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Speaker recognition using e—vectors

Sandro Cumani and Pietro Laface

Abstract—Systems based on i-vectors represent the current the modep, of the posterior distributionPyyx(w). The
state—of-the—art in text-independent speaker recognition. Uike  mode can be computed by collecting the zero-order statistic
Joint Factor Analysis (JFA), which models both speaker and egtimated on each Gaussian component of the UBM for the

intersession subspaces separately, in the i—vector approach all . .
the important variability is modeled in a single low dimensional set of feature vectorst, and the corresponding first-order

subspace. This work is based on the observation that JFA statistics centered around the UBM means.
estimates a more informative speaker subspace than the “total The main advantage of the i—vector representation is that

variability” i-vector subspace, because the latter is obtained by the problem of intersession variability is deferred to aosec
considering each training segment as belonging to a different stage, dealing with low—dimensional vectors rather thait wi

speaker. We propose a speaker modeling approach that extracts ) ) . .
a compact representation of a speech segment, similar to the "€ high—dimensional space of the GMM supervectors. This

speaker factors of JFA and to i-vectors, referred to as “e-vedor”. ~ allows training better classifiers, such as PLDA [6]-[10],
Estimating the e—vector subspace follows a procedure similar to i— and Pairwise Support Vector Machine (PSVM) or Logistic

vector training, but produces a more accurate speaker subspac Regression [11]-[17]. Furthermore, in such low dimensiona
as confirmed by the results of a set of tests performed on the space it is possible to perform transformations that are par

NIST 2012 and 2010 Speaker Recognition Evaluations. Simply ticular] ited f hancing the classifi f h
replacing the i—vectors with e—vectors we get approximately 10% ICularly suited for enhancing the classilier performarse

average improvement of the Grimary COst function, using different as compensating development and evaluation set mismatches
systems and classifiers. It is worth noting that these performare by means of Within Class Covariance Normalization [18] and
gains come without any additional memory or computational |ength normalization [19], or transforming i—vectors satth
costs with respect to the standard i-vector systems. they better fit the classifier assumptions [20]-[22]. Fipall
PLDA and PSVM models allow exploiting multiple recordings
l. INTRODUCTION of the same speaker by simply averaging their corresponding

i=vectors. This simple approach is known to be more effectiv

A s!mple and gffectwe model for speaker recognmop hafﬁan proper estimation of multi-session likelihood ratins
been introduced in [2], [3], where a speech segment is &P DA see for example [23]

resented by a low—dimensional “identity vector” or i-vecto I-vector modeling stems from the Joint Factor Analysis

An i—vector is obtained from the statistics collected byngsi QFA) approach [24]-[26]. JFA models the speaker and channe

a Gaussian Mixture Model (GMM) trained to represent variability of a Gaussian supervector by means of a linear
Universal Background Model (UBM) [4]. The i-vector model y b y

. o combination of eigenvoice, eigenchannel and MAP adaptated
constrains the utterance GMM supervectgrsonsisting of the ) :
S : ) . supervectors. These factors can be estimated accordirg to t
stacked GMM means, to live in a single subspace, includir; . . .
o . ) iterative procedure illustrated in [24]. It has been, hogrev
both speaker and channel variability, according to: . . :
experimentally shown in [27] that the eigenchannel factors
s=m+Tw, (1) keep some correlation with the eigenvoice factors, i.eey th

still convey some information about the speaker identity.

wherem is the Universal Background Model (UBM) meanrs ohservation motivated the introduction of the i—vecto
supervector, composed 6f GMM components of dimension approach as a feature extractor [2], [3], where speaker and

.F' T IS a_Iow-rank rgctangular matrix spannlng_thg'subspaeﬁanna variability are modeled in a single low—dimensiona
including important mter'and |ntr.a—s'peaker varlab|I|tyt.he space spanned by the column vectors of a single mdtrix
supervector space, and is a realization of a latent variable  Ajogh the i-vector subspace also includes channel vari-

W, of size M, having a standard normal prior distributiongyjjir, \hich is detrimental for speaker recognition, éetors

A Maximum-Likelihood estimate of matrixT is usually paye shown to provide a large performance boost over JFA—
obtained by minor modifications of the Joint Factor Analys'ﬁased methods for text—independent tasks.

approach [5]. GivenT, and the set ofr feature vectors On the other hand, JFA estimates a more informative

X = {xixz...x;} extracted from a speech segment, i{neqrer subspace with respect to the total variabilitydtere

is possible computing the likelihood ot given the model ¢ ,psnace  because the latter considers each training segme

(1), and a value for the latent variab®. The i-vector, ,q pejonging to a different speaker. In this work we propose a

which represents the segment, is computed as the MaximUhaker modeling approach that combines the benefits of the

a Posteriori (MAP) point estimate of the variabW’, i.., yore informative JFA speaker subspace and of the i—vector
The authors are with the Dipartimento di Automatica e Inforomti [T@MEWOTK. It extracts a compact representation of a speech

Politecnico di Torino, 10143 Torino, Italy (e-mail: sandremani@polito.it, segment, similar to the speaker factors or i—vectors. This

pietro.laface@polito.t). . _ representation better characterizes the speaker, anditbus
Computational resources for this work were provided by HPQ@FO btaini b £ ith h dard i
(http:/fwww.hpc. polito.it) obtaining better performance with respect to the standard i

This paper is an extended and revised version of ICASSP 2ap@rd1]. vectors. By analogy with i—vectors, we will refer to this
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representation as “eigenvoice—vector”, or “e—vector"dhort. by an eigenchannel matrid. In particular, JFA models the
The main idea of our approach is to rely on the eigenvoispeaker and channel dependent supervestdor a given

space, which should be more accurate than the one reprdsesfeech segment as:

by the total variability matrix, which has a larger varidtyil

because it includes channel information. The novelty of our

proposal co_nsists in estimating a linear transfqrma_ticmt tr\_Nhere m is UBM supervector, which stacks the Gaussian
allows keeping the span of the speaker—specific eIgenvojeRans, v and U are rectangular low rank matriceB) is a

subspace, but at the same time provides a better prior fordmgonal matrix, ang, x andz are the speaker, channel, and
vector extraction. We will show that this is simply obtain®d | ~ciqual (or common) factors, respectively.

considering each training segment as belonging to a differe A recalled in the introduction section, JFA channel factor

speaker, as it is done in standard i-vector training, bulyappg|gq contain information about the speaker identity [2flist
|ng.solely M|n.|n_1um_ Dlve.rgence Estmapon (MDE) [8]:, [2.8] the speaker and channel dependent supervector model (2) was
during the training iterations for obtaining a new variépil simplified in the i—vector approach as in (1), collecting in a

matrix, E. single matrix the speaker, channel, and residual noiseaaar

Replacing i-vectors with e-vectors we were able to 0btajB,ying to the classifier the duty of taking care of interiess
approximately 10% performance improvement on the EXte”d\%#iability _

core NIST SRE 2012 [29] evaluation, using different extrac-
tion techniques, classifiers, and e—vector dimensionsil&jm
but slightly lower, performance has been achieved on the cor
extended NIST SRE2010 female telephone [30] dataset. The i—vector approach allows channel compensation to be

The paper is organized as follows: Section Il recalls thgerformed in a low—dimensional subspace, rather than in the
eigenvoice, JFA, and i—vector approaches. Section lllbintrmuch larger GMM supervector space. It is worth noting that,
duces the e—vectors and their training procedure. Theiclaghie to the substantial similarity of models (1) and (2), matr
fiers that have been used in our experiments are illustratedTi training can be performed similarly to eigenvoidematrix
Section IV together with two recently proposed techniquesaining. The only difference is that in thé matrix estimation
which are particularly suited to enhance the performanpeocedure, the segments of the same speaker are labeled as a
of a Gaussian PLDA classifier. The experimental settingingle class, whereas all segments are considered as lmgong
and results are presented and commented in Section V, andlifferent classes i matrix estimation.
conclusions are drawn in Section VI. Since theT matrix eigenvectors span both the speaker
and channel subspace, matiixdoes not model the speaker
subspace as well as the eigenvoice malifix

On the basis of these observations, we propose a speaker

A model-based speaker adaptation approach was proposgieling approach that tries to take advantage of the best
in [31], which constrains the adapted model to be a linegf the JFA and of the i~vector techniques. We keep the i-
combination of a small number of basis vectors obtained fropactors framework to exploit the possibility of represegta
a set of reference speakers. These “eigenvoice” vectors Wghice segment in a low—dimensional space, but we estimate
estimated, in this approach, with the objective of captutite 5 gifferent T matrix, which better accounts for the speaker
most important components of variation among the referenggace. This new matrig is similar to theT matrix, but it is
speakers. The adaptation data were then used for obtainiggimated with the additional constraint that it spans Hraes

by means of Maximum Likelihood Eigen-Decompositionsubspace represented by the eigenvoice matrix trainedeon th
the weights of the linear combination, leading to a lowsgme dataset.

dimensional vector representation of a new speaker in theThe new model is similar to the i—vector model:

eigenvoice space. Eigenvoice modeling, thus, aims at chara

terizing the speaker within the speaker subspace, andgtank s=m+Ew , ()

the correlations between GMM components, allows adapti&}%
G

s=m+ Vy+Ux+ Dz, (2)

Ill. E-VECTORS

Il. SUPERVECTOR REPRESENTATIONS

also rarely observed Gaussians. This modeling approach ere, as in the standard i-vector modeland m are th?
successively also proposed for speaker recognition in 8] M s_upervector and UBM mean sup.ervec'gor, respectively
in [33], where eigenvoice MAP adaptation was introduced. and w is a rgndpm _vector, of dimensiod, with standard

In [34] the eigenvoice approach has been applied effegrtivéiorm‘r’lI prior distribution.
to the problem of modeling intra—speaker variability, bynco . .
pensating the session (channel) variability at recogmitiime. S_lnce ou.r goal is thal spans the same subspacevafwe
Finally JFA modeling was introduced in [24], where the eigeﬁjemeE as:
voice model was extended to deal with intersession speaker
variability and channel mismatches between enrollment apflore A

evaluation conditions, taking care of the channel effelde asubspace oV because its columns are a linear combination

in speaker enroliment. of the columns ofV. Thus, model (3) can be rewritten as:
JFA defines two subspaces: the speaker space represented

by an eigenvoice matri¥/, and the channel space, represented s=m+ VAw . (5)

E=VA, (4)

is a full rankd x d matrix. Matrix E spans the same
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Maximum Likelihood Estimation (MLE) of A can be Given the posteriors computed using the current estimate of

performed by means of the Expectation Maximization (EMA

, A4, the maximization step of the EM algorithm requires

algorithm, with a procedure similar to ML estimation of miatr optimizing the auxiliary function:

T in standard i—vector extraction [8], [35], as illustrated i
subsection IlI-A. However, contrary to the standard soluti
the solution using this approach is cumbersome and expgensiv
thus, in subsection 11I-B we reformulate model (5) so that a
very simple solution can be found.

In the next two subsections we use the following notations:

o I is the dimension of the acoustic feature vectors, and
C is the number of the UBM components,

matrix of thec—th UBM component, respectively,
the covariance matrices(®,
Ni(c) is the zero order statistics for utterancestimated
on thec—th Gaussian component of the UBM,
UBM mean:
NO =3
— i

IS ( (c)

Vit Ot
t

of

) - Nz‘(c)m(c) ) (6)

where yi("? is the occupation probability of the-th

feature vectoro,, of utterancei for the c—th UBM
component,

f; is the supervector stacking the first order statisﬁg&s
N, denotes th&€'F' x C'F' diagonal matrix whose diagonal

blocks are theF" x F diagonal matricesv*'T. B.

A. Estimation of matrixA in models = m + VAw

The joint likelihood of the set of the feature vectorst; =
[0i1,...,04] Of utterancei and the corresponding hidden
variablew;, given matrixA, is:

1 T T
2wi wW; + W;
1
- —wlETN
2
=— §W7:T

1
gerTVTNZ-E_lVAwZ- +Gsi,

)

log P(X;, wi|A) = — = ETs1f,

izilEWi + Ggﬂ'
w; +wl ATVTZ I, Si

pr

wherez =

A, Aold) = Z Ewi\Xi,Aozd [IOg P(‘Xiv Wl‘A)]

7

-3 (ATVTE’lfq;]E [wi]T)

_ %T&“ (ATVTNZ-EJVAE [WlWlT]) +k,

C)

m( and (¢ are the mean vector and the covarianceherek collects all terms that do not depend @n
Setting to0 the derivative ofQ(A, A,;4) with respect toA

¥ denotes the block—diagonal matrix whose elements axg obtain:

> VIN;Z'VAE [wiw]] =

?

VTE_l Z sz [Wi}T s
" (10)

£1”) is the set of first order statistics centered around thghich can be recognized as a generalized Sylvester equation

the form )", A, XB; = C, where 4; and B; ared x d

square matrices. Solving (10) is not trivial because thedsted
approach requires building Kronecker products of the form
A; ® B;. Due to the large size of these Kronecker product
matrices, the solution is inefficient or even infeasible.

Although one can rely on numerical optimization to directly

maximize the EM auxiliary function (9), this approach is not
appealing if a simpler solution is possible. We show in the ne
subsection that a simple solution can be obtained apptepria
rewriting model (5).

Estimation of matrixA in models = m + Vz

Let's rewrite model (5) as:
s=m+Vz, (11)

Aw. According to the properties of the normal

distribution of random variables [36], i is a normal dis-
tributed random vectorx ~ N(ux, Xx), then the random
vector resulting from an affine transformatign= Ax+ b is
normally distributed with mean and covariance:

py = Apy , X, =AXAT. (12)

nce w has a standard normal distribution, has a prior

distributionz ~ A'(0, AAT).
Models (5) and (11) are equivalent, in the sense that they

ovide the same marginal likelihood of the daf(X|A).

Writing the joint likelihood:

whereGsy; ; collects all terms that do not dependend Aror

w,. By inspection, and in analogy with the standard i—vector
posterior distribution, the posterior fov; is Gaussian, with
meanu,, ; and covariance matriA;}i:

-1
AL, = (T+E'NST'E)

- (I " ATVTNZ-E”VA)
=ALETS Y,

w,i

=AATVIE T

Z;

/J’w,z' re

8)

log P(X;,2zi|A) = log P(X;|z;, A) + log P(z;|A)
1
=z VIS, - §ziVTNi2_1Vz +Gsi—

(13)

)

1 1
52 ATA 2~ S log ‘AAT

whereGsy ; collects all terms that do not dependent Anor

, and noticing that its first three terms do not dependAgn

we can verify that the posterior distributions of and z are

lated by the same properties (12) that apply to their prior

distributions.
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The posterior forz; is Gaussian. Its covariance matrix ;
and meanu, ;, are given by:

Al=(ATTAT A VINETY)

—1
— A(I n ATVTNZE’1VA> AT

= AASAT (14)
and
B, =AIVIET,
=AAATVIETY,
=Ap,; . (15)

Please notice that the joint likelihood of (13) corresponds AAT
to the one derived for the i—vector model, just with a non—

standard prior of;.

The EM auxiliary function for estimatings takes the form:

Q(AaAOZd) = ZEZil/\’onzd UOg P(‘Xia ZZ|A)]

= By, x, A l0g P(Xi|2;, A) + log P(z;|A)] .
(16)

Since the termlog P(X;|z;, A) does not depend on, the

where N is the number of training utterances.
Setting to0 the derivative ofQ (P, A,;4) with respect taoP,
we obtain:

AAT (21)

_ 1

= P 1 :N ZEzilXionld [Zizf} .
Thus, an optimal solution foA is given by the Cholesky
decomposition ofP ™.
However, P is given in terms of the posterior distribution of
z;, but we are interested in an iterative estimation that is a
function of E and w;.
Since the posterior distributions|X’ and w|X are related
according to (12), we can rewrite (21) as:

1
:N ZAOldEwi\XhAom [WZW?] AZId . (22)
Since the distributionw| (X, Ayq) = w| (X, E4), because
Eoa = VAua,

1
AAT :Aold <N ZEW1|Xi7Eold [W,LWZT:I) Azj);d . (23)

A solution for A is then given by:

maximization of (16), reduces to the maximization of thg§nereR is the Cholesky decomposition of:

second term:

Q(A, Ayg) = ZEzi|Xi,Aom [log P(z;|A)]

1 T A —
:ZEZHXquLd [_2Z1TA TA 1Zi] +

Z —% log ‘AAT‘ .

K3

7

It is worth noting that maximization of (17) corresponds to

the minimization of the KL-divergence [24]:

ZD Zz|XzaAold)HP(zl|A)) (18)
Indeed,
ZDKL (2i| X, Aoia) || P(zi|A)) =
P(z;| X, Aoia)
;Ezi‘){onld logw = (19)

ZEZ,HXi,Aum log P(2i|Xi, Aola) —Eq, | x; A, l0g P(zi|A) |

but the first term is constant, and does not dependion

Defining, for convenienceP = (AAT) , the auxiliary

function (17) becomes:
Q(P,Aa)

:ZEzi‘XhAold |:_
1
=— §Tr <Pzi:]EzilXi7Anld [zmﬂ) + ?1og|P\ ,

(20)

r (Pziz] }+Zlog|P|

A=A, R (24)
RR" = N ZEwi‘XiyEold [Wlw,zr] ) (25)
and the optimal solution foE is:
E=VA
=VA,. R
=E,q4 R (26)

Thus, given i—vectors posteriors for model (3), the new
estimate forE is obtained by a right—-multiplication of the
eigenvoice matrixE with the Cholesky decomposition of
matrix - >, E[w;w]], where the sum extends over all the
tralnlng i—vectors. The EM training procedure for this miode
corresponds to performing only Minimum Divergence Estima-
tion for model (3), as in [24]. MDE was originally proposed
as an additional, optional, step mainly meant to speed—up EM
training convergence in JFA and i—vector modeling.

C. Matrix E training

The step for training matrixe can be summarized as
follows:

o First aV matrix is trained exactly as matriX is, but
assuming that the segments of a given speaker belong to
a single class, i.e., accumulating the sufficient statistic
per speaker, rather than per segment. In other words,
we perform eigenvoice matri¥ estimation in i-vector
style, rather than according to the JFA procedure, which
estimates matri¥/ together with matricet) andD. We
decided to train the eigenvoice matrix without relying on
the more complex JFA model because no performance
degradation was observed on preliminary experiments
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Fig. 1: Cumulative sum of the squared singular values &ig. 2: Principal angles between the subspaces represeynted
matricesT, E, andV. All values are normalized by the summatricesT and E.
of the squared singular values of matfix

the two subspaces, whereas they progressively differ fer th

using only the eigenvoice model, i.e., settin@tmatrices others.
U andD. Since matrixV training is performed considering the seg-

« In the second step, matri is initialized byV. Then, it ments of a given speaker as belonging to the same class, it
is trained considering each training segment as belongiisgfaster than matrixI' estimation. However, the number of
to a different speaker, as it is done for the estimation different speakers in the training corpora must be largeigho
matrix T, but applying only the iterations of (26), whichto accurately model the speaker subspace. The effects of the
correspond to performing only MDE. These iterationdimension of the speaker population on system performance
increase the data likelihood but leave unchanged tieanalyzed in the Section V.
span of the original eigenvoice matrix. MDE affects the

preCiSion matrix of the pOSterior distribution of the e— IV. DISCRIMINATIVE AND NON—LINEAR CLASSIFIERS

vectors by changing the eigenvalues of mafgx This . .
- S The comparison of the performance of the e—vectors with
makes the empirical distribution of the e—vectors conform

) respect to i-vectors has been performed by using two main
to the standarq normgl prior [8], [37]. Thus, we keep thglassifiers: the standard Gaussian PLDA (GPLDA), and the
span of the eigenvoice space, but we estimate a m

e . . e

accurate model prior with the aim of better estimatinpa‘rjurvw.Se S_upport Vectqr Machine cla_ssn‘ler [13], [15]. The
. tter is briefly recalled in the Subsection IV-A.

the e—vector posterior.

) ) ] In the following we will refer to i—vector classification, bu
The goal of these procedure is to estimate a m&rat i s taken for granted that the same techniques apply to e—

better spans the speaker variability subspace. This méans {e iors. Since our goal is to compare the performance of e—

e-vectors better characterize the speakers with respéet (Qeciors and i-vectors with different classifiers, and ushneg
vectors having the same dimensions, because some eigenyess; accurate models, we will also rely on improved i—vector
tors in matrlx_T accqunt for the_ cha_nnel effects. These effects,raction using the hybrid DNN/GMM approach, shortly
are reduced in matri, which is trained with more segmentSygtailed in Subsection IV-B, and we also exploit two regentl
per.speaker, collected from dlff_erent sessions and channel roposed approaches that allows obtaining relevant ingprov
Figure 1 shows the cumulative variance accounted by the.nt for PLDA classification. These approaches, based on a

first k squared singular values of matric8s E, and V, 41 jinear transformation of the i-vectors, are preseiited
in blue, red, and green lines, respectively. All values akg,psection IV-C.

normalized by the sum of the squared singular values of rmatri

T. The blue and green lines clearly show that the eigenvoice

matrix V has smaller squared singular values with respe'%t PSVM

to matrix T, which means that the channel variability that is A successful alternative to the generative PLDA model is
contained in the latter is largely reducedVn Since matrixEE a discriminative SVM model, where a single Pairwise SVM
is estimated considering all training recordings as beluptp (PSVM) is trained to classify a trial — composed of two i—
separate classes, its cumulative variance increasespws 8y  vectors - as belonging to the “same speaker”, or to the “dif-
the red curve, which becomes closer to the blue one. Howewerent speaker” class. This is in contrast with the usuak®“on
since matrixE is estimated with the constraint of keeping theersus-all” framework, where an SVM model is created for
span of matrixV, it still discards part of the contribution of each enrolled speaker, using as samples of the impostar clas
channel variability that is contained in matri&, in favor of the i—vectors of a background cohort of speakers. The PSVM
the most speaker specific directions. The difference betwemodel is tightly related with the Gaussian PLDA model.
the subspaces spanned by matrideand E is illustrated in However, while the estimation of the GPLDA parameters is
Figure 2, which plots the principal angles between the twmnstrained by the definiteness of their covariance matrice
subspaces. The first few directions are almost aligned leztwehe pairwise discriminative training approach does not enak
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TABLE I: Number of segments, and of speakers, in th€ABLE Il: Number of segments, and of speakers, in the
datasets used for training SRE10 models with telephone ®RE05-08 datasets available for training SRE10 models with
male data. interview/microphone female data.
Dataset Number of | Number of Total Total Dataset Number of | Number of Total Total
segments speakers| segments| speakers segments speakers| segments| speakers
SRE 04-06 + SWB 22511 1972 SRE 05 1436 52
+ SRE 08 7775 753 30286 2725 SRE 06 1416 43 2852 95
+ Fisher 13292 7198 43578 9923 SRE 08 5574 156 8626 251

any a priori assumption about the i~vector distributiomstno and successively to extract the i-vectors. In particularused
parameter constraints are imposed, except for the onésgarighe hybrid DNN/GMM architecture described in [42], where
from the regularization of its optimization function. we associate more than one Gaussian to each output unit of

The computation of the loss function gradients, and of tiibe DNN.
verification scores would be expensive in terms of memory

and computation costs using aive quadratic expansion of ¢ |_vector transformation and Non—Linear PLDA
the i—vector pairs. A solution for these issues has beemgive We have shown in [20], [21] that improved PLDA clas-

[11]-{13]. Furthermore, since the PSVM training still rema .. . : .
T . . sification performance can be obtained if the development
expensive in terms of computational resources, which grow SR,
) . S JI—vectors are transformed so that their distribution bes®m
guadratically with the number of the training i—vectors, 'rr'nore Gaussian—like. as assumed by the Gaussian PLDA
[14], [15] we introduced a simple and effective technique fo ' y

discarding the speaker i—vector pairs that are not estéotia model. The Gaussian target distribution can be obtained by

training. In particular, we theoretically proved that thewber applying to the input i-vectors a sequence of affine and non-

. : . linear transformations, whose parameters are estimatédeon
of Support Vectors of a PSVM increases linearly with respect S .
- . evelopment set. The evaluation i-vectors are then sutgject
to the number of training speakers, rather than quadrbtiaal

. . . the same transformation. Since the non-linear transféomat
the number of i—vector pairs. Therefore, the number of ingin . . . ) ,
. - . that we use is based on the sinh-arcsinh function, we will
pairs necessary for obtaining an accurate PSVM model is g o B y
verv small fraction of the total number of training pairs. ieth refer to these method of classification as “PLDA SAS”. Result
y ) . g pars, tained using PLDA SAS on the NIST SRE 2012 are reported
can be selected either by computing the scores of a PL

model on the training data pairs, or by a two—stage randommsection V.
selection strateg [1sg] pars, Y g The assumption of PLDA SAS that the i-vectors are statis-
y ' Cthcally independent and distributed according to the siathd

Although discriminative training using the same approa nhormal distribution is, however, not completely satisfagt
can be performed by Logistic Regression (LR) [12], we foung . ' '
- . - ecause i—vectors extracted from segments of the sameespeak

preferable training a PSVM, because it optimizes the mar%

) . re not independent. We have, thus, recently developed an
separation between the classes, whereas LR minimizes fhé P y P

. ; improved PLDA model [22], which will refer to as “non-
cross-entropy error function. PSVM ignores the huge number p o .
e . . 2 inear PLDA’ (NL—-PLDA). This is a generative model that

of training pairs that are far from the margins. This is morge o S R
- . . . allows jointly estimating the distribution of the developnt
difficult in LR training, whose loss function accumulates ;
- . i—vectors and the PLDA parameters, so that the i—vectors are

a huge number of contributions from the different—speaker

. . . . . non-linearly transformed to a new compact representattian t
pairs, which grow quadratically with the number of i-vestor y P b

whereas the contributions of the same—speaker pairs griyw 0rrr]1akes PLDA classification more accurate. It is interesting

linearly. While it is possible to reduce the number of diffare noting Fhat the': |—vectqr transformation in this enhanceﬂ)RIT
X . . . . model is obtained as in the PLDA SAS approach of [21], just
speaker pairs, or to reduce their weight in the loss functio

both approaches still require some heuristic decision,cM/hiaqanglng the transformation target distribution, whichdraes
eaker—dependent.

Is not necessary for PSVM training. On the contrary, botﬂOBoth approaches also incorporates a technique for reducing

contributions to the PSVM loss function grow linearly. the mismatch between the development and evaluation length
distributions of the i—vectors, by estimating for each etee a

B. |-vector extraction scaling factor suited to the target i—vector distributiBesults

é)ptained using NL-PLDA on the NIST SRE 2010 are reported

For both classifiers, the i—vector extraction has been p .
R subsection V-C.

formed either by means of the standard UBM/GMM approaé
or by exploiting the DNN posteriors of a hybrid DNN/GMM
architecture [38]-[41]. In this approach, the standarcuatio V. EXPERIMENTS

UBM is replaced by a fine—grained “phonetic” UBM obtained We compared the performance of i-vectors and e—vectors
by associating a Gaussian to each output unit of a DNNased systems mainly on the core extended NIST SRE 2012
trained to classify the states of a set of context—dependéests. We will refer to the NIST SRE 2012 as SRE12 for short,
phonetic units. For each frame, the posterior probabilitthe and the same notation will be used for the other NIST SRE
DNN states is used as the occupation probability for compwtatasets. SRE12 was preferred to SRE10 as a testbed for the
ing the usual statistics that allow training the UBM paraengt first set of experiments for a number of reasons:
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Fig. 4: Plots of the Grimary Of @ PLDA and a PSVM systems, using
i—vectors or e—vectors, as a function of the number of speaker in the
training set, on the interview conditions of the core extended NIST
SRE 2012 tests.

only segments, the number of speakers increases more
than three times, but it is worth noting that in this dataset
each speaker provides at most two segments only.

« Very few female speakers, and training segments, are
available for the SRE10 interview or microphone con-
ditions, as shown in Table II.

o The number of same—speaker and different—speaker fe-
male trials for the evaluation is small (3704 and 233077,
respectively). Also the total number of speakers in evalu-

i~vectors or e-vectors, as a function of the number of speaker in the ation is limited to 273. Thus, if the absolute error of a set

training set, on the telephone conditions of the core extended NI
SRE 2012 tests.

ST of systems is small, their comparison becomes difficult
because very few segments are incorrectly classified by
different systems.

« It is known that the SRE10 male evaluation set is less SRE12 does not suffer from the scarcity of training data

difficult that the female evaluation, thus the results typ
cally reported in literature refer to the latter.

Our telephone female training set typically includes da
from SREO04-06, and additionally the Switchboard |
Phases 2 and 3, and Switchboard Cellular, Parts 1 an

and evaluation trials, because even excluding the Fisher
dataset, exploiting the SRE10 training data, the number of
tsaining speaker and segments increases to 4103 and 79185,
Irespectively. Moreover, the comparison of different syste
tecomes significant because the evaluation includes, sugnmi

datasets [29], [43]. SREOS is left out as a possible scoa conditions, 27400 same—speaker and millions of differe

normalization set. Score normalization, however, is n

opeaker trials.

performed for all experiments described in this work. As A possible drawback of SRE12 is that all test speakers have

shown in Table I, the total number of female speakers f

atso contributed to the training set. However, we will shbatt

these datasets is limited to 1972. This number increasa&n using only the segments of a half of the training spsaker

to 2725 including SREOS.

the performance of e—vector based systems (either PLDA or

By adding the Fisher corpus, which includes telephorlgSVM) improves with respect to the corresponding i—-vector
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TABLE Ill:  Average %EER, DCF08, f&mnay12 and relative improvement of PLDA and PSVM systems, using diftesystems with
i—vectors or e—vectors, on the core extended NIST SRE 2012 testsl DAIN refers to the hybrid DNN-GMM framework. Label SAS
refers to the approach that post—processes the vectors by meamasfaale of affine and non—linear sinh—arcsinh transformations.

System %EER | DCFO8 | Cpimary12 | % relative improvement
PLDA IV 3.56 0.150 0.340
PLDA EV 3.06 0.137 0.310 | 14.0% | 8.7% | 8.8%
PLDA SAS IV 3.75 0.148 0.312
PLDA SAS EV 3.12 0.134 0.285 | 16.8% | 9.5% | 8.7%
PLDA DNN IV 3.39 0.134 0.295
PLDA DNN EV 2.79 0.118 0.264 | 17.7% | 11.9% | 10.5%

PLDA DNN SAS IV 3.18 0.119 0.261
PLDA DNN SAS EV | 2.81 0.113 0.240 | 11.6% | 5.0% | 8.0%

PSVM IV 3.05 0.132 0.302
PSVM EV 2.84 0.121 0.274 | 69% | 83% | 9.3%
PSVM DNN [V 271 0.114 0.261
PSVM DNN EV 241 0.104 0.234 | 11.1% | 8.8% | 10.3%

TABLE IV: % EER, DCF08, and Gmay of PLDA and PSVM systems, using different systems with i—vectors veesers, on the core
extended SRE12 tests. An e—vector system performance that is werfgeticorresponding i—vector system value is marked in boldface.

Cond 1 Cond 2 Cond 3 Cond 4 Cond 5
System interview phone call interview phone call phone call
without noise without noise with added noise with added noise noisy environment

%EER  DCF08  Grmi2 | %YEER DCFO08  Grimi2 | %EER DCF08  Grimi2 | %EER DCFO08  Grimi2 | %EER  DCF08  Grim12
PLDA IV 3.77 0.149 0.308| 2.38 0.121 0.321| 3.59 0.120 0.251| 5.19 0.217 0.455| 2.88 0.143 0.364
PLDA EV 3.22 0.139 0.292| 224 0.105 0.286| 2.66 0.132 0.248| 4.42 0.183 0.401| 2.76 0.128 0.324
PLDA SAS IV 3.48 0.122 0.245| 2.62 0.126 0.301| 4.00 0.117 0.213| 5.39 0.224 0.459| 3.24 0.150 0.344
PLDA SAS EV 2.88 0.120 0.238| 2.37 0.108 0.266| 2.81 0.117 0.204| 4.64 0.193 0.408| 2.91 0.132 0.307
PLDA DNN IV 3.95 0.146 0.279| 2.07 0.100 0.264| 3.63 0.118 0.229| 4.86 0.184 0.396| 242 0.120 0.305
PLDA DNN EV 3.43 0.134 0.258| 1.68 0.083 0.233| 2.77 0.118 0.215| 4.14 0.155 0.346| 1.93 0.101 0.268

PLDA DNN SAS IV 3.54 0.115 0.230| 1.79 0.090 0.231]| 3.84 0.109 0.192]| 4.59 0.177 0.387| 2.16 0.106 0.265
PLDA DNN SAS EV | 3.09 0.112 0.212] 1.69 0.081 0.208| 3.13 0.112 0.188 4.15 0.164 0.349| 2.01 0.096 0.241

PSVM IV 3.20 0.117 0.250| 2.27 0.114 0.295| 2.75 0.103 0.211]| 4.32 0.192 0.421| 2.73 0.136 0.331
PSVM EV 2.89 0.111 0.233| 2.26 0.105 0.265| 2.46 0.096 0.192| 3.77 0.165 0.374| 2.83 0.127 0.304
PSVM DNN IV 3.20 0.114 0.233| 1.69 0.088 0.239| 2.87 0.104 0.199| 3.75 0.159 0.363| 2.03 0.105 0.272
PSVM DNN EV 2.86 0.107 0.218| 1.50 0.077 0.209]| 2.63 0.102 0.185]| 3.30 0.141 0.319]| 1.78 0.093 0.238

based systems. In this configuration, half of the speakersMatrix V has been trained using 10 Maximum Likelihood
contributing to the evaluation set are unknown to the systeand MDE iterations, then matrik has been trained by means

Finally, the SRE12 setup is also an interesting case—stu%/5 MDE ;]terations. Z“?E has ;SO pgen applied for the 10
from an application perspective. Assuming that most of ghigrations that we used for matrik' training.

customers may perform further calls, the system can beFor the first set of experiments, the i-vector and e-vector

retrained after collecting a large enough set of speakers](cjdrfnens'onS were bgth sgt tb= 400, and the PLDA speaker
the application domain, actors were not reduced.

Despite all the drawbacks related to the evaluation of eA—
vectors with SRE10, we also performed an additional set
of experiments on the female telephone segments of the/Ve first evaluated the performance of PLDA and PSVM
SRE10 core extended tests. We did not include the micr@aSSiﬁerS USing i—vector or e—vector models trained with

phone/interview condition due to the scarcity of speaketde speech segments of an increasing number of speakers.
providing microphone/interview training segments. The evaluation was performed on the core extended SRE12

dataset using the baseline PLDA and PSVM systems, and the
M/GMM based vector extraction. All PLDA results have
been obtained using whitening and length normalization.
Figures 3 and 4 plot the ggmary cost function [29] of
these systems as a function of the number of speakers in the
For the SRE12 experiments, we trained gender—independeaining set. The first set of figures refers to the telephaile ¢
i—vector and e—vector extractors, based on a 1024—componeanditions, whereas the second set presents the resultsefor
diagonal covariance UBM, estimated with data from SREO4rterview conditions. Looking at these figures, it is eviden
10, and the Switchboard datasets, for a total of 42522 utténat the systems based on the eigenvoice subspace suffer fro
ances of 3209 speakers. The training list includes all kedap the lack of training speakers. However, the systems using e—
files, whereas we randomly selected a maximum of two filegctors estimated with more than 2000 speakers outperform
per interview session, eliminating very short or long diorat the corresponding i—vector systems. Thus, if the eigemvoic
segments, i.e., keeping segments lasting from 20 to 30ttrix E is trained with a large enough number of speakers,
seconds. the extracted e—vectors are more informative about thekepea

Performance using00—dimensional vectors on SRE12

For all these experiments we used a set of 45—-dimensio
feature vectors, obtained by stacking 18 cepstraic(g), 19
delta (Acpo-Acyg) and 8 double—deltaAcy-AAc;) parame-
ters.
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identity than the corresponding i—vectors, extracted bpgis of the margin between the same-speaker and different-epeak
the total variability matrixT. Also evident in these figures classes, thus, it does not rely on the assumption that the inp
is that a PSVM system trained with all available data isvectors are distributed according to the standard nqroral
more accurate than the corresponding PLDA system for alhy other distribution.

conditions. Overall, using DNN-GMM and e-vectors the performance

It is also worth noting, looking at Figures 3 and 4, that the émprovement with respect to the PLDA and PSVM baseline
vector systems are equivalent or better than the corregppnd—vector systems is approximately 29% and 22%, respegtivel
i-vector systems when trained with the segments of a half oflt is worth noting that the MDE iterations are essential for
the development speakers, so that the other half of the epealthe e—vector performance. For example, extracting e—x@cto
appearing in the development set are as a matter of fact “nasing the V. matrix, rather than théE matrix, leads to a
speakers” for the evaluation. “PLDA EV” model that obtains an averageyfmary of 0.340,

Table Ill summarizes the results of a set of experimengdmilar to the “PLDA IV” model, and a worse average for
performed on the same evaluation dataset, using i—vectorsttie % EER and DCFO08 of 3.66 and 0.162, respectively. The
e-vectors. The matricéB andE trained for these experimentsresults obtained for each condition defined by SRE12 are
are the ones estimated with the full set of training datllected in Table IV.
previously described. The results are given in terms of %EER
DCFO08, and Grimary COst functions [29], [44]. The last three
columns show the relative improvement of e—vectors basgd
systems with respect to the same system using i—vectorsSince some dimensions of the i—vectors subspace are wasted
Labels “SAS” and “DNN " refer to our non-linear i—vectorto take into account the channel effects, more dimensioms ar
transformation approach [21], and to the hybrid DNN-GMMecessary for the i—vectors, with respect to the e-vectors,
system [42], respectively. to accurately model the speaker identity. This can verified

The first row reports the results of “PLDA V", the baselinecomparing the performance of the same classifiers using i—
GMM-based PLDA system using i-vectors. The “PLDA EV'vectors or e-vectors of different dimensions. In particuwe
system is identical to the first one, but uses e—vectors ratitempared PLDA, PLDA SAS, and PSVM systems using vec-
than i—vectors. It improves the average decision cost fonst tors of dimensiond equal t0300, 400, and 600, respectively.
by approximately 9% for the DCFs, and 14% for the EER. The benefits of using e-vectors can be appreciated looking

The e-vectors are also effective if they are subject to tlad the results shown in Table V and Figure 5. Table V reports
cascade of affine and non-linear sinh—arcsinh (SAS) transfthe average SRE12 performance obtained by UBM/GMM
mations that makes their distribution better approximaie tsystems using different dimension of the speaker vectors,
standard normal distribution. The results of this approaeh whereas Figure 5 compares thgiary Of different systems,
shown in the row of the tables labeled as “PLDA SAS EV’using i—vectors or e-vectors, as a function of their dimamsi
The improvement with respect to the corresponding “PLDRooking at the average gamary, it is possible to notice that
SAS IV” system is again of the order of 9% for the DCFsPLDA SAS is always better than PLDA both for i—vector and
and approximately 17% for the EER. e—vector based systems, and that PSVM is always better than

We also assessed the quality of e—vectors extracted thg other classifiers.
means of our hybrid DNN/GMM architecture [42]. Comparingncreasing the vector dimensions, the performance imjrove
rows “PLDA DNN EV” and “PLDA DNN IV”, it can be and the results of the e-vector based systems are better than
noticed that using these more accurate models, the e-gectbe corresponding i-vector based systems, with the exaepti
provide even better improvement with respect to i—vectors. of the 600—dimensional e—vectors PLDA.

Applying, additionally, the SAS transformation, we get The slight average gimary degradation observed for this sys-
further accuracy for both the “PLDA DNN SAS IV” and thetem is due to a bad performance on the interview conditions,
“PLDA DNN SAS EV” systems. The e—vectors provide eveindicated in boldface in Table VI.
in this case a smaller but consistent improvement with resp®LDA SAS is able to partially recover this problem, and in
to i—vectors. general it is more effective than PLDA on interview rather

Finally, a third set of experiments was performed to verifthan in telephone conditions.
that the e—vectors are better than i—vectors also usingDéven by this observations, and by the desire to understand
different, and more accurate, discriminative classifiehe T the reasons of the different behavior of large dimension e—
baseline performance of our PSVM approach is approximatelgctors and i—vectors on interview data, we inspected the
12% better than the baseline PLDA for both i—vectors ardistribution of the vectors components. We observed that
e—vectors. The effectiveness of the e—vectors with redgectthe distributions along the directions characterized by lo
the i—vectors is confirmed: the former gets approximately 9%&lues of the between class to within class covariance ratio
accuracy gain both using vectors extracted by means of fhegely deviate from a Gaussian distribution. These divest
standard GMM approach and exploiting the posteriors of tlae more detrimental for e—vector PLDA than for i—vector
hybrid DNN/GMM framework. PLDA because the former conveys in these directions speaker

We did not perform experiments using the SAS non-linearformation, whereas the latter conveys mainly channel in-
transformation of the i—vectors and e—vectors in the PSVM aformation. Indeed, removing just 10 directions using LDA
proach, because PSVM estimation is based on the optimizatadlows significantly reducing these effects ffi0—dimensional

Performance on SRE12 using vectors of other dimensions
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TABLE V: Average %EER, DCFO08, Gimary, and % relative improvement for PLDA, PLDA LDA, PLDA SAS, aREVM
systems on the core extended SRE12 tests, using i—vectdre-aectors of increasing dimensions.

Features| System % EER | DCFO8 | Cpiimary12 Relative improvement
PLDA 3.70 0.158 0.365
300 IV PLDA LDA 3.70 0.157 0.364
PLDA SAS 3.88 0.155 0.334
PSVM 3.27 0.147 0.333
PLDA 3.22 0.140 0.324 13.0% | 11.4% | 11.2%
300 EV PLDA LDA 3.34 0.138 0.323 9.7% | 12.1% | 11.3%
PLDA SAS 3.37 0.140 0.304 13.1% | 9.7% | 9.0%
PSVM 3.01 0.132 0.300 8.0% | 10.2% | 9.9%
PLDA 3.56 0.150 0.340
400 IV PLDA LDA 3.58 0.150 0.339
PLDA SAS 3.75 0.148 0.312
PSVM 3.05 0.132 0.302
PLDA 3.06 0.137 0.310 14.0% | 8.7% 8.8%
400 EV PLDA LDA 3.27 0.132 0.304 8.7% | 12.0% | 10.3%
PLDA SAS 3.12 0.134 0.285 16.8% | 9.5% 8.7%
PSVM 2.84 0.121 0.274 6.9% | 83% | 9.3%
PLDA 3.51 0.145 0.318
600 IV PLDA LDA 3.54 0.144 0.317
PLDA SAS 3.46 0.132 0.290
PSVM 2.84 0.122 0.276
PLDA 3.00 0.138 0.320 145% | 4.8% | -0.6%
600 EV PLDA LDA 3.26 0.129 0.287 7.9% | 10.4% | 9.5%
PLDA SAS 3.09 0.130 0.280 10.7% | 1.5% | 3.4%
PSVM 2.66 0.113 0.254 6.3% 7.4% 8.0%
p -
System comparison A
0380 | es 0,364
0,360 0,340 0339
0,340 0324 o 0525 . 0,334 0,333
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Fig. 5: Comparison of Gimay for PLDA, PLDA LDA, PLDA SAS, and PSVM systems, using i—vectorseswectors, as a function of
their dimensions.

TABLE VI: % EER, DCF08 and Gimary ON the core extended SRE12 tests for PLDA, PLDA LDA, PLDA SaBd PSVM
systems using i-vectors and e—vectors of 600 dimensions—#eactor system performance that is worse than the comesup

i—vector system value is marked in boldface.

Cond 1 Cond 3 Cond 3 Cond 4 Cond 5
- interview phone call interview phone call phone call

Feature | Classifier without noise without noise with added noise with added noise noisy environment
%EER  DCFO8  Grimi2 | %EER DCFO08  Grimi2 | %EER DCFO08  Grimi2 | %EER  DCFO08  Grimi2 | %EER DCFO08  Grim12
PLDA 4.05 0.152 0.297| 2.43 0.117 0.300| 3.39 0.117 0.232| 4.78 0.196 0.418| 291 0.141 0.342
600 IV PLDA LDA 4.13 0.149 0.293| 2.45 0.118 0.301| 3.35 0.115 0.229| 4.83 0.196 0.419| 294 0.142 0.343
PLDA SAS 3.43 0.117 0.240| 2.50 0.110 0.275| 3.57 0.105 0.204| 4.85 0.196 0.420| 2.96 0.133 0.313
PSVM 3.07 0.109 0.226| 2.16 0.105 0.269| 2.61 0.100 0.198| 3.78 0.170 0.382| 2.58 0.124 0.305
PLDA 3.38 0.143  0.345 2.23 0.103 0.268| 2.61 0.149 0.309| 4.00 0.168 0.370] 2.78 0.128 0.310
600 EV PLDA LDA 3.69 0.134 0.271| 2.23 0.105 0.270| 3.61 0.107 0.209 | 4.01 0.170 0.370| 2.76 0.130 0.313
PLDA SAS 2.81 0.114 0.237 | 2.46 0.107 0.257| 2.86 0.117 0.222 | 4.33 0.182 0.382| 3.01 0.132 0.303
PSVM 2.94 0.106 0.218 | 2.07 0.097 0.244| 2.24 0.098 0.186 | 3.45 0.147 0.340| 2.58 0.117 0.281
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TABLE VII: Comparison of the performance of i—vectors andrectors, in terms of % EER, DCF08 and DCF10, on the
female telephone core extended SRE10 tests, using diffeleDA classifiers based on 1024 or 2048 GMM components.

Features i—vectors e—vectors Relative

System Dataset % EER DCF08 DCF10] % EER DCF08 DCF10| improvement ( % )

SRE 04-06 + SWB| 2.91 0.144  0.469 3.16 0.149  0.468 -8.6 -3.5 0.2
1024 Diagonal GMM + SRE 08 3.00 0.147 0.462 2.78 0.133 0.420 7.3 9.5 9.1

+ Fisher 2.59 0.137 0.449 2.46 0.129 0.418 5.0 5.8 6.9
SRE 04-06 + SWB| 2.43 0.123 0.404 2.99 0.152 0.443| -23.0 -23.6 -9.6

2048 Diagonal GMM + SRE 08 2.44 0.121 0.410 2.46 0.129 0.411] -0.8 -6.6 -0.2

+ Fisher 2.27 0.110 0.357 2.24 0.107 0.352 1.3 2.7 1.4

+ Fisher in PLDA All 2.00 0.103 0.340 1.92 0.096 0.329 4.0 6.8 3.2
2048 Diagonal DNN/GMM All 1.62 0.082 0.324 154 0.077 0.291 4.9 6.1 10.2
2048 Diagonal DNN/GMM NL-PLDA All 1.54 0.072 0.250 1.48 0.068 0.219 3.9 56 124
2048 Full DNN/GMM All 1.48 0.079 0.260 1.40 0.071 .0241| 5.41 10.1 7.3
2048 Full DNN/GMM NL-PLDA All 1.46 0.068 0.221 1.27 0.059 0.230 13.0 132 41

TABLE VIII: Comparison of the performance in terms of DCFQ&8JaDCF10 of the 2048 Full DNN/GMM NL-PLDA i-vector
and e—vector systems. The corresponding number of errergieen in parentheses.

System DCF10 Priss Py, DCF08 Priss Py,
2048 Full DNN/GMM NL-PLDA IV | 0.221 18.3% (677) 3.90 3% (9) | 0.068 4.78% (177) 0.21% (480)
2048 Full DNN/GMM NL-PLDA EV | 0.230 20.0% (740) 3.00 °% (7) | 0.059 3.72% (138) 0.22% (514)

e—vectors, whereas it does not sensibly affects the i-wecto A summary of the results of these experiments, using PLDA
results. classifiers, is given in Table VII.

Keeping all components, but applying the SAS transfor- As expected, training matric& andE only with SRE04-06
mation to e—vector, we are able to compensate these effeaisd Switchboard (1972 speakers overall) does not allow 4 102
and to improve e-vector PLDA performance. In particulat/BM/GMM e-vector system to outperform the corresponding
for vector of dimensions00 and 400, PLDA SAS is more i-vector system. However, adding to training the data of the
effective than LDA because it is able to make the e—vect@63 speakers of SRE08, the e-vector system gives better
distribution more Gaussian, whereas LDA just removes somesults, which become even better if the training list also
directions. Fol600—dimensional e—vectors, the improvement igicludes the Fisher dataset.
less evident, but this is mainly due to the conditions chtarac  The same behavior is obtained by using larger, more accu-
ized by artificial added noise, which was not seen in trainingate, 2048 Gaussian models. Adding only SRE08 data is not
For conditions with real noise, PLDA SAS outperforms LDAsufficient for e-vectors to obtain better results with respe

also for600—dimensional e-vectors. i—vectors. However, including also the Fisher dataset & th

It is interesting noting that th800—dimensional e-vector training set, the models and the absolute performance of bot
PLDA system is almost equivalent to PLDA usir@)0- j—vector and e—vector based systems improve, and we get a
dimensional i-vectors. small advantage for the e—vectors with respect to i-vectors

PSVM, which does not rely on gaussianity assumptions, further improvement can be achieved for both i-vectors and
able to keep the gain of e-vectors over i-vectors also for tBevectors using the Fisher dataset also in PLDA estimagisn,
600—dimensional vectors, without any further processing, f@hown by the results given in the table row labeled “+ Fisher

all conditions in PLDA.
The last two frames of Table VII show the result obtained
C. Performance on SRE10 by models trained using all available training data, ana als

Additional experiments on the female telephone segmeriigluding the Fisher dataset in PLDA training. The e-vestor
of the core extended of SRE10 confirm that e—vectors areage effective also in the hybrid DNN/GMM approach, both
good alternative to i—vectors when the number of speakeats atsing 2048 diagonal or full covariance GMMs.
segments is large enough. Finally, exploiting the posterior probability of the DNN

We trained gender—dependent i—vector and e—vector extric-combination with the non-linear PLDA approach [22],
tors, again based on a 1024—component diagonal covariamee achieve our best results, where e—vector system keeps
UBM, but estimated with an increasing amount of data 13% relative advantage with respect to the corresponding
beginning with the SRE04-06, and from Switchboard datasetsvector system for EER and DCF08. We do not consider
and incrementally adding the SREO8 and Fisher datasets. Ytetistically significant the 4% loss for DCF10 becausersgtt
did not include the microphone/interview conditions due ththe classification threshold to get the minimum DCF10, leads
scarcity of speakers providing microphone/interviewrtirag to very small false alarm errors - less than 10 - as shown
segments. Training of matricds and T has been performedin Table VIIl. The number of errors corresponding to the
exactly as we did for the the SRE12 experiments. The i—vectbie minimum DCFO8 threshold is, instead, statistically enor
and e-vector dimensions were both setdte= 400, but the significant.

PLDA speaker factors were reduced to 150. Using a PSVM in these experiments does not achieve better
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results that the corresponding PLDA classifier becauseds dg12] L. Burget, O. Pichot, S. Cumani, O. Glembek, P. Bjah, and
not take much advantage of the Fisher data. If these data N. Brimmer, “Discriminatively trained Probabilistic Linear Digoinant
are not included in the training set, the amount of training

data is not sufficient for PSVM. Their inclusion is beneficiaf3)
for PLDA, but it is not helpful for PSVM because Fisher

data provide relatively few additional same—speaker pairs
compared to the huge amount of mostly useless differeniz

speaker pairs.

VI. CONCLUSIONS

(18]

In this work we have shown that the eigenvoice space has]

more information about the speakers than the “total vaitgbi

i~vector subspace, because the latter includes more dharme]-

effects. To exploit this information, we have proposed apdm
procedure for training an i—vector extractor that spans#me

subspace of the JFA eigenvoice matrix. This leads to a co’mpEré]
representation of speech segments, similar to i—vectdrighw

we named e-vectors.

(29]

E—vectors have shown to be a good replacement of i—

vectors, consistently providing better performance wiffed

[20]

ent systems and classifiers. The best results were obtamed o
SRE12 usings00—dimensional e—vectors, particularly using a

PSVM classifier. These performance gains come without aat

ditional memory or computational costs, on the contragy—
dimensional e—vector PLDA systems are almost equivalent[£8]
PLDA systems using00—dimensional i—-vectors. 23]

Experiments performed on SRE10 female telephone déta
demonstrate that it is important that the training corpus-co
tains enough speakers and multiple recordings to accylratﬁlzl]
model the speaker subspace.
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(6]
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