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Speaker recognition using e–vectors
Sandro Cumani and Pietro Laface

Abstract—Systems based on i–vectors represent the current
state–of–the–art in text–independent speaker recognition. Unlike
Joint Factor Analysis (JFA), which models both speaker and
intersession subspaces separately, in the i–vector approach all
the important variability is modeled in a single low dimensional
subspace. This work is based on the observation that JFA
estimates a more informative speaker subspace than the “total
variability” i–vector subspace, because the latter is obtained by
considering each training segment as belonging to a different
speaker. We propose a speaker modeling approach that extracts
a compact representation of a speech segment, similar to the
speaker factors of JFA and to i–vectors, referred to as “e–vector”.
Estimating the e–vector subspace follows a procedure similar to i–
vector training, but produces a more accurate speaker subspace,
as confirmed by the results of a set of tests performed on the
NIST 2012 and 2010 Speaker Recognition Evaluations. Simply
replacing the i–vectors with e–vectors we get approximately 10%
average improvement of the Cprimary cost function, using different
systems and classifiers. It is worth noting that these performance
gains come without any additional memory or computational
costs with respect to the standard i–vector systems.

I. I NTRODUCTION

A simple and effective model for speaker recognition has
been introduced in [2], [3], where a speech segment is rep-
resented by a low–dimensional “identity vector” or i–vector.
An i–vector is obtained from the statistics collected by using
a Gaussian Mixture Model (GMM) trained to represent a
Universal Background Model (UBM) [4]. The i–vector model
constrains the utterance GMM supervectorss, consisting of the
stacked GMM means, to live in a single subspace, including
both speaker and channel variability, according to:

s = m+Tw , (1)

wherem is the Universal Background Model (UBM) mean
supervector, composed ofC GMM components of dimension
F . T is a low-rank rectangular matrix spanning the subspace
including important inter and intra–speaker variability in the
supervector space, andw is a realization of a latent variable
W, of sizeM , having a standard normal prior distribution.
A Maximum-Likelihood estimate of matrixT is usually
obtained by minor modifications of the Joint Factor Analysis
approach [5]. GivenT, and the set ofτ feature vectors
X = {x1x2 . . .xτ} extracted from a speech segment, it
is possible computing the likelihood ofX given the model
(1), and a value for the latent variableW. The i–vector,
which represents the segment, is computed as the Maximum
a Posteriori (MAP) point estimate of the variableW, i.e.,
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the modeµX of the posterior distributionPW|X (w). The
mode can be computed by collecting the zero-order statistics
estimated on each Gaussian component of the UBM for the
set of feature vectorsX , and the corresponding first-order
statistics centered around the UBM means.

The main advantage of the i–vector representation is that
the problem of intersession variability is deferred to a second
stage, dealing with low–dimensional vectors rather than with
the high–dimensional space of the GMM supervectors. This
allows training better classifiers, such as PLDA [6]–[10],
and Pairwise Support Vector Machine (PSVM) or Logistic
Regression [11]–[17]. Furthermore, in such low dimensional
space it is possible to perform transformations that are par-
ticularly suited for enhancing the classifier performance,such
as compensating development and evaluation set mismatches
by means of Within Class Covariance Normalization [18] and
length normalization [19], or transforming i–vectors so that
they better fit the classifier assumptions [20]–[22]. Finally,
PLDA and PSVM models allow exploiting multiple recordings
of the same speaker by simply averaging their corresponding
i–vectors. This simple approach is known to be more effective
than proper estimation of multi–session likelihood ratiosin
PLDA, see for example [23].

I–vector modeling stems from the Joint Factor Analysis
(JFA) approach [24]–[26]. JFA models the speaker and channel
variability of a Gaussian supervector by means of a linear
combination of eigenvoice, eigenchannel and MAP adaptated
supervectors. These factors can be estimated according to the
iterative procedure illustrated in [24]. It has been, however,
experimentally shown in [27] that the eigenchannel factors
keep some correlation with the eigenvoice factors, i.e., they
still convey some information about the speaker identity.
This observation motivated the introduction of the i–vector
approach as a feature extractor [2], [3], where speaker and
channel variability are modeled in a single low–dimensional
space spanned by the column vectors of a single matrixT.

Although the i–vector subspace also includes channel vari-
ability, which is detrimental for speaker recognition, i–vectors
have shown to provide a large performance boost over JFA–
based methods for text–independent tasks.

On the other hand, JFA estimates a more informative
speaker subspace with respect to the total variability i–vector
subspace, because the latter considers each training segment
as belonging to a different speaker. In this work we propose a
speaker modeling approach that combines the benefits of the
more informative JFA speaker subspace and of the i–vector
framework. It extracts a compact representation of a speech
segment, similar to the speaker factors or i–vectors. This
representation better characterizes the speaker, and thusallows
obtaining better performance with respect to the standard i–
vectors. By analogy with i–vectors, we will refer to this
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representation as “eigenvoice–vector”, or “e–vector” forshort.
The main idea of our approach is to rely on the eigenvoice

space, which should be more accurate than the one represented
by the total variability matrix, which has a larger variability
because it includes channel information. The novelty of our
proposal consists in estimating a linear transformation that
allows keeping the span of the speaker–specific eigenvoice
subspace, but at the same time provides a better prior for i–
vector extraction. We will show that this is simply obtainedby
considering each training segment as belonging to a different
speaker, as it is done in standard i–vector training, but apply-
ing solely Minimum Divergence Estimation (MDE) [8], [28]
during the training iterations for obtaining a new variability
matrix, E.

Replacing i–vectors with e–vectors we were able to obtain
approximately 10% performance improvement on the extended
core NIST SRE 2012 [29] evaluation, using different extrac-
tion techniques, classifiers, and e–vector dimensions. Similar,
but slightly lower, performance has been achieved on the core
extended NIST SRE2010 female telephone [30] dataset.

The paper is organized as follows: Section II recalls the
eigenvoice, JFA, and i–vector approaches. Section III intro-
duces the e–vectors and their training procedure. The classi-
fiers that have been used in our experiments are illustrated in
Section IV together with two recently proposed techniques,
which are particularly suited to enhance the performance
of a Gaussian PLDA classifier. The experimental settings
and results are presented and commented in Section V, and
conclusions are drawn in Section VI.

II. SUPERVECTOR REPRESENTATIONS

A model–based speaker adaptation approach was proposed
in [31], which constrains the adapted model to be a linear
combination of a small number of basis vectors obtained from
a set of reference speakers. These “eigenvoice” vectors were
estimated, in this approach, with the objective of capturing the
most important components of variation among the reference
speakers. The adaptation data were then used for obtaining,
by means of Maximum Likelihood Eigen-Decomposition,
the weights of the linear combination, leading to a low–
dimensional vector representation of a new speaker in the
eigenvoice space. Eigenvoice modeling, thus, aims at charac-
terizing the speaker within the speaker subspace, and thanks to
the correlations between GMM components, allows adapting
also rarely observed Gaussians. This modeling approach was
successively also proposed for speaker recognition in [32], and
in [33], where eigenvoice MAP adaptation was introduced.

In [34] the eigenvoice approach has been applied effectively
to the problem of modeling intra–speaker variability, by com-
pensating the session (channel) variability at recognition time.
Finally JFA modeling was introduced in [24], where the eigen-
voice model was extended to deal with intersession speaker
variability and channel mismatches between enrollment and
evaluation conditions, taking care of the channel effects also
in speaker enrollment.

JFA defines two subspaces: the speaker space represented
by an eigenvoice matrixV, and the channel space, represented

by an eigenchannel matrixU. In particular, JFA models the
speaker and channel dependent supervectors for a given
speech segment as:

s = m+Vy +Ux+Dz , (2)

where m is UBM supervector, which stacks the Gaussian
means,V andU are rectangular low rank matrices,D is a
diagonal matrix, andy, x andz are the speaker, channel, and
residual (or common) factors, respectively.

As recalled in the introduction section, JFA channel factors
also contain information about the speaker identity [27], thus,
the speaker and channel dependent supervector model (2) was
simplified in the i–vector approach as in (1), collecting in a
single matrix the speaker, channel, and residual noise matrices,
leaving to the classifier the duty of taking care of intersession
variability .

III. E–VECTORS

The i–vector approach allows channel compensation to be
performed in a low–dimensional subspace, rather than in the
much larger GMM supervector space. It is worth noting that,
due to the substantial similarity of models (1) and (2), matrix
T training can be performed similarly to eigenvoiceV matrix
training. The only difference is that in theV matrix estimation
procedure, the segments of the same speaker are labeled as a
single class, whereas all segments are considered as belonging
to different classes inT matrix estimation.

Since theT matrix eigenvectors span both the speaker
and channel subspace, matrixT does not model the speaker
subspace as well as the eigenvoice matrixV.

On the basis of these observations, we propose a speaker
modeling approach that tries to take advantage of the best
of the JFA and of the i–vector techniques. We keep the i–
vectors framework to exploit the possibility of representing a
voice segment in a low–dimensional space, but we estimate
a different T matrix, which better accounts for the speaker
space. This new matrixE is similar to theT matrix, but it is
estimated with the additional constraint that it spans the same
subspace represented by the eigenvoice matrix trained on the
same dataset.

The new model is similar to the i–vector model:

s = m+Ew , (3)

where, as in the standard i–vector model,s and m are the
GMM supervector and UBM mean supervector, respectively
and w is a random vector, of dimensiond, with standard
normal prior distribution.

Since our goal is thatE spans the same subspace ofV, we
defineE as:

E = VA , (4)

whereA is a full rankd×d matrix. MatrixE spans the same
subspace ofV because its columns are a linear combination
of the columns ofV. Thus, model (3) can be rewritten as:

s = m+VAw . (5)
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Maximum Likelihood Estimation (MLE) ofA can be
performed by means of the Expectation Maximization (EM)
algorithm, with a procedure similar to ML estimation of matrix
T in standard i–vector extraction [8], [35], as illustrated in
subsection III-A. However, contrary to the standard solution,
the solution using this approach is cumbersome and expensive,
thus, in subsection III-B we reformulate model (5) so that a
very simple solution can be found.

In the next two subsections we use the following notations:

• F is the dimension of the acoustic feature vectors, and
C is the number of the UBM components,

• m(c) and Σ(c) are the mean vector and the covariance
matrix of thec–th UBM component, respectively,

• Σ denotes the block–diagonal matrix whose elements are
the covariance matricesΣ(c),

• N
(c)
i is the zero order statistics for utterancei estimated

on thec–th Gaussian component of the UBM,
• f

(c)
i is the set of first order statistics centered around the

UBM mean:

N
(c)
i =

∑

t

γ
(c)
i,t

f
(c)
i =

∑

t

(

γ
(c)
i,t oi,t

)

−N
(c)
i m(c) , (6)

where γ
(c)
i,t is the occupation probability of thet–th

feature vectoroi,t of utterancei for the c–th UBM
component,

• f i is the supervector stacking the first order statisticsf
(c)
i ,

• Ni denotes theCF×CF diagonal matrix whose diagonal
blocks are theF × F diagonal matricesN (c)

i I.

A. Estimation of matrixA in models = m+VAw

The joint likelihood of the set of theti feature vectorsXi =
[oi,1, . . . ,oi,ti ] of utterancei and the corresponding hidden
variablewi, given matrixA, is:

logP (Xi,wi|A) =−
1

2
wT

i wi +wT
i E

TΣ−1f i

−
1

2
wT

i E
TNiΣ

−1Ewi +GΣ,i

=−
1

2
wT

i wi +wT
i A

TVTΣ−1f i

−
1

2
wT

i A
TVTNiΣ

−1VAwi +GΣ,i ,

(7)

whereGΣ,i collects all terms that do not dependend onA or
wi. By inspection, and in analogy with the standard i–vector
posterior distribution, the posterior forwi is Gaussian, with
meanµw,i and covariance matrixΛ−1

w,i:

Λ−1
w,i =

(

I+ETNΣ−1E
)−1

=
(

I+ATVTNiΣ
−1VA

)

µw,i = Λ−1
w,iE

TΣ−1f i

= Λ−1
w,iA

TVTΣ−1f i . (8)

Given the posteriors computed using the current estimate of
A, Aold, the maximization step of the EM algorithm requires
optimizing the auxiliary function:

Q(A,Aold) =
∑

i

Ewi|Xi,Aold
[logP (Xi,wi|A)]

=
∑

i

Tr
(

ATVTΣ−1f iE [wi]
T
)

−
1

2
Tr
(

ATVTNiΣ
−1VAE

[

wiw
T
i

]

)

+ k ,

(9)

wherek collects all terms that do not depend onA.
Setting to0 the derivative ofQ(A,Aold) with respect toA
we obtain:
∑

i

VTNiΣ
−1VAE

[

wiw
T
i

]

= VTΣ−1
∑

i

f iE [wi]
T
,

(10)
which can be recognized as a generalized Sylvester equation
of the form

∑

i AiXBi = C, whereAi and Bi are d × d

square matrices. Solving (10) is not trivial because the standard
approach requires building Kronecker products of the form
Ai ⊗ Bi. Due to the large size of these Kronecker product
matrices, the solution is inefficient or even infeasible.

Although one can rely on numerical optimization to directly
maximize the EM auxiliary function (9), this approach is not
appealing if a simpler solution is possible. We show in the next
subsection that a simple solution can be obtained appropriately
rewriting model (5).

B. Estimation of matrixA in models = m+Vz

Let’s rewrite model (5) as:

s = m+Vz , (11)

where z = Aw. According to the properties of the normal
distribution of random variables [36], ifx is a normal dis-
tributed random vector,x ∼ N (µx,Σx), then the random
vector resulting from an affine transformationy = Ax+b is
normally distributed with mean and covariance:

µy = Aµx , Σy = AΣxA
T . (12)

Since w has a standard normal distribution,z has a prior
distributionz ∼ N (0,AAT ).
Models (5) and (11) are equivalent, in the sense that they
provide the same marginal likelihood of the data,P (X|A).
Writing the joint likelihood:

logP (Xi,zi|A) = logP (Xi|zi,A) + logP (zi|A)

= zTi V
TΣ−1f i −

1

2
ziV

TNiΣ
−1Vz+GΣ,i−

1

2
zTi A

−TA−1zi −
1

2
log
∣

∣

∣
AAT

∣

∣

∣
, (13)

whereGΣ,i collects all terms that do not dependent onA or
zi, and noticing that its first three terms do not depend onA,
we can verify that the posterior distributions ofw and z are
related by the same properties (12) that apply to their prior
distributions.
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The posterior forzi is Gaussian. Its covariance matrixΛ−1
z,i

and meanµz,i are given by:

Λ−1
z,i =

(

A−TA−1 +VTNiΣ
−1V

)−1

= A
(

I+ATVTNiΣ
−1VA

)−1

AT

= AΛ−1
w,iA

T , (14)

and

µz,i = Λ−1
z,iV

TΣ−1f i

= AΛ−1
w,iA

TVTΣ−1f i

= Aµw,i . (15)

Please notice that the joint likelihood of (13) corresponds
to the one derived for the i–vector model, just with a non–
standard prior ofzi.

The EM auxiliary function for estimatingA takes the form:

Q(A,Aold) =
∑

i

Ezi|Xi,Aold
[logP (Xi, zi|A)]

=
∑

i

Ezi|Xi,Aold
[logP (Xi|zi,A) + logP (zi|A)] .

(16)

Since the termlogP (Xi|zi,A) does not depend onA, the
maximization of (16), reduces to the maximization of the
second term:

Q̃(A,Aold) =
∑

i

Ezi|Xi,Aold
[logP (zi|A)]

=
∑

i

Ezi|Xi,Aold

[

−
1

2
zTi A

−TA−1zi

]

+

∑

i

−
1

2
log
∣

∣

∣
AAT

∣

∣

∣
. (17)

It is worth noting that maximization of (17) corresponds to
the minimization of the KL–divergence [24]:

∑

i

D(P (zi|Xi,Aold)‖P (zi|A)) . (18)

Indeed,
∑

i

DKL(P (zi|Xi,Aold)‖P (zi|A)) =

∑

i

Ezi|Xi,Aold
log

P (zi|Xi,Aold)

P (zi|A)
= (19)

∑

i

Ezi|Xi,Aold
logP (zi|Xi,Aold)−Ezi|Xi,Aold

logP (zi|A) ,

but the first term is constant, and does not depend onA.

Defining, for convenience,P =
(

AAT
)−1

, the auxiliary
function (17) becomes:

Q̃(P,Aold)

=
∑

i

Ezi|Xi,Aold

[

−
1

2
Tr
(

Pziz
T
i

)

]

+
∑

i

1

2
log |P|

=−
1

2
Tr

(

P
∑

i

Ezi|Xi,Aold

[

ziz
T
i

]

)

+
N

2
log |P| ,

(20)

whereN is the number of training utterances.
Setting to0 the derivative ofQ̃(P,Aold) with respect toP,
we obtain:

AAT = P−1 =
1

N

∑

i

Ezi|Xi,Aold

[

ziz
T
i

]

. (21)

Thus, an optimal solution forA is given by the Cholesky
decomposition ofP−1.
However,P is given in terms of the posterior distribution of
zi, but we are interested in an iterative estimation that is a
function ofE andwi.
Since the posterior distributionsz|X and w|X are related
according to (12), we can rewrite (21) as:

AAT =
1

N

∑

i

AoldEwi|Xi,Aold

[

wiw
T
i

]

AT
old . (22)

Since the distributionw| (X ,Aold) = w| (X ,Eold), because
Eold = VAold ,

AAT =Aold

(

1

N

∑

i

Ewi|Xi,Eold

[

wiw
T
i

]

)

AT
old . (23)

A solution forA is then given by:

A = Aold R (24)

whereR is the Cholesky decomposition of:

RRT =
1

N

∑

i

Ewi|Xi,Eold

[

wiw
T
i

]

, (25)

and the optimal solution forE is:

E =VA

=VAold R

=Eold R (26)

Thus, given i–vectors posteriors for model (3), the new
estimate forE is obtained by a right–multiplication of the
eigenvoice matrixE with the Cholesky decomposition of
matrix 1

N

∑

i E[wiw
T
i ], where the sum extends over all theN

training i–vectors. The EM training procedure for this model
corresponds to performing only Minimum Divergence Estima-
tion for model (3), as in [24]. MDE was originally proposed
as an additional, optional, step mainly meant to speed–up EM
training convergence in JFA and i–vector modeling.

C. Matrix E training

The step for training matrixE can be summarized as
follows:

• First a V matrix is trained exactly as matrixT is, but
assuming that the segments of a given speaker belong to
a single class, i.e., accumulating the sufficient statistics
per speaker, rather than per segment. In other words,
we perform eigenvoice matrixV estimation in i–vector
style, rather than according to the JFA procedure, which
estimates matrixV together with matricesU andD. We
decided to train the eigenvoice matrix without relying on
the more complex JFA model because no performance
degradation was observed on preliminary experiments
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Fig. 1: Cumulative sum of the squared singular values of
matricesT, E, andV. All values are normalized by the sum
of the squared singular values of matrixT.

using only the eigenvoice model, i.e., setting to0 matrices
U andD.

• In the second step, matrixE is initialized byV. Then, it
is trained considering each training segment as belonging
to a different speaker, as it is done for the estimation of
matrix T, but applying only the iterations of (26), which
correspond to performing only MDE. These iterations
increase the data likelihood but leave unchanged the
span of the original eigenvoice matrix. MDE affects the
precision matrix of the posterior distribution of the e–
vectors by changing the eigenvalues of matrixE. This
makes the empirical distribution of the e–vectors conform
to the standard normal prior [8], [37]. Thus, we keep the
span of the eigenvoice space, but we estimate a more
accurate model prior with the aim of better estimating
the e–vector posterior.

The goal of these procedure is to estimate a matrixE that
better spans the speaker variability subspace. This means that
e–vectors better characterize the speakers with respect toi–
vectors having the same dimensions, because some eigenvec-
tors in matrixT account for the channel effects. These effects
are reduced in matrixE, which is trained with more segments
per speaker, collected from different sessions and channels.

Figure 1 shows the cumulative variance accounted by the
first k squared singular values of matricesT, E, and V,
in blue, red, and green lines, respectively. All values are
normalized by the sum of the squared singular values of matrix
T. The blue and green lines clearly show that the eigenvoice
matrix V has smaller squared singular values with respect
to matrix T, which means that the channel variability that is
contained in the latter is largely reduced inV. Since matrixE
is estimated considering all training recordings as belonging to
separate classes, its cumulative variance increases, as shown by
the red curve, which becomes closer to the blue one. However,
since matrixE is estimated with the constraint of keeping the
span of matrixV, it still discards part of the contribution of
channel variability that is contained in matrixT, in favor of
the most speaker specific directions. The difference between
the subspaces spanned by matricesT andE is illustrated in
Figure 2, which plots the principal angles between the two
subspaces. The first few directions are almost aligned between
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Fig. 2: Principal angles between the subspaces representedby
matricesT andE.

the two subspaces, whereas they progressively differ for the
others.

Since matrixV training is performed considering the seg-
ments of a given speaker as belonging to the same class, it
is faster than matrixT estimation. However, the number of
different speakers in the training corpora must be large enough
to accurately model the speaker subspace. The effects of the
dimension of the speaker population on system performance
is analyzed in the Section V.

IV. D ISCRIMINATIVE AND NON –LINEAR CLASSIFIERS

The comparison of the performance of the e–vectors with
respect to i–vectors has been performed by using two main
classifiers: the standard Gaussian PLDA (GPLDA), and the
Pairwise Support Vector Machine classifier [13], [15]. The
latter is briefly recalled in the Subsection IV-A.

In the following we will refer to i–vector classification, but
it is taken for granted that the same techniques apply to e–
vectors. Since our goal is to compare the performance of e–
vectors and i–vectors with different classifiers, and usingthe
most accurate models, we will also rely on improved i–vector
extraction using the hybrid DNN/GMM approach, shortly
detailed in Subsection IV-B, and we also exploit two recently
proposed approaches that allows obtaining relevant improve-
ment for PLDA classification. These approaches, based on a
non–linear transformation of the i–vectors, are presentedin
Subsection IV-C.

A. PSVM

A successful alternative to the generative PLDA model is
a discriminative SVM model, where a single Pairwise SVM
(PSVM) is trained to classify a trial – composed of two i–
vectors - as belonging to the “same speaker”, or to the “dif-
ferent speaker” class. This is in contrast with the usual “one-
versus-all” framework, where an SVM model is created for
each enrolled speaker, using as samples of the impostor class
the i–vectors of a background cohort of speakers. The PSVM
model is tightly related with the Gaussian PLDA model.
However, while the estimation of the GPLDA parameters is
constrained by the definiteness of their covariance matrices,
the pairwise discriminative training approach does not make



IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 7

TABLE I: Number of segments, and of speakers, in the
datasets used for training SRE10 models with telephone fe-
male data.

Dataset
Number of Number of Total Total

segments speakers segments speakers
SRE 04-06 + SWB 22511 1972

+ SRE 08 7775 753 30286 2725
+ Fisher 13292 7198 43578 9923

any a priori assumption about the i–vector distribution, thus,no
parameter constraints are imposed, except for the ones arising
from the regularization of its optimization function.

The computation of the loss function gradients, and of the
verification scores would be expensive in terms of memory
and computation costs using a naı̈ve quadratic expansion of
the i–vector pairs. A solution for these issues has been given in
[11]–[13]. Furthermore, since the PSVM training still remain
expensive in terms of computational resources, which grow
quadratically with the number of the training i–vectors, in
[14], [15] we introduced a simple and effective technique for
discarding the speaker i–vector pairs that are not essential for
training. In particular, we theoretically proved that the number
of Support Vectors of a PSVM increases linearly with respect
to the number of training speakers, rather than quadratically as
the number of i–vector pairs. Therefore, the number of training
pairs necessary for obtaining an accurate PSVM model is a
very small fraction of the total number of training pairs, which
can be selected either by computing the scores of a PLDA
model on the training data pairs, or by a two–stage random
selection strategy [15].

Although discriminative training using the same approach
can be performed by Logistic Regression (LR) [12], we found
preferable training a PSVM, because it optimizes the margin
separation between the classes, whereas LR minimizes the
cross-entropy error function. PSVM ignores the huge number
of training pairs that are far from the margins. This is more
difficult in LR training, whose loss function accumulates
a huge number of contributions from the different–speaker
pairs, which grow quadratically with the number of i–vectors,
whereas the contributions of the same–speaker pairs grow only
linearly. While it is possible to reduce the number of different–
speaker pairs, or to reduce their weight in the loss function,
both approaches still require some heuristic decision, which
is not necessary for PSVM training. On the contrary, both
contributions to the PSVM loss function grow linearly.

B. I–vector extraction

For both classifiers, the i–vector extraction has been per-
formed either by means of the standard UBM/GMM approach
or by exploiting the DNN posteriors of a hybrid DNN/GMM
architecture [38]–[41]. In this approach, the standard acoustic
UBM is replaced by a fine–grained “phonetic” UBM obtained
by associating a Gaussian to each output unit of a DNN,
trained to classify the states of a set of context–dependent
phonetic units. For each frame, the posterior probability of the
DNN states is used as the occupation probability for comput-
ing the usual statistics that allow training the UBM parameters,

TABLE II: Number of segments, and of speakers, in the
SRE05-08 datasets available for training SRE10 models with
interview/microphone female data.

Dataset
Number of Number of Total Total

segments speakers segments speakers
SRE 05 1436 52
SRE 06 1416 43 2852 95
SRE 08 5574 156 8626 251

and successively to extract the i–vectors. In particular, we used
the hybrid DNN/GMM architecture described in [42], where
we associate more than one Gaussian to each output unit of
the DNN.

C. I–vector transformation and Non–Linear PLDA

We have shown in [20], [21] that improved PLDA clas-
sification performance can be obtained if the development
i–vectors are transformed so that their distribution becomes
more Gaussian–like, as assumed by the Gaussian PLDA
model. The Gaussian target distribution can be obtained by
applying to the input i–vectors a sequence of affine and non–
linear transformations, whose parameters are estimated onthe
development set. The evaluation i–vectors are then subjectto
the same transformation. Since the non–linear transformation
that we use is based on the sinh-arcsinh function, we will
refer to these method of classification as “PLDA SAS”. Results
obtained using PLDA SAS on the NIST SRE 2012 are reported
in Section V.

The assumption of PLDA SAS that the i–vectors are statis-
tically independent and distributed according to the standard
normal distribution is, however, not completely satisfactory,
because i–vectors extracted from segments of the same speaker
are not independent. We have, thus, recently developed an
improved PLDA model [22], which will refer to as “non–
linear PLDA” (NL–PLDA). This is a generative model that
allows jointly estimating the distribution of the development
i–vectors and the PLDA parameters, so that the i–vectors are
non–linearly transformed to a new compact representation that
makes PLDA classification more accurate. It is interesting
noting that the i–vector transformation in this enhanced PLDA
model is obtained as in the PLDA SAS approach of [21], just
changing the transformation target distribution, which becomes
speaker–dependent.

Both approaches also incorporates a technique for reducing
the mismatch between the development and evaluation length
distributions of the i–vectors, by estimating for each i–vector a
scaling factor suited to the target i–vector distribution.Results
obtained using NL–PLDA on the NIST SRE 2010 are reported
in subsection V-C.

V. EXPERIMENTS

We compared the performance of i–vectors and e–vectors
based systems mainly on the core extended NIST SRE 2012
tests. We will refer to the NIST SRE 2012 as SRE12 for short,
and the same notation will be used for the other NIST SRE
datasets. SRE12 was preferred to SRE10 as a testbed for the
first set of experiments for a number of reasons:
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Fig. 3: Plots of the Cprimary of a PLDA and a PSVM systems, using
i–vectors or e–vectors, as a function of the number of speaker in the
training set, on the telephone conditions of the core extended NIST
SRE 2012 tests.

• It is known that the SRE10 male evaluation set is less
difficult that the female evaluation, thus the results typi-
cally reported in literature refer to the latter.
Our telephone female training set typically includes data
from SRE04–06, and additionally the Switchboard II,
Phases 2 and 3, and Switchboard Cellular, Parts 1 and 2
datasets [29], [43]. SRE08 is left out as a possible score
normalization set. Score normalization, however, is not
performed for all experiments described in this work. As
shown in Table I, the total number of female speakers for
these datasets is limited to 1972. This number increases
to 2725 including SRE08.
By adding the Fisher corpus, which includes telephone
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Fig. 4: Plots of the Cprimary of a PLDA and a PSVM systems, using
i–vectors or e–vectors, as a function of the number of speaker in the
training set, on the interview conditions of the core extended NIST
SRE 2012 tests.

only segments, the number of speakers increases more
than three times, but it is worth noting that in this dataset
each speaker provides at most two segments only.

• Very few female speakers, and training segments, are
available for the SRE10 interview or microphone con-
ditions, as shown in Table II.

• The number of same–speaker and different–speaker fe-
male trials for the evaluation is small (3704 and 233077,
respectively). Also the total number of speakers in evalu-
ation is limited to 273. Thus, if the absolute error of a set
of systems is small, their comparison becomes difficult
because very few segments are incorrectly classified by
different systems.

SRE12 does not suffer from the scarcity of training data
and evaluation trials, because even excluding the Fisher
dataset, exploiting the SRE10 training data, the number of
training speaker and segments increases to 4103 and 79185,
respectively. Moreover, the comparison of different systems
becomes significant because the evaluation includes, summing
all conditions, 27400 same–speaker and millions of different-
speaker trials.

A possible drawback of SRE12 is that all test speakers have
also contributed to the training set. However, we will show that
even using only the segments of a half of the training speakers
the performance of e–vector based systems (either PLDA or
PSVM) improves with respect to the corresponding i–vector
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TABLE III: Average %EER, DCF08, Cprimary12, and relative improvement of PLDA and PSVM systems, using different systems with
i–vectors or e–vectors, on the core extended NIST SRE 2012 tests. Label DNN refers to the hybrid DNN–GMM framework. Label SAS
refers to the approach that post–processes the vectors by means of acascade of affine and non–linear sinh–arcsinh transformations.

System %EER DCF08 Cprimary12 % relative improvement
PLDA IV 3.56 0.150 0.340
PLDA EV 3.06 0.137 0.310 14.0% 8.7% 8.8%
PLDA SAS IV 3.75 0.148 0.312
PLDA SAS EV 3.12 0.134 0.285 16.8% 9.5% 8.7%

PLDA DNN IV 3.39 0.134 0.295
PLDA DNN EV 2.79 0.118 0.264 17.7% 11.9% 10.5%
PLDA DNN SAS IV 3.18 0.119 0.261
PLDA DNN SAS EV 2.81 0.113 0.240 11.6% 5.0% 8.0%

PSVM IV 3.05 0.132 0.302
PSVM EV 2.84 0.121 0.274 6.9 % 8.3% 9.3%
PSVM DNN IV 2.71 0.114 0.261
PSVM DNN EV 2.41 0.104 0.234 11.1% 8.8% 10.3%

TABLE IV: % EER, DCF08, and Cprimary of PLDA and PSVM systems, using different systems with i–vectors or e–vectors, on the core
extended SRE12 tests. An e–vector system performance that is worse the the corresponding i–vector system value is marked in boldface.

System

Cond 1 Cond 2 Cond 3 Cond 4 Cond 5
interview phone call interview phone call phone call

without noise without noise with added noise with added noise noisy environment
%EER DCF08 Cprim12 %EER DCF08 Cprim12 %EER DCF08 Cprim12 %EER DCF08 Cprim12 %EER DCF08 Cprim12

PLDA IV 3.77 0.149 0.308 2.38 0.121 0.321 3.59 0.120 0.251 5.19 0.217 0.455 2.88 0.143 0.364
PLDA EV 3.22 0.139 0.292 2.24 0.105 0.286 2.66 0.132 0.248 4.42 0.183 0.401 2.76 0.128 0.324
PLDA SAS IV 3.48 0.122 0.245 2.62 0.126 0.301 4.00 0.117 0.213 5.39 0.224 0.459 3.24 0.150 0.344
PLDA SAS EV 2.88 0.120 0.238 2.37 0.108 0.266 2.81 0.117 0.204 4.64 0.193 0.408 2.91 0.132 0.307

PLDA DNN IV 3.95 0.146 0.279 2.07 0.100 0.264 3.63 0.118 0.229 4.86 0.184 0.396 2.42 0.120 0.305
PLDA DNN EV 3.43 0.134 0.258 1.68 0.083 0.233 2.77 0.118 0.215 4.14 0.155 0.346 1.93 0.101 0.268
PLDA DNN SAS IV 3.54 0.115 0.230 1.79 0.090 0.231 3.84 0.109 0.192 4.59 0.177 0.387 2.16 0.106 0.265
PLDA DNN SAS EV 3.09 0.112 0.212 1.69 0.081 0.208 3.13 0.112 0.188 4.15 0.164 0.349 2.01 0.096 0.241

PSVM IV 3.20 0.117 0.250 2.27 0.114 0.295 2.75 0.103 0.211 4.32 0.192 0.421 2.73 0.136 0.331
PSVM EV 2.89 0.111 0.233 2.26 0.105 0.265 2.46 0.096 0.192 3.77 0.165 0.374 2.83 0.127 0.304
PSVM DNN IV 3.20 0.114 0.233 1.69 0.088 0.239 2.87 0.104 0.199 3.75 0.159 0.363 2.03 0.105 0.272
PSVM DNN EV 2.86 0.107 0.218 1.50 0.077 0.209 2.63 0.102 0.185 3.30 0.141 0.319 1.78 0.093 0.238

based systems. In this configuration, half of the speakers
contributing to the evaluation set are unknown to the system.

Finally, the SRE12 setup is also an interesting case–study
from an application perspective. Assuming that most of the
customers may perform further calls, the system can be
retrained after collecting a large enough set of speakers of
the application domain.

Despite all the drawbacks related to the evaluation of e–
vectors with SRE10, we also performed an additional set
of experiments on the female telephone segments of the
SRE10 core extended tests. We did not include the micro-
phone/interview condition due to the scarcity of speakers
providing microphone/interview training segments.

For all these experiments we used a set of 45–dimensional
feature vectors, obtained by stacking 18 cepstral (c1-c18), 19
delta (∆c0-∆c18) and 8 double–delta (∆∆c0-∆∆c7) parame-
ters.

For the SRE12 experiments, we trained gender–independent
i–vector and e–vector extractors, based on a 1024–component
diagonal covariance UBM, estimated with data from SRE04–
10, and the Switchboard datasets, for a total of 42522 utter-
ances of 3209 speakers. The training list includes all telephone
files, whereas we randomly selected a maximum of two files
per interview session, eliminating very short or long duration
segments, i.e., keeping segments lasting from 20 to 300
seconds.

Matrix V has been trained using 10 Maximum Likelihood
and MDE iterations, then matrixE has been trained by means
of 5 MDE iterations. MDE has also been applied for the 10
iterations that we used for matrixT training.

For the first set of experiments, the i–vector and e–vector
dimensions were both set tod = 400, and the PLDA speaker
factors were not reduced.

A. Performance using400–dimensional vectors on SRE12

We first evaluated the performance of PLDA and PSVM
classifiers using i–vector or e–vector models trained with
the speech segments of an increasing number of speakers.
The evaluation was performed on the core extended SRE12
dataset using the baseline PLDA and PSVM systems, and the
UBM/GMM based vector extraction. All PLDA results have
been obtained using whitening and length normalization.

Figures 3 and 4 plot the Cprimary cost function [29] of
these systems as a function of the number of speakers in the
training set. The first set of figures refers to the telephone call
conditions, whereas the second set presents the results forthe
interview conditions. Looking at these figures, it is evident
that the systems based on the eigenvoice subspace suffer from
the lack of training speakers. However, the systems using e–
vectors estimated with more than 2000 speakers outperform
the corresponding i–vector systems. Thus, if the eigenvoice
matrix E is trained with a large enough number of speakers,
the extracted e–vectors are more informative about the speaker
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identity than the corresponding i–vectors, extracted by using
the total variability matrixT. Also evident in these figures
is that a PSVM system trained with all available data is
more accurate than the corresponding PLDA system for all
conditions.

It is also worth noting, looking at Figures 3 and 4, that the e–
vector systems are equivalent or better than the corresponding
i–vector systems when trained with the segments of a half of
the development speakers, so that the other half of the speakers
appearing in the development set are as a matter of fact “new
speakers” for the evaluation.

Table III summarizes the results of a set of experiments
performed on the same evaluation dataset, using i–vectors or
e–vectors. The matricesT andE trained for these experiments
are the ones estimated with the full set of training data
previously described. The results are given in terms of %EER,
DCF08, and Cprimary cost functions [29], [44]. The last three
columns show the relative improvement of e–vectors based
systems with respect to the same system using i–vectors.
Labels “SAS” and “DNN ” refer to our non–linear i–vector
transformation approach [21], and to the hybrid DNN–GMM
system [42], respectively.

The first row reports the results of “PLDA IV”, the baseline
GMM–based PLDA system using i–vectors. The “PLDA EV”
system is identical to the first one, but uses e–vectors rather
than i–vectors. It improves the average decision cost functions
by approximately 9% for the DCFs, and 14% for the EER.
The e–vectors are also effective if they are subject to the

cascade of affine and non–linear sinh–arcsinh (SAS) transfor-
mations that makes their distribution better approximate the
standard normal distribution. The results of this approachare
shown in the row of the tables labeled as “PLDA SAS EV”.
The improvement with respect to the corresponding “PLDA
SAS IV” system is again of the order of 9% for the DCFs,
and approximately 17% for the EER.

We also assessed the quality of e–vectors extracted by
means of our hybrid DNN/GMM architecture [42]. Comparing
rows “PLDA DNN EV” and “PLDA DNN IV”, it can be
noticed that using these more accurate models, the e–vectors
provide even better improvement with respect to i–vectors.

Applying, additionally, the SAS transformation, we get
further accuracy for both the “PLDA DNN SAS IV” and the
“PLDA DNN SAS EV” systems. The e–vectors provide even
in this case a smaller but consistent improvement with respect
to i–vectors.

Finally, a third set of experiments was performed to verify
that the e–vectors are better than i–vectors also using a
different, and more accurate, discriminative classifier. The
baseline performance of our PSVM approach is approximately
12% better than the baseline PLDA for both i–vectors and
e–vectors. The effectiveness of the e–vectors with respectto
the i–vectors is confirmed: the former gets approximately 9%
accuracy gain both using vectors extracted by means of the
standard GMM approach and exploiting the posteriors of the
hybrid DNN/GMM framework.

We did not perform experiments using the SAS non–linear
transformation of the i–vectors and e–vectors in the PSVM ap-
proach, because PSVM estimation is based on the optimization

of the margin between the same-speaker and different-speaker
classes, thus, it does not rely on the assumption that the input
i–vectors are distributed according to the standard normal, or
any other distribution.

Overall, using DNN–GMM and e–vectors the performance
improvement with respect to the PLDA and PSVM baseline
i–vector systems is approximately 29% and 22%, respectively.

It is worth noting that the MDE iterations are essential for
the e–vector performance. For example, extracting e–vectors
using theV matrix, rather than theE matrix, leads to a
“PLDA EV” model that obtains an average Cprimary of 0.340,
similar to the “PLDA IV” model, and a worse average for
the % EER and DCF08 of 3.66 and 0.162, respectively. The
results obtained for each condition defined by SRE12 are
collected in Table IV.

B. Performance on SRE12 using vectors of other dimensions

Since some dimensions of the i–vectors subspace are wasted
to take into account the channel effects, more dimensions are
necessary for the i–vectors, with respect to the e–vectors,
to accurately model the speaker identity. This can verified
comparing the performance of the same classifiers using i–
vectors or e–vectors of different dimensions. In particular we
compared PLDA, PLDA SAS, and PSVM systems using vec-
tors of dimensiond equal to300, 400, and600, respectively.

The benefits of using e–vectors can be appreciated looking
at the results shown in Table V and Figure 5. Table V reports
the average SRE12 performance obtained by UBM/GMM
systems using different dimension of the speaker vectors,
whereas Figure 5 compares the Cprimary of different systems,
using i–vectors or e–vectors, as a function of their dimensions.
Looking at the average Cprimary, it is possible to notice that
PLDA SAS is always better than PLDA both for i–vector and
e–vector based systems, and that PSVM is always better than
the other classifiers.
Increasing the vector dimensions, the performance improves,
and the results of the e–vector based systems are better than
the corresponding i–vector based systems, with the exception
of the 600–dimensional e–vectors PLDA.

The slight average Cprimary degradation observed for this sys-
tem is due to a bad performance on the interview conditions,
indicated in boldface in Table VI.
PLDA SAS is able to partially recover this problem, and in
general it is more effective than PLDA on interview rather
than in telephone conditions.
Driven by this observations, and by the desire to understand
the reasons of the different behavior of large dimension e–
vectors and i–vectors on interview data, we inspected the
distribution of the vectors components. We observed that
the distributions along the directions characterized by low
values of the between class to within class covariance ratio
largely deviate from a Gaussian distribution. These directions
are more detrimental for e–vector PLDA than for i–vector
PLDA because the former conveys in these directions speaker
information, whereas the latter conveys mainly channel in-
formation. Indeed, removing just 10 directions using LDA
allows significantly reducing these effects for600–dimensional
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TABLE V: Average %EER, DCF08, Cprimary, and % relative improvement for PLDA, PLDA LDA, PLDA SAS, andPSVM
systems on the core extended SRE12 tests, using i–vectors and e–vectors of increasing dimensions.

Features System % EER DCF08 Cprimary12 Relative improvement
PLDA 3.70 0.158 0.365

300 IV PLDA LDA 3.70 0.157 0.364
PLDA SAS 3.88 0.155 0.334
PSVM 3.27 0.147 0.333
PLDA 3.22 0.140 0.324 13.0% 11.4% 11.2%

300 EV PLDA LDA 3.34 0.138 0.323 9.7% 12.1% 11.3%
PLDA SAS 3.37 0.140 0.304 13.1% 9.7% 9.0%
PSVM 3.01 0.132 0.300 8.0% 10.2% 9.9%
PLDA 3.56 0.150 0.340

400 IV PLDA LDA 3.58 0.150 0.339
PLDA SAS 3.75 0.148 0.312
PSVM 3.05 0.132 0.302
PLDA 3.06 0.137 0.310 14.0% 8.7% 8.8%

400 EV PLDA LDA 3.27 0.132 0.304 8.7% 12.0% 10.3%
PLDA SAS 3.12 0.134 0.285 16.8% 9.5% 8.7%
PSVM 2.84 0.121 0.274 6.9% 8.3% 9.3%
PLDA 3.51 0.145 0.318

600 IV PLDA LDA 3.54 0.144 0.317
PLDA SAS 3.46 0.132 0.290
PSVM 2.84 0.122 0.276
PLDA 3.00 0.138 0.320 14.5% 4.8% -0.6%

600 EV PLDA LDA 3.26 0.129 0.287 7.9% 10.4% 9.5%
PLDA SAS 3.09 0.130 0.280 10.7% 1.5% 3.4%
PSVM 2.66 0.113 0.254 6.3% 7.4% 8.0%
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Fig. 5: Comparison of Cprimary for PLDA, PLDA LDA, PLDA SAS, and PSVM systems, using i–vectors ore–vectors, as a function of
their dimensions.

TABLE VI: % EER, DCF08 and Cprimary on the core extended SRE12 tests for PLDA, PLDA LDA, PLDA SAS,and PSVM
systems using i–vectors and e–vectors of 600 dimensions. Ane–vector system performance that is worse than the corresponding
i–vector system value is marked in boldface.

Feature Classifier

Cond 1 Cond 3 Cond 3 Cond 4 Cond 5
interview phone call interview phone call phone call

without noise without noise with added noise with added noise noisy environment
%EER DCF08 Cprim12 %EER DCF08 Cprim12 %EER DCF08 Cprim12 %EER DCF08 Cprim12 %EER DCF08 Cprim12

PLDA 4.05 0.152 0.297 2.43 0.117 0.300 3.39 0.117 0.232 4.78 0.196 0.418 2.91 0.141 0.342

600 IV
PLDA LDA 4.13 0.149 0.293 2.45 0.118 0.301 3.35 0.115 0.229 4.83 0.196 0.419 2.94 0.142 0.343
PLDA SAS 3.43 0.117 0.240 2.50 0.110 0.275 3.57 0.105 0.204 4.85 0.196 0.420 2.96 0.133 0.313
PSVM 3.07 0.109 0.226 2.16 0.105 0.269 2.61 0.100 0.198 3.78 0.170 0.382 2.58 0.124 0.305
PLDA 3.38 0.143 0.345 2.23 0.103 0.268 2.61 0.149 0.309 4.00 0.168 0.370 2.78 0.128 0.310

600 EV
PLDA LDA 3.69 0.134 0.271 2.23 0.105 0.270 3.61 0.107 0.209 4.01 0.170 0.370 2.76 0.130 0.313
PLDA SAS 2.81 0.114 0.237 2.46 0.107 0.257 2.86 0.117 0.222 4.33 0.182 0.382 3.01 0.132 0.303
PSVM 2.94 0.106 0.218 2.07 0.097 0.244 2.24 0.098 0.186 3.45 0.147 0.340 2.58 0.117 0.281
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TABLE VII: Comparison of the performance of i–vectors and e–vectors, in terms of % EER, DCF08 and DCF10, on the
female telephone core extended SRE10 tests, using different PLDA classifiers based on 1024 or 2048 GMM components.

Features i–vectors e–vectors Relative
System Dataset % EER DCF08 DCF10 % EER DCF08 DCF10 improvement ( % )

1024 Diagonal GMM
SRE 04-06 + SWB 2.91 0.144 0.469 3.16 0.149 0.468 -8.6 -3.5 0.2

+ SRE 08 3.00 0.147 0.462 2.78 0.133 0.420 7.3 9.5 9.1
+ Fisher 2.59 0.137 0.449 2.46 0.129 0.418 5.0 5.8 6.9

2048 Diagonal GMM
SRE 04-06 + SWB 2.43 0.123 0.404 2.99 0.152 0.443 -23.0 -23.6 -9.6

+ SRE 08 2.44 0.121 0.410 2.46 0.129 0.411 -0.8 -6.6 -0.2
+ Fisher 2.27 0.110 0.357 2.24 0.107 0.352 1.3 2.7 1.4

+ Fisher in PLDA All 2.00 0.103 0.340 1.92 0.096 0.329 4.0 6.8 3.2

2048 Diagonal DNN/GMM All 1.62 0.082 0.324 1.54 0.077 0.291 4.9 6.1 10.2
2048 Diagonal DNN/GMM NL-PLDA All 1.54 0.072 0.250 1.48 0.068 0.219 3.9 5.6 12.4

2048 Full DNN/GMM All 1.48 0.079 0.260 1.40 0.071 .0241 5.41 10.1 7.3
2048 Full DNN/GMM NL-PLDA All 1.46 0.068 0.221 1.27 0.059 0.230 13.0 13.2 -4.1

TABLE VIII: Comparison of the performance in terms of DCF08 and DCF10 of the 2048 Full DNN/GMM NL-PLDA i–vector
and e–vector systems. The corresponding number of errors are given in parentheses.

System DCF10 Pmiss Pfa DCF08 Pmiss Pfa

2048 Full DNN/GMM NL-PLDA IV 0.221 18.3% (677) 3.9*10−3
% (9) 0.068 4.78% (177) 0.21% (480)

2048 Full DNN/GMM NL-PLDA EV 0.230 20.0% (740) 3.0*10−3
% (7) 0.059 3.72% (138) 0.22% (514)

e–vectors, whereas it does not sensibly affects the i–vector
results.

Keeping all components, but applying the SAS transfor-
mation to e–vector, we are able to compensate these effects,
and to improve e–vector PLDA performance. In particular,
for vector of dimensions300 and 400, PLDA SAS is more
effective than LDA because it is able to make the e–vector
distribution more Gaussian, whereas LDA just removes some
directions. For600–dimensional e–vectors, the improvement is
less evident, but this is mainly due to the conditions character-
ized by artificial added noise, which was not seen in training.
For conditions with real noise, PLDA SAS outperforms LDA
also for600–dimensional e–vectors.

It is interesting noting that the300–dimensional e–vector
PLDA system is almost equivalent to PLDA using600–
dimensional i–vectors.

PSVM, which does not rely on gaussianity assumptions, is
able to keep the gain of e–vectors over i–vectors also for the
600–dimensional vectors, without any further processing, for
all conditions

C. Performance on SRE10

Additional experiments on the female telephone segments
of the core extended of SRE10 confirm that e–vectors are a
good alternative to i–vectors when the number of speakers and
segments is large enough.

We trained gender–dependent i–vector and e–vector extrac-
tors, again based on a 1024–component diagonal covariance
UBM, but estimated with an increasing amount of data,
beginning with the SRE04–06, and from Switchboard datasets,
and incrementally adding the SRE08 and Fisher datasets. We
did not include the microphone/interview conditions due the
scarcity of speakers providing microphone/interview training
segments. Training of matricesE andT has been performed
exactly as we did for the the SRE12 experiments. The i–vector
and e–vector dimensions were both set tod = 400, but the
PLDA speaker factors were reduced to 150.

A summary of the results of these experiments, using PLDA
classifiers, is given in Table VII.

As expected, training matricesT andE only with SRE04-06
and Switchboard (1972 speakers overall) does not allow a 1024
UBM/GMM e–vector system to outperform the corresponding
i–vector system. However, adding to training the data of the
753 speakers of SRE08, the e–vector system gives better
results, which become even better if the training list also
includes the Fisher dataset.

The same behavior is obtained by using larger, more accu-
rate, 2048 Gaussian models. Adding only SRE08 data is not
sufficient for e–vectors to obtain better results with respect to
i–vectors. However, including also the Fisher dataset to the
training set, the models and the absolute performance of both
i–vector and e–vector based systems improve, and we get a
small advantage for the e–vectors with respect to i–vectors.
Further improvement can be achieved for both i–vectors and
e–vectors using the Fisher dataset also in PLDA estimation,as
shown by the results given in the table row labeled “+ Fisher
in PLDA”.

The last two frames of Table VII show the result obtained
by models trained using all available training data, and also
including the Fisher dataset in PLDA training. The e–vectors
are effective also in the hybrid DNN/GMM approach, both
using 2048 diagonal or full covariance GMMs.

Finally, exploiting the posterior probability of the DNN
in combination with the non–linear PLDA approach [22],
we achieve our best results, where e–vector system keeps
a 13% relative advantage with respect to the corresponding
i–vector system for EER and DCF08. We do not consider
statistically significant the 4% loss for DCF10 because setting
the classification threshold to get the minimum DCF10, leads
to very small false alarm errors - less than 10 - as shown
in Table VIII. The number of errors corresponding to the
the minimum DCF08 threshold is, instead, statistically more
significant.

Using a PSVM in these experiments does not achieve better
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results that the corresponding PLDA classifier because it does
not take much advantage of the Fisher data. If these data
are not included in the training set, the amount of training
data is not sufficient for PSVM. Their inclusion is beneficial
for PLDA, but it is not helpful for PSVM because Fisher
data provide relatively few additional same–speaker pairs,
compared to the huge amount of mostly useless different–
speaker pairs.

VI. CONCLUSIONS

In this work we have shown that the eigenvoice space has
more information about the speakers than the “total variability”
i–vector subspace, because the latter includes more channel
effects. To exploit this information, we have proposed a simple
procedure for training an i–vector extractor that spans thesame
subspace of the JFA eigenvoice matrix. This leads to a compact
representation of speech segments, similar to i–vectors, which
we named e–vectors.

E–vectors have shown to be a good replacement of i–
vectors, consistently providing better performance with differ-
ent systems and classifiers. The best results were obtained on
SRE12 using600–dimensional e–vectors, particularly using a
PSVM classifier. These performance gains come without ad-
ditional memory or computational costs, on the contrary,300–
dimensional e–vector PLDA systems are almost equivalent to
PLDA systems using600–dimensional i–vectors.

Experiments performed on SRE10 female telephone data
demonstrate that it is important that the training corpus con-
tains enough speakers and multiple recordings to accurately
model the speaker subspace.
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