatives, extracted every

5ms. The rest of the topology of the HMM models and systems

was similar to the one used for the Nitech-HTS system ([52]).

Multiple iterations of training and re-alignment provided state-

aligned labels used for training the following aoustic models.

For the LSTM-based systems, 592 binary and 9 numerical

features were derived from the questions set used in the HTS

systems. For the STRAIGHT synthesizer, the output features

were the same as the ones used for the HTS systems used

for the alignment. Input features were normalised to [0.01,

0.99] and output features were normalised to zero mean and

unit variance. For the suggested PML synthesizer, the same 60

Mel-cepstral coefficients and log f0 values were used as for

the STRAIGHT-based systems. The noise feature, however,

was related to the noise mask described in Sec. II-A, using

Bark-frequency bands as for the aperiodicity (same number

of bands for comparison purposes). For each Bark frequency

band an averaged value of noisiness is obtained by averaging

the linear frequency values that fall into that band. Note that

the creakiness correction was used only in the last experiment.

For the following two experiments, only the mask based on

thresholding PDD was used.

In this first SPSS-based experiment, two different methods

for modelling the noise mask were compared. The first method

models PDD values (called PDD modelling later on), as done

for [23], which is then thresholded at synthesis stage as

explained in Sec. II-A. The second method aims at mod-

elling the values of the binary noise mask directly (called

NM modelling later on), thus avoiding PDD in the acoustic

model. In PDD modelling, PDD and its first and second

approximate derivatives are normalized by their mean and

variance. However, in NM modelling, the noise mask values

are already bounded in [0, 1]. It does not seem necessary to

normalise them. Moreover, using a linear output for these

values is not advised as the ANN would have to model the

boundaries at 0 and 1 whereas they are known a priori. For

this reason, we modelled the static NM values using a sigmoid

output function. For the 1st and 2nd approximate derivatives,

we used hyperbolic tangent normalized in amplitude to 0.5

and 2, respectively, to match the values’ intervals given by

the windows used for the derivatives’ approximation. The

same windows are used as in [4], w′ = [−0.5, 0.0,+0.5] and

w′′ = [1.0,−2.0, 1.0], for the 1st and 2nd order derivatives’

approximation, respectively. Note that this leads to a mix

output layer where the first 183 (3 times 80 mel-cepstral

coefficients plus 3 times one f0 value) values are linear outputs

and the remaining 3 · B (with B the number of noise bands)
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are non-linear outputs.

In order to compare PDD and NM modelling and assess

their impact on SPSS, a Comparative Mean Opinion Score

(CMOS) listening test was carried out. The systems compared

are:

STRAIGHT 60 mel cepstral coefficients, log f0, Bark-

frequency band aperiodicities.

PML-PDD 60 mel cepstral coefficients, log f0, Bark-

frequency bands PDD.

PML-NM 60 mel cepstral coefficients, log f0, Bark-

frequency bands NM.

The last 50 sentences of the test set [4] were synthesised

for each of the 6 voices. As duration models are out of

the scope of this study, the durations used were extracted

from the original recordings. Similarly, common f0 curves

and amplitude spectral envelopes were used among the three

syntheses in order to focus on the difference between PDD vs.

NM modelling. The impact of these features will be presented

in the next section. The systems trained for STRAIGHT

were used to build the common features (for PML syntheses,

f0(t) was then linearly interpolated in unvoiced segments to

obtain a continuous f0(t) curve). Each listener taking the test

assessed the 3 pairs of each system combinations for 8 random

sentences among the 50x6=300 synthesized sentences. A 7-

points scale was used in this test (3 points for the sound on the

left, one neutral choice, 3 points for the sound on the right) as

recommended by [47]. 47 listeners took the test properly and

the results are shown in Fig. 6. Detailed and agregated results

are shown. Agregated results are computed as in [47]. The

”Preference test” results are deduced from the CMOS test by

counting the number of assessments bigger than 1 favouring

each system and those equal to zero for the no-preference

choice.

Results in Fig. 6 show that the NM modelling yielded on

average better scores than both STRAIGHT and PDD-based

modelling. Solid brackets on the right show significant differ-

ences for p-values<0.001. The improvement from PDD to NM

modelling shows that the noise can be successfully modelled

by a simple binary mask if the output layer configuration is

setup appropriately. The clear difference between STRAIGHT

and PML-based systems supports also the suggested approach.

In the previous publication [23], PML had a similar quality

than STRAIGHT. This difference of results is explained by the

difference of acoustic models between the two experiments.

6-layers DNN were used for [23] and 3 layers of SLSTM

were used for this experiment. This difference supports the

idea that no matter how much the acoustic model improves in

terms of training capacity, the quality provided by STRAIGHT

is always limited since the noise reconstruction in the voiced

segments is limited, as shown in Sec. IV-A. On the contrary,

PML add noise in the voiced segments, which can be a

risk, as discussed in the introduction. Consequently, if the

acoustic model of the noise mask improves, the overall quality

improves as well.

For the sake of the precision, detailed results for each voice

are available in the Annex A, Fig. 12. A subset of the syntheses

used in this listening test is also available for listening at:

http://gillesdegottex.eu/Demos/DegottexG2017pml/pdd2nm

Pairewise preferences
STRAIGHT PML-PDD PML-NM

STRAIGHT -0.86 -1.12

PML-PDD 0.86 -0.11

PML-NM 1.12 0.11

Comparative mean opinion scores (CMOS)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

STRAIGHT
PML-PDD
PML-NM

(with 95% confidence intervals and solid brackets showing p-value<0.001)

CMOS-based preferences

6.6 26.2 31.5 35.5

STRAIGHT PML-PDD PML-NM nopref

Fig. 6. Pairewise, aggregated and preference results (in %) of SPSS listening
test over 6 voices comparing: Baseline STRAIGHT; PML synthesis using
PDD modelling ; PML synthesis using NM modelling

D. Standalone PML vs. Stream mixtures with Baseline

In this experiment, we evaluate the impact of mixing the

features’ stream generated by the systems of the previous

experiment. The systems compared PML-NM syntheses using:

Standalone All features from the PML-NM systems.

Baseline f0 Noise mask, amplitude spectral envelope from

PML-NM and log f0 from STRAIGHT’s systems.

Baseline f0, V Noise mask from PML-NM and amplitude

spectral envelope, log f0 from STRAIGHT’s systems.

The same setup was used for the CMOS listening test as

in the previous experiment. 45 listeners took the test properly

and the results are shown in Fig. 7. First, the results show

that there is little differences between the syntheses. This

concludes that PML-based system can be used standalone,

without mixing with other systems. We can also see that the

Standalone syntheses seems slightly preferred compared to

the other mixed systems, with a significance level of 0.05.

However, from the detailed results shown in Fig. 13, we can

see that this difference mainly comes from the LS voice.

A subset of the syntheses used is also available at:

http://gillesdegottex.eu/Demos/DegottexG2017pml/expbas

E. Creakiness correction

In this section, we discuss the impact of the creakiness

correction, described in Sec. II-B, on the quality.

First, Fig. 8 shows an example of creaky voice synthesized

using LSTM-based synthesis using the original noise mask or

the corrected noise mask. One can see that between 2.6s and

2.7s, denoted as a blue interval, the synthetic signal is noisy

on the middle plot, whereas it is supposed to be more creaky,

as correct on the bottom plot, and as shown in the original

recording.

In order to go beyond this simple illustration, we trained the

following systems and carried out a listening test to compare

them:
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Pairewise preferences

Standalone
Baseline

f0

Baseline

f0, V
Standalone 0.08 0.09

Baseline f0 -0.08 -0.01

Baseline f0, V -0.09 0.01

Comparative mean opinion scores (CMOS)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Standalone
Baseline f0

Baseline f0,V

(with 95% confidence intervals and dotted brackets showing p-value<0.05)

CMOS-based preferences

19.0 14.4 16.3 50.1

Standalone Baseline f0 Baseline f0,V nopref

Fig. 7. Pairewise, aggregated and preference results (in %) of SPSS listening
test over 6 voices comparing PML-based synthesis using 3 different stream
setups: PML Standalone (f0, amplitude spectrum and Noise Mask features
generated from PML-NM-based system); Baseline f0 (as in Standalone,
except for the f0 that is generated using the STRAIGHT-based system;
Baseline f0, V . (f0 and amplitude spectrum generated using the STRAIGHT-
based system and Noise Mask generated by the PML-NM-based system).
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Fig. 8. Example of creakiness correction on synthesized speech compared
to the original recording. Plot in the middle shows an LSTM-based synthesis
using the original noise mask (computed through thresholding of PDD(t, ω));
the bottom plot shows the same time segment when the noise mask has been
corrected using the suggested creakiness correction. One can see that, in the
blue interval, the signal is more noisy on the middle plot than in the bottom
plot. This simply illustrates that an acoustic model trained on a corrected noise
mask for creaky voice can, indeed, improve the waveform reconstruction.

STRAIGHT The same system as in Sec. IV-C.

PML-NM The same system as in Sec. IV-C.

PML-NM+Creaky The same as PML-NM except that the

noise mask was corrected for creakiness.

The setup of the LSTM-based systems is the same as in the

first experiment in Sec. IV-C. A CMOS listening test was then

carried out in order to evaluate the impact of the suggested

correction on the perception of the quality. The setup of the

listening test is basically the same as the two previous tests.

Pairewise preferences

STRAIGHT PML-NM
PML-NM

Creaky

STRAIGHT -0.90 -0.83

PML-NM 0.90 -0.01

PML-NM-Creaky 0.83 0.01

Comparative mean opinion scores (CMOS)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

STRAIGHT
PML-NM

PML-NM+Creaky

(with 95% confidence intervals and solid brackets showing p-value<0.001)

CMOS-based preferences

7.0 26.9 25.8 40.1

STRAIGHT PML-NM PML-NM+Creaky nopref

Fig. 9. Results of listening test over 6 voices comparing: STRAIGHT
vocoder; the suggested synthesizer PML; PML with the creakiness correction.

Pairewise preferences

STRAIGHT PML-NM
PML-NM

Creaky

STRAIGHT -0.49 -0.83

PML-NM 0.49 -0.31

PML-NM-Creaky 0.83 0.31

Comparative mean opinion scores (CMOS)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

STRAIGHT
PML-NM

PML-NM+Creaky

(with 95% confidence intervals, solid brackets showing p-value<0.001,

dotted brackets showing p-value<0.05)

CMOS-based preferences

11.4 20.0 30.4 38.0

STRAIGHT PML-NM PML-NM+Creaky nopref

Fig. 10. Similar results as in Fig. 9, except that only the sentences with
more than 6% creakiness are kept for these results.

45 listeners took the test properly and the results are shown

in Fig. 9. Even though Fig. 8 suggests that the waveforms are

properly corrected, on average it seems that listeners have no

preferences between the original noise mask and the corrected

one. The detailed results for each voice in Fig. 14 show that

the BDL voice seem to take advantage of the mask correction,

though without exhibiting any significant differences. Thus,

comparing with the other voices, this mask correction seems

as much likely to degrade the perceived quality. One possible

reason of this result might be due to the fact that the mask

correction also adds spurious voiced time-frequency regions

as shown in mid and high frequencies of bottom plot of Fig.

2. This might increase the overall voicing of the speech signal

in regions that are not supposed to be voiced, which increases

then the overall buzziness of the voice.
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Nevertheless, in the case the voice contains a substantial

amount of creakiness, using this mask might be a solution

to improve the quality. In order to investigate on this, the

results of the listening test can be split among sentences with

almost no creakiness and those with a minimal presence of

creakiness. For this purpose we measured a rough quantity of

creakiness in each sentence by computing the proportion of

MC(t, ω) == 1 compared to all MC(t, ω) values in the noise

mask feature. Fig. 10 shows the listening test results using

only the sentences that exhibit more than 6% of creakiness.

This threshold has been chosen manually, the goal being only

to show that the mask can improve the quality in some subset

of the sentences. Focusing on this subset, we can see that

the creakiness correction does, indeed, improve the perceived

quality of these sentences compared to the original mask with

a significance level of 0.05.

Even though this demonstrates the potential of the mask

correction, this does not constitute a standalone system since

an a priori estimation of overall creakiness is necessary to

exhibit this partial result. Forthcoming works could suggest

a creakiness prediction in order to decide if the corrected

mask or the non-corrected mask should be predicted using

the corresponding acoustic models.

Audio utterances used during the listening test can also be

found at the following address:

http://gillesdegottex.eu/Demos/DegottexG2017pml/creakycorr

V. CONCLUSIONS

A new signal model, called Pulse Model in Log-domain

(PML), was proposed and the corresponding synthesis pro-

cedure was described. We can summarize the benefits in the

design of PML in the following manner.

• Compared to the state of the art, PML is mainly designed

for better synthesis of the noise in voiced segments.

Conversely to the traditional additive source-filter model

in the linear domain, the phase randomisation approach

used in PML is able to avoid any residual buzziness.

Indeed, using the additive source-filter model, ad-hoc

techniques must be used for forcing the randomness,

otherwise the deterministic component will generate a

well known buziness. On the contrary, the noise mask

used in PML allows to force the full randomness of a

time-frequency region.

• Because the noise used in PML is always normalised

in amplitude and the noise model controls only the

phase component, the amplitude and phase spectra are

controlled independently. This clarifies and simplify the

control of the speech elements. With the additive source-

filter model, the statistical model in SPSS either assumed

independence of amplitude and aperiodicity and failed in

mixing them properly (as in most HMM-based synthesis

using separate decision trees for each acoustic feature),

or, it struggled in learning complex correlations. In PML,

this problem is mostly solved since amplitude and phase

are modelled independently at signal level. The statistical

model can thus focus only on the qualitative correlations

between phase and amplitude of the voice signals (e.g.

formants bandwidth with noise presence in breathiness).

• PML makes use of a binary noise mask that represents

voiced and unvoiced segments in a uniform way. Con-

versely to other approaches where the synthesis process

has to switch between two different signal models, PML

uses always the same model, no matter the nature of

the speech signal. Additionally, this approach does not

need hard time or frequency boundaries, but can take any

shape in the time-frequency plan. This offers a flexibility

that most current vocoders do not have. For example,

the deterministic components can fade away in the high

frequencies at the end of a voiced segment, while the low

frequencies are still deterministic (e.g. when the voice

relaxes).

• The design of PML leads to a very simple synthesizer,

which is straightforward to understand and implement. A

creakiness correction has been suggested that shows that

it is also easy to build modifications on top of the current

description of PML.

• Finally, the synthesis process requires very low compu-

tation time, which is encouraging for potential real-time

applications.

In terms of experimental results based on listening tests,

we have shown that a PML-based SPSS system better per-

forms than a comparable system based on the well-known

STRAIGHT vocoder. Another experiment has shown that the

binary noise mask can be directly modelled by the acoustic

model of the SPSS system by adapting the output layer

accordingly. An experiment has also shown that a system

trained using PML’s features can be used as a standalone

system. In other words, it was shown that the predicted features

do not need to be crossed over with the predicted features of

a STRAIGHT-based system. Because creakiness is a recurrent

issues in SPSS, we also suggested a mask correction for these

time frequency segments. A last listening test has been used to

evaluate the impact of this correction on the perceived quality.

Even though the results are not as encouraging as the previous

results, we have shown that the suggested mask correction does

improve the quality on sentences that exhibit creakiness.
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APPENDIX

A. Detailed results of the listening tests

This appendix shows plots detailing the listening test results

for each voice used. Horizontal intervals show the mean’s 95%

confidence. Solid, dashed and dotted vertical brackets show the

corresponding p-value, <0.001, <0.01, <0.05, respectively.
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Fig. 11. Analysis/Re-synthesis: Mean Opinion Scores (MOS) about the anal-
ysis/resynthesis quality of 3 vocoders over 6 voices. 83 listeners participated
to the test (with the 95% confidence intervals).
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Fig. 12. Phase Distortion Deviation (PDD) vs. Noise Mask (NM): Results
of SPSS listening test over 6 voices comparing: Baseline STRAIGHT; PML
synthesis using PDD-based training ; PML synthesis using NM-based training.
47 listeners took this test.
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Fig. 13. PML-Standalone vs. Streams mixture: Results of SPSS listening
test over 6 voices comparing PML-based synthesis using 3 different stream
setups: PML Standalone (f0, Spectrum and Noise Mask features generated
from PML-based training); Baseline f0 (as in Standalone, except the f0 that
is generated using the STRAIGHT-based training; Baseline f0,Spec. (f0 and
Spectrum generated using the STRAIGHT-based training and Noise Mask
generated by the PML-based training). 45 listeners took this test.
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Fig. 14. Creaky voice correction: Results of SPSS listening test over 6
voices comparing: STRAIGHT vocoder; the suggested synthesizer PML; PML
with the creaky voice correction on the noise mask. 44 listeners took this test.
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Fig. 15. Creaky voice correction: Similar results as in Fig. 14, except that
only the sentences with more than 6% creakiness are kept for these results.
Percentage of sentences kept for these results are shown in the titles of the
plots.
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