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Abstract—In this paper, we compare two paradigms for
unsupervised discovery of structured acoustic tokens directly
from speech corpora without any human annotation. The Multi-
granular Paradigm seeks to capture all available information in
the corpora with multiple sets of tokens for different model gran-
ularities. The Hierarchical Paradigm attempts to jointly learn
several levels of signal representations in a hierarchical structure.
The two paradigms are unified within a theoretical framework
in this paper. Query-by-Example Spoken Term Detection (QbE-
STD) experiments on the QUESST dataset of MediaEval 2015
verifies the competitiveness of the acoustic tokens. The Enhanced
Relevance Score (ERS) proposed in this work improves both
paradigms for the task of QbE-STD. We also list results on the
ABX evaluation task of the Zero Resource Challenge 2015 for
comparison of the Paradigms.

Index Terms—zero resource, spoken term detection, unsuper-
vised term discovery, automatic speech recognition

I. INTRODUCTION

CURRENT speech recognition technology is dominated
by supervised learning paradigms that rely on massive

quantities of human generated linguistic labels. Acquiring such
human labeled audio is expensive, and it would be hard to
scale such efforts with the ever-growing quantity of audio
content over the Internet. Generating such labeled corpora
also requires the knowledge about the language, including its
phoneme set and pronunciation lexicon. This becomes even
more difficult when multiple languages are mixed in the same
corpora. This is why researchers have begun to investigate
semi-supervised and unsupervised paradigms that attempt to
train acoustic models with limited labeled audio in the low-
resource scenario [1], and no labeled audio in the zero-resource
scenario [2]–[8]. In this paper we focus our discussion on
the unsupervised paradigm where the machine has to learn
token-like representations in the speech signal directly from
the unannotated corpora.

The two most popular forms of speech signal representa-
tion are either a sequence of real-valued frame-level feature
vectors (like Mel-Frequency Cepstral Coefficients (MFCC) or
spectrogram), or a sequence of discrete tokens (like words
or phonemes). Likewise, the works on unsupervised speech
technologies extracted either frame-level features [9]–[16] or
discrete tokens [17]–[24] out of an unlabeled corpus. To learn
unsupervised frame-level representations, Zhang and Glass
[25] used posteriorgram features from unsupervised GMM
universal background model (UBM), Chen et al. [26] used
posteriorgrams from a non-parameteric infinite GMM, Kamper
et al. [27] proposed the correspondence autoencoder (cAE): an
AE-like deep NN that incorporates top-down constraints by

using aligned frames from discovered words as input-output
pairs, and we extracted Bottleneck Features (BNF) trained
from DNN trained with unsupervised HMMs as targets in
our previous work [28]. To learn discrete tokens, Siu et al.
[4] used iterative re-estimation and unsupervised decoding
procedure of traditional HMMs, Lee and Glass used the
non-parameteric Bayesian HMM [5], Kamper et al. [8] used
embedded segmental K-means models, and we used traditional
HMMs with additional constraints in our previous works [21]–
[23].

In this work1, we organize our previous contributions on
discrete token learning with unsupervised HMMs, into two
paradigms for HMM training. The Multi-granular Paradigm
used the multiple acoustic token sets scattered over a granu-
larity space [22], [23], and can be applied to semi-supervised
speaker adaptation [7]. The Hierarchical Paradigm used the
two-level word-like and subword-like tokens [21], [28], and
can be used in query expansion of semantic retrieval systems
for spoken documents [24], [29]. Both of them produced
structured acoustic tokens, rather than a single set of acoustic
tokens. We unify the paradigms with one framework, and
compare the two paradigms on the same experiments.

Query-by-Example Spoken Term Detection (QbE-STD) was
chosen as the example application to compare tokens trained
with the two paradigms on. QbE-STD refers to the task of
finding all occurrences of the input spoken query from a large
target audio corpus. Most QbE-STD approaches were based
on automatic speech recognition (ASR), transforming speech
into words or subwords for token matching [30]–[33], with
performance relying heavily on the ASR accuracy [34]. This
implies annotated training corpora properly matched to the
spoken content are necessary. Because both the input query
and the target corpus are spoken, it is possible to directly
match the spoken query to the target corpus without knowing
the written form of either the query and the target corpus,
bypassing the need for supervised speech recognition. This is
especially attractive for languages with limited annotated data
[35], [36] or spoken content with unknown languages. There
are in general two approaches to compute the distance between
a spoken query and a spoken document (an utterance in the
target audio corpus): comparing the acoustic feature sequences
directly, or transcribing audio files into sequences of acoustic
tokens, then comparing the transcribed token sequences. The
former approach is easily affected by speaker mismatch and
varying acoustic conditions. The high computation cost also

1This work was sponsored by the Ministry of Science and Technology,
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makes it hard to scale for larger spoken corpora [2], [3], [18],
[37]–[41]. The latter approach smoothens signal variations by
token models and has the advantage of much lower on-line
computation requirement when the target corpus is large. The
methods proposed in this paper belongs to the latter approach.

The rest of the work is organized as follows. The Multi-
granular Paradigm is explained in Section II-A and the Hi-
erarchical Paradigm is explained in Section II-B. We unify
the two paradigms with theoretical analysis in Section III, and
reason that the Hierarchical Paradigm can be reduced to the
Multi-granular Paradigm when certain criteria are met. The
Query-by-Example Spoken Term Detection (QbE-STD) using
the tokens is explained in Section IV. The setting of either
training the tokens on the documents or the queries for the
QbE-STD experiments are explained in Section V. The QbE-
STD experiments on the QUESST dataset [42] of MediaEval
2015 in Section VI supports our framework and verified the
competitiveness of the acoustic tokens. Additional results on
the Zero Resource Challenge ABX evaluation task [43] also
resented in Section VII. Finally, we explain how to choose
which Paradigm to use in Section VIII and give our concluding
remarks in Section IX.

II. THE PARADIGMS

Given an unlabeled speech corpus, it is straightforward to
discover acoustic tokens using unsupervised HMMs with a
chosen configuration. We assume the number of states m in
each HMM, and the total number of distinct acoustic tokens n
is the same for all HMMs in the HMM set we consider during
initialization, with ψ = (m,n) used to represent the model
configuration. In each iteration i, we then train the HMM
parameters θmni with the label sequences Wi−1 obtained in the
previous iteration as in Eq. (1) and decode the label sequences
Wi with the obtained parameters θmni as in Eq. (2) [20].

θmni = argmax
θmn

P (X|θmn,Wi−1), (1)

Wi = argmax
W

P (X|θmni ,W ), (2)

where X is the acoustic vector sequence for the whole corpus
being considered. Eq. (1) is the maximum likelihood training
of HMMs, and the only difference here is that we train on
the label sequences Wi−1 obtained in the previous iteration
rather than ground truth labels. Eq. (2) is the Viterbi decoding
based on the model set θmni . This method to train HMMs
was introduced by Gish et al. [20]. To find a better initial
label, we used the method explained in [21] to obtain W0.
To model more complex structures in speech, we proposed
two natural ways to extend this method: (1) Use multiple sets
of HMMs with different configurations [22] which we call
the Multi-granular Paradigm in this work, (2) Combine the
HMMs into longer tokens to construct language structures [21]
which we call the Hierarchical Paradigm in this work. The two
Paradigms are explained below.

A. The Multi-granular Paradigm

In this paradigm, we take into consideration the cases
where several intrinsic acoustic representations exist in the

Fig. 1. Model granularity space for acoustic token configurations

spoken corpus. Acoustic units with different lengths such as
phonemes, syllables, words, and phrases have different tem-
poral granularity. Different phonetic clusters such as speaker-
independent phonemes, gender-dependent phonemes, speaker-
dependent phonemes have different phonetic granularity. We
wish to develop a set of acoustic token HMMs for every
different granularity configuration (temporal and phonetic) on
the same corpus. With multiple sets of granularity configu-
rations, we can have multiple sets of acoustic token HMMs
trained on the same corpus. We call the level of representation
corresponding to a granularity configuration a layer in the
discussion below.

Here each layer of acoustic token is defined by a set of tem-
poral and phonetic granularity parameters. Different layers of
tokens are discovered independently of each other in the Multi-
granular Paradigm. The transcription of a signal decoded with
these tokens can be considered as a temporal segmentation of
the signal, so the HMM length (or number of states in each
HMM) m represents the temporal granularity. The set of all
distinct acoustic tokens can be considered as a segmentation of
the phonetic space, so the total number n of distinct acoustic
tokens represents the phonetic granularity. This gives a two-
dimensional representation of the acoustic token configurations
in terms of temporal and phonetic granularities as in Fig. 1.
Any point ψ = (m,n) in this two-dimensional space in Fig. 1
corresponds to an acoustic token configuration. Note that there
can be a third dimension, the acoustic granularity which is the
number of Gaussians in each HMM state, but the effect of that
dimension has been shown to be negligible in the experiments,
thus we simply set the number of Gaussians in each state
to be 4. Although the selection of the hyperparameters can
be arbitrary in this two-dimensional space in principle, here
we simply select M temporal granularities and N phonetic
granularities, forming a two-dimensional array of M × N
hyperparameter sets in the granularity space and M × N
sets of acoustic tokens. We denote the collection of selected
granularities to be G, as shown in Eq. (3).

G = {(mj , nk)|1 ≤ j ≤M, 1 ≤ k ≤ N}. (3)
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Note that the optimal granularities (m,n) can be dependent
on the spoken corpus and there is no emphasis on discovering
acoustic tokens close to linguistically meaningful units for
the Multi-granular Paradigm. Tokens at each granularity may
not correspond to any of these linguistically meaningful units,
but with multiple sets of tokens, most of the structures and
characteristics of the corpus can be captured if the granularities
are evenly distributed over the granularity space.

B. The Hierarchical Paradigm

The Hierarchical Paradigm, on the other hand, automatically
learns the word-like and subword-like tokens, as well as all
relevant knowledge for this set of tokens such as the lexicon
and N-gram language model referred to as the linguistic
structure for the spoken language of the given corpus. The goal
is to find the parameters for the linguistic structure, and the
word-like token label sequences W on the observed acoustic
feature vector sequences X for the corpus considered which
was discussed in [21]. In this work we leave out the language
models in the discussion to compare the Paradigms, so the
parameter set θmnuv = {θmn, θuv} includes two parts: θmn for
acoustic HMMs of subword-like tokens, θuv for the lexicon of
word-like tokens in terms of subword-like token sequences. u
denotes the number of states of the longest word-like tokens
in the lexicon, and v denotes the number of words in the
lexicon. The granularity parameters (m,n) are chosen, u is
set to an integer multiple of m, and v is inferred. Contrary
to the Multi-granular Paradigm where acoustic tokens with
multiple granularities (mj , nk) are trained independently, in
the Hierarchical Paradigm the subword-like tokens and word-
like tokens are like two correlated granularities (m,n) and
(u, v) that are jointly trained. The iterations in Eq. (1) and
Eq. (2) can be further segmented into several cascaded stages
that uses slightly different objectives for acoustic, linguistic
and lexical optimization. Two of these stages are summarized
below, and more details of such stages can be found in
our previous work [21]. When the difference between Wi−1
and Wi becomes insignificant, the process then advances
to the next stage. The basic idea behind the procedure of
having multiple stages is to gradually construct and update the
parameters from subword-like tokens to word-like tokens. This
prevents the parameters from being caught in local optimal
situations which often happen when too many parameters are
optimized at the same time. The general flow of the training
procedure is as follows.

In the acoustic optimization stage, θuv is fixed and the
HMM parameters θmn for the subword-like tokens are trained
alone, because these HMMs are the primary building blocks
of the whole linguistic structure and reliable estimate for their
parameters is the key. In each iteration, the acoustic model set
θmn are the HMMs trained from the corpus based on Wi with
the ML criterion as in Eq. (1). The lexicon θuv is derived by
collecting all word-like tokens appearing in Wi with counts
exceeding a threshold. Free word decoding is then performed
on the whole corpus X based on θmn and θuv , producing
an updated label Wi+1. When Wi is updated to Wi+1, not
only the HMM parameters of θmn and HMM segmentation

boundaries are updated, but the vocabulary size v of θuv may
shrink when the counts of some word-like tokens become
small enough.

In the lexical optimization stage, we then break the word-
like tokens into subword-like tokens and reconstruct better
word-like tokens in the lexicon. In each iteration, we recon-
struct new word-like tokens by breaking the existing word-like
tokens in θuv into subword-like tokens, and then reconstructing
new word-like tokens based on their occurrence in Wi. Those
segments of several consecutive subword-like tokens appearing
frequent enough and with high enough right and left context
variation are taken as new word-like tokens. This can be
realized by constructing an efficient data structure called PAT-
Tree using the labels Wi [44]. In this way, the lexicon θuv can
be updated significantly in each iteration. With the PAT-Tree,
word-like tokens consisting of a single subword-like token are
often included into the lexicon. If a word is not in the lexicon,
it is usually represented by a sequence of subword-like tokens.
This updated lexicon θuv is then used in free-word decoding
to produce the labels Wi+1. The whole process is completed
when there is no significant difference between Wi and Wi+1.
This gives the automatically discovered linguistic structure
θmnuv = {θmn, θuv}. The time alignment for the subword-like
tokens are updated in all iterations when the labels Wi are
decoded.

Note that the word-like and subword-like tokens here try to
mimic the linguistically meaningful words and subword units,
but for some arbitrary granularity (m,n), the results may not
be linguistically meaningful at all (close to phonemes, words,
phrases, etc.). However, if the granularities (m,n) are properly
chosen such that the discovered subword-like tokens are close
to the phonemes of the language, then discovered word-like
tokens in the lexicon θuv can be really close to the words of
the language. The point of having word-like tokens and the
lexicon is to provide higher-level context constraints which
help produce the subword-like tokens with higher quality.

III. A UNIFIED VIEW OF THE PARADIGMS

Although the Hierarchical Paradigm and Multi-granular
Paradigm may look different at first glance, in this section
we propose a unified view on these two paradigms. The
objective of this section is to offer a guideline for selecting
the granularity parameters under the Multi-granular Paradigm
so that the two Paradigms can be compared in terms of
their complexity. The word-like tokens under the Hierarchical
Paradigm can be considered as tokens of a coarser temporal
granularity under the Multi-granular Paradigm. The tokens of
a finer temporal granularity under the Multi-granular Paradigm
can be considered as subword-like tokens used to construct the
word-like tokens under the Hierarchical Paradigm. With this
approach, we can compare one paradigm to the other easily
and characterize the mathematical relation between the two.

Let the total number of possible token sequences on any
utterance for a token set with model parameter θ be denoted
as C(θ). For an utterance of T frames, we assume that each
HMM state occupies the same number of frames d. Let us
denote the model parameters of a Multi-granular token set
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with granularity (m,n) as θmn. Under the Multi-granular
Paradigm, the length of every HMM is md, and the utterance
is represented as a token sequence of T/md acoustic tokens.
There are n possible acoustic tokens, so the number of possible
token sequences on an utterance of length T is

C(θmn) = n
T
md . (4)

Model parameters for a token set under the Hierarchical
Paradigm consist of two parts: Let θmnuv = {θmn, θuv} , or the
subword-like token acoustic model θmn of granularity (m,n)
and the word-like token lexicon θuv . Because a word-like
token is composed of one to several subword-like tokens, u is
a positive integer multiple of m. Since the lexicon θuv limits
the token sequence for any utterance to include only word-
like tokens in the lexicon, the possible subword-like token
sequences is a subset of the case with only the subword-like
acoustic token model θmn, hence we have

C(θmnuv ) ≤ C(θmn). (5)

On the other hand, with the Hierarchical Paradigm we rep-
resent the utterances as sequences of word-like tokens. We
have a total of v allowed distinct word-like tokens and the
maximum length of a word-like token is u. Since not all word-
like tokens are composed of the same number of subword-like
tokens in the lexicon, this set of v word-like tokens would
have mixed temporal granularity. This means the v word-like
tokens would have varying number of states with the longest
having u states. The lower bound of the total number of token
sequence representations for this situation is the case when all
the v word-like tokens in the lexicon have the same length
of u states. This number is the same as a set of v subword-
like tokens each with u states, or θuv for the Multi-granular
Paradigm, therefore

C(θuv) ≤ C(θmnuv ). (6)

By combining Eq. (5) and Eq. (6), we can get an upper and
a lower bound:

C(θuv) ≤ C(θmnuv ) ≤ C(θmn). (7)

Eq. (7) means that we can bound the number of possible
token sequence representations for utterances based on a token
set θmnuv under the Hierarchical Paradigm using two token sets
θmn and θuv under the Multi-granular Paradigm. This is help-
ful, because acoustic tokens under the Hierarchical Paradigm
can be tricky to train. With Eq. (7), we can achieve similar
order of representations with the Multi-granular Paradigm by
selecting the granularities within the box G on the granularity
plane,

G = {(mi, nj)|m ≤ mi ≤ u, n ≤ nj ≤ v}, (8)

between the points (u, v) and (m,n). This also serves as a
good guideline for selecting the granularity parameters under
the Multi-granular Paradigm when some knowledge about the
underlying language for the spoken corpus is known: the
temporal granularities can be selected ranging between those
corresponding to the duration of an average phone m, and of
the longest word u; while the phonetic granularities can be

selected ranging between the size of the phoneme inventory n
and the size of the vocabulary v.

Recall that in the lower bound in Eq. (7), θuv is actually the
granularity parameter for a token set under the Multi-granular
Paradigm, so we may rewrite it as θm

′n′
. By substituting (u, v)

with (m′, n′), and using Eq. (4) with the relation C(θm
′n′

) ≤
C(θmn) in (7), we get

log n′

m′
≤ log n

m
. (9)

The equality in Eq. (9) becomes true when all words in the
corresponding lexicon are composed of the same number of
states m′ and

n′ = n
m′
m . (10)

When Eq. (10) holds, the number of possible representations
for a token set θmnm′n′ under the Hierarchical Paradigm actually
is the same as that of a token set θmn or θm

′n′
under the Multi-

granular Paradigm (lower bound is equal to the upper bound).
In other words, the two-level Hierarchical Paradigm is reduced
to the one-level Multi-granular Paradigm. The simplest situ-
ation for this to happen would be when every subword-like
token is a word-like token in the lexicon (m′ = m,n′ = n).
Another case is when all word-like tokens are composed of
exactly k subword-tokens, and every possible combination of
k subword-like tokens corresponds to a word-like token in the
lexicon. (m′ = km,n′ = nk). An example would be when
m = 3, n = 50 and m′ = 6, n′ = 2500. This explains why
the number of possible representations for utterances by token
sequences can be used to develop a unified view to analyze
the two paradigms.

Note that exact same results in this section can be derived
if we used the number of bits required to store the decoded
acoustic tokens in our discussion. For example, we can derive
Eq. (10) directly by equating the token storage requirements
for token sequences in Table VII on two different granularities
(m,n) and (m′, n′).

IV. SPOKEN TERM DETECTION USING DISCOVERED
ACOUSTIC TOKENS

There can be various applications for the acoustic tokens
presented here, while Query-by-Example Spoken Term De-
tection (QbE-STD) is a good example. In this section we
summarize the ways to perform QbE-STD [22] using the
acoustic tokens. Note that due to the nature of unsupervised
learning, tokens with high occurrence in the corpus would have
better representations, making the system perform relatively
worse for queries with low occurrence.

A. Off-line Phase: Token Pairwise-Distance

Let {ti|i = 1, 2, 3, .., n} denote a set of the n acoustic
tokens discovered here. For the Multi-granular Paradigm, n is
the hyperparameter for phonetic granularity in the parameter
set ψ = (m,n) for each set of acoustic tokens. For the
Hierarchical Paradigm n is the total number of subword-like
tokens and ti is a subword-like token. We first construct a
distance matrix S of size n × n off-line for these n tokens,
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for which the element S(i, j) is the distance between any two
token HMMs ti and tj in the set,

S(i, j) = KL(ti, tj). (11)

The KL-divergence KL(i, j) between two token HMMs in
Eq. (11) can be defined as the symmetric KL-divergence
between each corresponding state in ti and tj based on the
variational approximation [45] summed over the states. It is
also possible to perform a state-level Dynamic Time Warping
(DTW) between the two state sequence in ti and tj (i.e. one
state in HMM ti can be matched to several states in HMM tj
and vise versa), then sum over the optimal path. This S(i, j)
is constructed for each token set ψ = (m,n).

B. On-line Phase: Relevance Score Evaluation

In the on-line phase, we first perform the following for each
spoken query q and each spoken document (an utterance) d in
the target corpus. This is done for each token set ψ = (m,n)
in the Multi-granular Paradigm. Assume a document d is
decoded into a sequence of D acoustic tokens with indices
(d1, d2, ..., dD) and the query q into a sequence of Q tokens
with indices (q1, q2, ..., qQ). We thus construct a matching
matrix I of size D × Q for every document-query pair, in
which each entry (i, j) is the relevance score between acoustic
tokens with indices di and qj as in Eq. (12) and shown in Fig.
2(a) for a simple example of Q = 3 and D = 6, where S(i, j)
is defined in Eq. (11),

I(i, j) = −S(di, qj). (12)

The above only considers the one-best token sequences
(td1 , td2 , ..., tdD ) and (tq1 , tq2 ..., tqQ) decoded from d and
q. It is possible to consider the N-best token sequences
by representing the N-best token sequences as sequences of
posteriorgram features and integrate them in the matrix I
as shown in [22]. However, experiments showed that the
extra improvements brought in this way is almost negligible
in the Multi-granular Paradigm, probably because in that
paradigm the M ×N different token sequences based on the
M×N different token sets can be considered as a huge lattice
including many one-best paths which are jointly considered
here [22].

For matching the sub-sequence of d with q, we take the
summation of the elements in the matrix I in Eq. (13) along
the diagonal direction, generating the accumulated distance for
all sub-sequences starting at all token positions in d as shown
in Fig. 2(a). The minimum is taken as the Initial Relevance

Fig. 2. The transpose of the matching matrix I

Score (IRS) between document d and query q, R̂(d, q) on the
token set ψ = (m,n) as in Eq. (13).

R̂(d, q) = max
i

Q∑
j=1

I(i+ j, j). (13)

In this work we propose that the HMM probabilities for the
spoken utterances d, q evaluated with respect to each token tdi
and tqj in the token sequences can also be taken into account
to produce the Enhanced Relevance Score (ERS) as shown in
Eq. (14).

R(d, q) = max
i

Q∑
j=1

[I(i+ j, j)+ logP (tdi , d)+ logP (tqj , q)].

(14)
Here P (tdi , d) and P (tqj , q) are the probabilities for observing
the tokens tdi and tqj in d and q respectively. To turn the
probabilities into scores, we take the logarithm of P (tqj , q)
and P (tdi , d). Although we are summing over j in Eq. (14),
and the sum over logP (tqj , q) will be the same for a given
query q, we still keep the term because

∑
logP (tqj , q) will

be different across acoustic token sets, which matters when
we combine the distances.

It is also possible to consider token-level DTW on the matrix
I as shown in Fig. 2(b). However, experiments have shown
that the extra improvements brought in this way is almost
negligible in the Multi-granular Paradigm. This is probably
because in that paradigm the different token sequences based
on the different token sets (e.g. including longer /shorter
tokens) are jointly considered, so the different time-warped
matching and insertion/deletion between d and q is already
automatically included [22]. For the Multi-granular Paradigm,
the multiple relevance scores R(d, q) and R̂(d, q) in Eq.
(13) and Eq. (14) obtained with multiple token sets can be
normalized across documents and then averaged. The averaged
scores are then used to rank all the documents for QbE-STD.

C. The Heuristics behind Token Sequence Representations

The task of QbE-STD tries to define some tractable rel-
evance score R′(d, q) between a spoken document d and a
spoken query q to approximate the oracle relevance score
Ro(d, q) which is unknown. The role of the unsupervised
token sets is to map the two spoken utterances d and q to
an intermediate representation where some tractable relevance
score R′(d, q) calculation can be performed. We map d and
q to the intermediate representations Fθ(d) = (d1, d2, ..., dD)
and Fθ(q) = (q1, q2, ..., qQ) using the token set with parameter
θ. Conceptually, the oracle relevance score Ro(d, q) can be
approximated by the Initial Relevance Scores (IRS) evaluated
directly from the token sequences,

Ro(d, q) ≈ R̂(d, q) ≡ R′(Fθ(d), Fθ(q)) (15)

where R̂(d, q) is defined in Eq. (13) and R′(d, q) is eval-
uated with Fθ(d) and Fθ(q). Because the token sequences
Fθ(d) and Fθ(d) are imperfect representations of d and q,
R′(Fθ(d), Fθ(q)) can be far from Ro(d, q). The HMM proba-
bilities P (tdi , d) and P (tqj , q) in Eq. (14) describe the quality
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of these representations. When these probabilities are high,
the approximation in Eq. (15) is closer to the Ro(d, q). The
two terms logP (tdi , d) and logP (tqi , q) scores the quality
of the representation when we approximate the utterances d
and q with the token sequences Fθ(d) and Fθ(q). In Eq. (14)
we simply add the quality scores to Eq. (13) to produce the
Enhanced Relevance Scores (ERS).

Ro(d, q) ≈ R̂(d, q) + Quality of Fθ(q), Fθ(q) (16)

In the experiments below we will show that Eq. (14) worked
better than Eq. (13) in all cases.

V. TESTING SCENARIOS FOR THE EXPERIMENTS

We wish to use QbE-STD as the example application to
test the token sets discussed here. The task of QbE-STD
involves two sets of utterances: the spoken queries Q and
spoken documents D. If we ignore the structural differences,
they are simply two sets of spoken utterances.

In our previous works [21], [22], [28], it was assumed that
the spoken queries Q were not accessible during the off-line
phase. That means we assume only one spoken query was
given during the on-line phase for every query search, so the
retrieved results for every query was independent of each other.
However because the documents D and Q are simply two sets
of utterances, in this work we also try to investigate another
testing scenario where the situation is reversed. This means the
entire set of spoken queries Q is available during the off-line
phase, but the spoken documents d ∈ D are given one-by-
one during the on-line phase. We further discuss these two
scenarios below, both of which will be tested with the token
sets proposed.

A. Document Tokens

In this scenario the spoken query set Q is available only
during testing, while the whole spoken document set D is
available during training of the token sets. Because the token
sets are trained with D, tokens trained under this scenario is
referred to as document tokens. This is the scenario for most
cases of STD including our earlier work [21], [22], [28], where
D is both the archive containing the spoken documents which
we wish to retrieve from, and the archive used to train the
unsupervised tokens.

B. Query Tokens

In this scenario the spoken document set D is available only
during testing, while the whole spoken query set Q is available
during training of the token sets. Because the token sets are
trained with Q, tokens trained under this scenario is referred
to as query tokens. This system has the benefit of being very
fast to train since we know that the training time complexity is
quadratic in the length of the training utterances (from Table
VII and Appendix A), and usually queries are much shorter
than documents. Because most queries are short, the quality
of the system depends highly on the number of utterances in
Q. Note that when the number of training queries in Q is
small, this testing scenario becomes similar to DTW over raw

features. Since Q is small, each HMM will be fed with less
training examples. In the most extreme case, each HMM will
be assigned only one training sequence which it sets as the
mean of the states, and builds a small variance around it. Since
it has been shown that HMM decoding is in fact very similar
to DTW [46], when calculating the Gaussian state emission
probabilities on HMMs, we are computing the Gaussian kernel
between the mean of the Gaussian and the frame-level feature.
The QbE-STD process would be similar to performing DTW
of each query q ∈ Q directly over each spoken document
d ∈ D with a Gaussian kernel as a distance measure over the
feature pairs.

A real world example for this scenario would be using
personalized devices like mobile phones to search for spoken
archives. The device has a record of spoken queries, possibly
stored locally, but not the spoken documents. The user then
decides to search for the queries of interest in different spoken
archives that contain the documents in the cloud. Note that the
user does not have to label the queries in advance.

VI. SPOKEN TERM DETECTION EXPERIMENTS

We use the dataset provided by the “Query by Example
Search on Speech Task” (QUESST), held as part of the
MediaEval 2015 evaluation task [42], in our spoken term
detection experiments. QUESST 2015 intended to evaluate
language-independent audio search systems in a low resource
scenario. The QUESST 2015 dataset is composed of a set
of spoken documents, and 2 sets of spoken queries. The
spoken document set is composed of around 18 hours of audio
(11662 files) in the following 7 languages: Albanian, Czech,
English, Mandarin, Portuguese, Romanian and Slovak, with
different amounts of audio per language. The spoken queries,
which are relatively short (5.8 seconds long on average), were
automatically extracted from longer recordings and manually
checked to avoid very short or very long utterances. The
QUESST 2015 dataset includes 445 development queries
and 447 evaluation queries, with the number of queries per
language being more or less balanced with respect to the
amount of audio available in the spoken document set. Both of
the two query sets contain three types of queries: the first one
(T1) involves “exact matches” whereas the second one (T2)
allows for inflectional variations of words or word re-orderings
(that is, “approximate matches”); the third one (T3) is simi-
lar to T2, but the queries were drawn from conversational
speech, thus containing strong coarticulations and some filler
content between words. The data was artificially noised and
reverberated with equal amounts of clean, noisy, reverberated
and noisy+reverberated speech. Reverberation was obtained by
passing the audio through a filter with an artificially generated
room impulse response (RIR). The normalized cross entropy
cost (Cnxe) [51], [52], the lower the better, was used as the
primary metric for the evaluation.

Below we only report the results on the development
queries since the results were similar on the evaluation
queries. We trained four sets of token sets under the two
proposed paradigms with the two testing scenarios (Docu-
ment Tokens and Query Tokens), with different granulari-
ties. We list the model-dependent minCnxe [42], obtained
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TABLE I
STD PERFORMANCE OF MULTI-GRANULAR AND HIERARCHICAL DOCUMENT TOKENS TRAINED ON THE DOCUMENT CORPUS OF QUESST 2015. m
DENOTES TO THE NUMBER OF HMMS IN THE CORPUS, n DENOTES THE NUMBER OF HMMS, u DENOTES THE NUMBER OF STATES OF THE LONGEST
WORD-LIKE TOKEN IN THE LEXICON, v DENOTES THE NUMBER OF WORD-LIKE TOKENS IN THE LEXICON. THE BEST RESULT FOR EACH COLUMN IS

SHOWN IN BOLD.

Paradigm (m, n) (u, v) model-dependent minCnxe
IRS ERS ERS(T1) ERS(T2) ERS(T3)

Multi-granular

(3, 100) - 0.8008 0.7838 0.7820 0.7967 0.8128
(3, 200) - 0.7985 0.7842 0.7860 0.7942 0.8001
(5, 100) - 0.7872 0.7651 0.7722 0.7886 0.7732
(5, 200) - 0.7929 0.7671 0.7757 0.7868 0.7904
(7, 100) - 0.7938 0.7672 0.7727 0.7908 0.7885
(7, 200) - 0.7833 0.7645 0.7735 0.7797 0.7769
average - 0.7826 0.7644 0.7701 0.7770 0.7788

Hierarchical

(3, 100) (6, 3338) 0.7974 0.7820 0.7845 0.8003 0.7966
(3, 200) (6, 8571) 0.7978 0.7825 0.7840 0.7987 0.7953
(5, 100) (10, 3904) 0.7914 0.7663 0.7713 0.7861 0.7613
(5, 200) (10, 9191) 0.7978 0.7729 0.7780 0.7895 0.7729
(7, 100) (14, 4119) 0.7939 0.7700 0.7749 0.7852 0.7888
(7, 200) (14, 8296) 0.7859 0.7660 0.7736 0.7798 0.7920
average - 0.7840 0.7644 0.7706 0.7805 0.7915

TABLE II
STD PERFORMANCE OF MULTI-GRANULAR AND HIERARCHICAL QUERY TOKENS TRAINED ON THE DEVELOPMENT QUERIES OF QUESST 2015. m
DENOTES TO THE NUMBER OF HMMS IN THE CORPUS, n DENOTES THE NUMBER OF HMMS, u DENOTES THE NUMBER OF STATES OF THE LONGEST
WORD-LIKE TOKEN IN THE LEXICON, v DENOTES THE NUMBER OF WORD-LIKE TOKENS IN THE LEXICON. THE BEST RESULT FOR EACH COLUMN IS

SHOWN IN BOLD.

Paradigm (m, n) (u, v) model-dependent minCnxe
IRS ERS ERS(T1) ERS(T2) ERS(T3)

Multi-granular

(3, 100) - 0.7938 0.7856 0.7860 0.7987 0.8139
(3, 200) - 0.8047 0.7847 0.7794 0.8048 0.8145
(5, 100) - 0.7854 0.7804 0.7862 0.7984 0.8062
(5, 200) - 0.8010 0.7882 0.7813 0.7984 0.8117
(7, 100) - 0.7908 0.7814 0.7795 0.7990 0.8075
(7, 200) - 0.7966 0.7911 0.7807 0.8014 0.8073
average - 0.7828 0.7735 0.7747 0.7984 0.8114

Hierarchical

(3, 100) (6, 582) 0.8025 0.7921 0.7819 0.8051 0.8139
(3, 200) (6, 878) 0.8022 0.7905 0.7819 0.7963 0.8051
(5, 100) (10, 379) 0.7893 0.7822 0.7817 0.8013 0.8131
(5, 200) (10, 539) 0.8036 0.7978 0.7786 0.7966 0.8103
(7, 100) (14, 320) 0.7880 0.7841 0.7822 0.8046 0.8090
(7, 200) (14, 395) 0.7950 0.7875 0.7775 0.8079 0.8065
average - 0.7923 0.7829 0.7774 0.7960 0.8026

with either the Initial Relevance Score (IRS) in Eq. (13)
or Enhanced Relevance Score (ERS) in Eq. (14) on the
different token sets for Document Tokens and Query Tokens
in Table I and Table II respectively. We further show the
detailed results for ERS on different query types T1, T2,
T3 respectively. Results of other metrics are also available
but they all showed consistent trends, therefore left out. The
model-dependent minCxne was selected because it showed
the most variance across the different token sets. In the top
half of Tables I and II, we trained several Multi-granular
token sets on the utterances with the granularities (m,n) =
(3, 100), (3, 200), (5, 100), (5, 200), (7, 100), (7, 200). In the
bottom half of Table I, the Hierarchical tokens are trained
with lexicon and language models using the method in [21].
In the bottom half of Table II, we only used the lexicon and
not the language model in the Hierarchical Paradigm because
the noisy acoustic conditions did not allow the initialization
step to find stable word-like structures and the queries are
too short for an effective language models. The number of
states of the longest word-like token in the lexicon u, and the
number of word-like tokens in the lexicon v are also shown. In

training these token sets, we constrained the word-like tokens
to be at most two subword-like tokens long, or u ≤ 2m. The
model-dependent minCnxe results were evaluated using IRS
in Eq. (13) and ERS in Eq. (14) based on the subword-like
tokens with granularity (m,n), except the decoding process
for generating the token sequence representations was based
on the lexicon constraints for the word-like tokens.

In the last rows of the top and bottom halves of Tables
I and II we averaged the relevance scores obtained at each
granularity and evaluated the performance on the averaged
relevance scores. From Tables I and II, several observations
can be made: (a) In all cases, the results obtained with the
Enhanced Relevance Scores (ERS) in Eq. (14) performed
better than results obtained with the Initial Relevance Score
(IRS) in Eq. (13). These results verify our analysis in Section
IV-C regarding the heuristics behind token sequence represen-
tations. This is a major improvement over our previous work
which only considered IRS in Eq. (13). (b) By comparing
Tables II and I, the performance of some of the query tokens
were comparable to the document tokens. The query tokens
at granularity (5,100) in Table II even performed better than
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TABLE III
STD PERFORMANCE OF SYSTEMS SUBMITTED BY PARTICIPANTS OF QUESST 2015

Index Methods actCnxe minCnxe
(1) Caranica et al. Romanian Phones MFCC [47] 1.0061 0.9944
(2) Caranica et al. Romanian Phones PNCC [47] 1.0061 0.9943
(3) Ma et al. SMO+iSAX [48] 0.9988 0.9872
(4) Ma et al. subseq+MFCC [48] 1.0658 0.9823
(5) Skácel et al. Posteriorgrams DTW [49] 0.8452 0.8263
(6) Skácel et al. Posteriorgrams subsequence DTW [49] 0.8447 0.8124
(7) Hou et al. Spectral, phoneme-state posterior, BNF, fusion of 66 systems [50] 0.773 0.757
(8) Proposed, Multi-granular Document Tokens Eq. (14) (7,200) 0.9997 0.9937
(9) Proposed, Multi-granular Query Tokens Eq. (14) Average 1.0022 0.9965
(10) Proposed, Hierarchical Query Tokens Eq. (14) Average 1.0020 0.9964
(11) Proposed, Multi-granular Document Tokens Eq. (14) Average 1.0015 0.9932
(12) Proposed, Hierarchical Document Tokens Eq. (14) Average 1.0013 0.9932

two document tokens at granularity (3,100), (3,200) in Table I
for ERS. Only 445 short queries were used to train the query
tokens, while 11662 long spoken documents were used to train
the document tokens. With only 445 short queries we trained
n = 100 or n = 200 token HMMs, so each HMM is given
only a few training examples. The comparable performance
to the document tokens which were trained on 11662 long
spoken documents suggests that under noisy conditions, our
analysis in Section V-B is probably correct. Training HMM
tokens on very small training sets is essentially just assigning
the query features to the means of the Gaussians, and decoding
the HMM on the documents is really just performing DTW on
the query-document pairs. (c) Eq. (10) successfully explains
the trends between m, n, u and v. We constrained the word-
like tokens in the lexicon to be at most two subword-like
tokens long, so u = 2m. When we substitute (m′, n′) with
(u, v), we have

v = n
u
m , (17)

which is the condition that the number of representations
in terms of token sequences is saturated, and the two-level
representation of the Hierarchical Paradigm is reduced to the
one-level Multi-granular Paradigm. Although the actual values
of v are way smaller than the theoretical value in Eq. (17) for
saturation to happen, it actually explains some trends. For the
query tokens in Table II, by comparing granularities (3,100),
(5,100), (7,100) and (3,200), (5,200), (7,200) with a fixed
n =100 or 200, we see that the actual value of v decreases
with the increase of m, which is consistent with Eq. (17). In
other words, when the number of distinct subword-like tokens
is fixed, longer subword-like tokens implies smaller number of
distinct word-like tokens (smaller lexicon size). This is only
partially observed for the document tokens in Table I when
the growth of v slows down. By comparing the granularities
(3,100) and (3,200), (5,100) and (5,200), (7,100) and (7,200)
with a fixed m =3, 5, 7 and we see that the actual value of
v increases with the increase of n, which is also consistent
with Eq. (17). In other words, when the length of subword-
like tokens is fixed more distinct subword-like token implies
more distinct word-like tokens (larger lexicon size). (d) Under
most conditions, the Multi-granular Paradigm performed better
than the Hierarchical Paradigm for both query tokens and
document tokens. We believe this is because careful tuning is
required when training lexicons for the Hierarchical Paradigm

to be successful. (e) By comparing the performance of the
averaged scores for different query types in both Tables I and
II, T1<T2<T3. This indicating that T1 is the easiest type of
query where T3 is the hardest. (f) For both document tokens
and query tokens, the Hierarchical tokens managed to get the
best results on most individual query types T1, T2 and T3,
but not the best when all 3 query types are considered. This is
probably because the Hierarchical tokens managed to capture
some structure of the specific query types. Good thresholds for
scores can be derived for specific query types, but maybe the
range of scores is too different across query types, degrading
the performance when jointly considered.

For comparison to supervised methods, we also list the re-
sults of the systems submitted by participants of the QUESST
2015 evaluation on the evaluation set in Table III. Because
most teams reported their results on the model-independent
actual Cnxe (actCnxe) and minimum Cnxe (minCnxe), we also
report our results in model-independent actCnxe and minCnxe
in Table III instead of the model-dependent minimum Cnxe in
Tables I and II. We list the results of our best performing
token set in row (8) of Table III, which is (7,200) of the
Multi-granular document tokens in Table I. The results of the
averaged relevance scores in Table I and II are also listed in
rows (9), (10), (11), (12) in Table III. Note that in the QUESST
2015 evaluation the participants were allowed to use acoustic
models trained on other labeled datasets, since the task did not
require systems to compete under the zero resource scenario.
Also note that in our experiments we always assume that either
the document or query is not available during the training of
the token sets, so the comparison is not entirely fair. In rows
(1) and (2) Caranica et al. [47] used supervised phoneme
HMM tokens trained on a labeled Romanian corpus of 8.7
hours. The results of row (1) were trained with MFCCs, and
row (2) with PNCCs [53]. Their systems are similar to the
proposed approach here because we both use token HMMs.
Although they used supervised knowledge in their HMMs,
the performance of our unsupervised HMMs in row (11) and
(12) is actually better. In rows (3) and (4) Ma et al. [48]
used various combinations of Czech, Hungarian, and Russian
phonetic tokens and frame-based DTW systems. Their systems
are similar to the proposed approaches here because we both
used the fusion of various token sets. In row (3), they fused the
results from various ways to the calculate distances based on
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the phone sequences for three different languages. In row (4),
they combined the distances of the phonetic tokens with frame-
based DTW. Their supervised results are comparable to ours.
In rows (5) and (6) Skácel et al. performed frame-based DTW
on posteriorgrams extracted from Czech, Portuguese, Russian,
Spanish systems. In row (5), they stacked the posteriorgrams
and performed DTW. In row (6), they split the queries into
multiple segments and performed DTW on each segment then
averaged the results. The rationale behind this approach of
splitting the queries into segments in row (6) is because of
the complications of the T2 and T3 queries. The improvement
from rows (5) to (6) suggests that this action is justified.
We did not develop any special approach to deal with the
T2 and T3 queries, which may explain their better results.
In row (7), Hou et al. fused 66 systems of spectral features,
phoneme-state posterior features and bottleneck features from
3 teams. The performance of their aggregated system was the
best performing by a large margin and can be considered the
topline of QUESST 2015.

Considering real applications, the major advantage of un-
supervised approaches as proposed here over the multilingual
training (using supervised models trained on other languages)
is the robustness across languages. The performance of multi-
lingual approaches have been observed in experiments to rely
on how closely the linguistic structure for the given corpora
of the language is related to that of the languages for the
supervised models. In addition, the given corpora may be mul-
tilingual with code-switching, which makes robustness across
languages even more important. This is also important for
models endangered languages like the 26 Formosan languages
[54], [55]. For such endangered languages, the supervised
models from which we can borrow related linguistic structures
may not exist.

VII. SUBWORD-LIKE TOKENS EVALUATION

We use the corpus and evaluation defined in the Zero
Resource Speech Challenge 2015 [43] to evaluate quality of
the sub-word like tokens obtained in this work. We choose
Track 1 of the Challenge to evaluate the quality of the sub-
word structures on two languages, English and Xitsonga. The
Track 1 evaluation was based on the ABX discriminability
test [56] including across-speaker and within-speaker tests.
The warping distance obtained by performing DTW over the
sequences of the obtained frame-level features for predefined
signal pairs were used as the distance metric for the ABX
discriminability test. For the test here, we use posteriorgrams
with dimensionality n (n is the number of distinct subword-
like tokens as used above) extracted from the decoded token
lattices as the features to be evaluated in this experiment.
There is no separate query set, only document tokens were
considered. Because the durations of the predefined signal
pairs for the test were short and designed to evaluate frame-
level speech features, the subword-tokens extracted from the
paradigms can be as long as or longer than the the entire
duration of the signal. Since the scenario is quite different
from the original design of the challenge, the metrics of the
challenge is used to compare the different granularities and

the paradigms rather than taken as a quality measure. The
results in error percentage (the lower the better) on English and
Xitsonga is listed in Table IV and Table V respectively. Table
VI, also lists the performance of other systems as references.

In Table IV and Table V, we trained acoustic tokens using
the Multi-granular Paradigm and the Hierarchical Paradigm on
the two spoken archives in English and Xitsonga respectively.
The results on both languages have similar trends and some
observations can be made. (a) The shorter the HMM, the better
the performance, probably because shorter HMMs can better
fit the short-time variation of the signals for the evaluation
intervals defined by the task. (b) Most results under the Hier-
archical Paradigm were in general better than those under the
Multi-granular Paradigm, which is the opposite of observation
(d) of Section VI. This is probably because unlike MediaEval
QUESST 2015, the Zero Resource Challenge 2015 used clean
speech and did not mix multiple languages. With less noise,
the Hierarchical Paradigm can better capture longer word-like
tokens, leading to better subword-like tokens. For MediaEval
QUESST 2015, the noise and different language structures
made it difficult to build word-like tokens from subword-like
tokens in the Hierarchical Paradigm.

In Table VI, we compare the best system at granularity
(3,50) for both the Multi-granular Paradigm and Hierarchical
Paradigm with the performance of other systems reported by
the Challenge. The official baseline provided by the Challenge
was the MFCC features without delta and double delta and
the official topline was supervised phone posteriorgrams. The
system proposed by Thiollière et al. [57] had two components:
a dynamic-time warping (DTW) based spoken term discovery
(STD) system and a Siamese DNN. The STD system clustered
word-sized repeated fragments in the acoustic streams while
the DNN was trained to minimize the distance between time
aligned frames of tokens of the same cluster, and maximize
the distance between tokens of different clusters. The frame-
level features were then extracted from the bottleneck layer
of the trained DNN. Renshaw et al. [14] proposed a similar
system using correspondence autoencoders (cAE). The cAE
was an autoencoder trained on feature pairs, one feature as
the input and the other as the reconstruction target at the
output. The frame-level features were then extracted from
the bottleneck layer of the trained cAE. Like the hybrid
Siamese system above [57], a DTW based system was used to
align the feature pairs for feature sequences within the same
cluster. The clusters can either be ground truth word types
or discovered clusters. The performance was better when the
clusters were the ground truth word types, although in that
case the cAE/hybrid Siamese system was not an unsupervised
model. Badino et al. [58] proposed the generation of discrete
features by forcing the bottleneck features of autoencoders
(AE) to be binary. The binary bottleneck features with dimen-
sionality H extracted from the AE could be interpreted as an
integer between 0 and 2H − 1. The discrete integer sequence
was further refined with HMMs. Chen et al. [26] used a
Dirichlet process Gaussian mixture model (DPGMM) to repre-
sent speech frames with Gaussian posteriorgrams. The model
performed unsupervised clustering on untranscribed data, and
each Gaussian component could be considered as a cluster of
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TABLE IV
ABX PERFORMANCE OF MULTI-GRANULAR TOKENS AND HIERARCHICAL

TOKENS AT DIFFERENT GRANULARITIES TRAINED ON THE ENGLISH
CORPUS OF THE ZERO RESOURCE SPEECH CHALLENGE 2015

Paradigm (m, n) (u, v) within across

Multi-granular

(3, 50) - 25.52 16.73
(3, 100) - 27.64 17.86
(5, 50) - 26.36 17.14

(5, 100) - 27.98 17.78
(7, 50) - 27.47 18.25

(7, 100) - 29.32 18.82

Hierarchical

(3, 50) (6, 698) 25.29 16.50
(3, 100) (6, 2036) 27.40 17.63
(5, 50) (10, 1001) 26.36 17.14

(5, 100) (10, 2336) 27.98 17.78
(7, 50) (14, 1176) 27.41 18.18

(7, 100) (14, 2248) 29.32 18.82

TABLE V
ABX PERFORMANCE OF MULTI-GRANULAR TOKENS AND HIERARCHICAL

TOKENS AT DIFFERENT GRANULARITIES TRAINED ON THE XITSONGA
CORPUS OF THE ZERO RESOURCE SPEECH CHALLENGE 2015

Paradigm (m, n) (u, v) within across

Multi-granular

(3, 50) - 23.92 14.75
(3, 100) - 25.77 15.34
(5, 50) - 25.16 16.20

(5, 100) - 27.38 16.65
(7, 50) - 26.52 17.45

(7, 100) - 27.89 17.93

Hierarchical

(3, 50) (6, 549) 23.98 14.67
(3, 100) (6, 1185) 25.88 15.24
(5, 50) (10, 701) 25.14 16.31

(5, 100) (10, 1213) 27.11 16.81
(7, 50) (14, 705) 26.51 17.47

(7, 100) (14, 1012) 27.82 17.87

sounds from various speakers. The model inferred its model
complexity (i.e. the number of Gaussian components) directly
from the data. Baljekar et al. [59] used Articulatory Features
(AF) trained on labeled speech in a higher resource language
to infer phonological segments of varying granularity. Both
the frame-level AFs and the token-like inferred phonological
units were used in the evaluation. The results of our system
are listed for reference.

TABLE VI
ABX PERFORMANCE OF SYSTEMS SUBMITTED BY PARTICIPANTS OF THE

ZERO RESOURCE SPEECH CHALLENGE 2015

Method English Xitsonga
across within across within

Topline 16.0 12.1 4.5 3.5
Baseline 28.1 15.6 33.8 19.1
Thiollière et al. [57] 17.9 12.0 16.6 11.7
Renshaw et al. [14] 21.1 13.5 19.3 11.9
Badino et al. [58] 26.3 17.3 23.6 14.1
Chen et al. [26] 16.3 10.8 17.2 9.6
Baljekar et al. [59] 29.8 18.4 29.7 18.1
Proposed (3,50) Mult. 25.5 16.7 24.0 14.8
Proposed (3,50) Hier. 25.3 16.5 24.0 14.7

VIII. CHOOSING BETWEEN THE TWO PARADIGMS

The goal of the experiments above is to provide a side-
by-side comparison of the two paradigms on the same tasks,
but the true strength of the idea of having two paradigms

lies in choosing which to use for a given task. For a given
task, usually one paradigm would be preferred over the other
and they would seldom be used together. The experimental
results show that the Hierarchical Paradigm can achieve the
best performance at the correct granularities, since linguistic
structures provide context for the acoustic tokens. However,
finding the correct granularities usually involves a grid search
over the hyperparameter space which could be done more
easily by training acoustic tokens under the Multi-granular
Paradigm. With the acoustic subword-like tokens alone, the
Multi-granular Paradigm can achieve decent performance by
simply aggregating the scores of multiple token sets.

If a task has constraints on computation power so decoding
with a large lexicon under the Hierarchical Paradigm becomes
difficult, or if the task has to be robust across various acoustic
conditions, we can simply take the average scores from the
multiple token sets of the Multi-granular Paradigm and ignore
the hierarchical structures. For example, we have shown that
supervised speaker-independent DNNs adapted with unsuper-
vised speaker-dependent Multi-granular tokens as auxiliary
targets can be used for speaker adaptation [7]. By training
Multi-granular tokens directly on the audio of a specific
user, the system could capture speaker-specific acoustic tokens
that could be due to dialect. The high degree of similarity
between the HMMs of the multiple sets of unsupervised tokens
under the Multi-granular Paradigm and the supervised speaker
independent phoneme models make it possible for them to
learn from each other through the shared layers of the DNN.
The proposed semi-supervised approach has beaten strong
adaptation baselines.

If a task has constraints on storage space making it difficult
to store multiple representations using the Multi-granular
Paradigm, or if the task requires only one high quality repre-
sentation for every audio file, we can select a few promising
granularities to train the Hierarchical Paradigm and discard
the rest. For example, we have shown that the quality of the
hierarchical tokens can be good enough for query expansion
in semantic retrieval of spoken content [24], [29]. A text-based
query expansion retrieval system returns documents containing
exact matches in the first pass of the system for a given query.
Words that appear frequently in the retrieved documents are
considered to be semantically related, and treated as expanded
queries. In the second pass, the system also returns documents
containing expanded queries. Using the Hierarchical Paradigm,
this technique can be applied to spoken documents as well by
treating the acoustic tokens as regular words. Many Out-of-
Vocabulary (OOV) words incorrectly recognized by ASR sys-
tems can be consistently represented by acoustic tokens. For
an unannotated spoken corpus, the user can say “President”,
and the system would return spoken documents containing
“Roosevelt” without any knowledge of the content.

Table VII is a summary of the computation complexity
for the Multi-granular Paradigm and Hierarchical Paradigm
based on the notations explained in Table VIII. Only the
decoding step in Eq. (2) is different for the two Paradigms.
The explanations of the content of Table VII is in Appendix
A. These Tables can be used as a reference for estimating the
resources required and deciding which of the two paradigms
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to use.

IX. CONCLUSION

This paper presents two different paradigms for unsuper-
vised discovery of structured acoustic tokens from a given spo-
ken corpus, in which the acoustic tokens discovered are struc-
tured in two different ways. In the Multi-granular Paradigm,
we are able to discover many sets of acoustic tokens over a
two-dimensional space of temporal granularity and phonetic
granularity, and these set of tokens can be complementary to
each other. In the Hierarchical Paradigm, the two-level word-
like and subword-like tokens are learned layer after layer with
the proposed cascaded stages of iterative optimization. We then
unify the two paradigms in a single theoretical framework,
and discuss when it would be better to choose one over the
other. We performed Spoken Term Detection experiments on
the MediaEval QUESST 2015 corpus and ABX evaluation
on the Zero Resource Challenge 2015 corpus to verify the
competitiveness of the discovered acoustic tokens.
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APPENDIX A
TIME COMPLEXITY AND STORAGE REQUIREMENT

We list time complexity and storage requirement for training
the acoustic tokens and performing QbE-STD for a token
set of granularity (m,n) under the Multi-granular Paradigm
and a lexicon with parameters (u, v) under the Hierarchical
Paradigm. We ignore the space complexity during the compu-
tation of the algorithms, but instead focus on the disk space
required to store the results of the algorithms. For simplicity
we assume every utterance in the spoken archive has the
same length T , and there are a total of U utterances in the
archive. We list the results in Table VII with the corresponding
notations in Table VIII. Note that there is no distinction
between the Multi-granular and Hierarchical Paradigm for
most algorithms except for token decoding in Eq. (2).
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