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Speech Dereverberation with Context-aware
Recurrent Neural Networks

João Felipe Santos and Tiago H. Falk

Abstract—In this paper, we propose a model to perform speech
dereverberation by estimating its spectral magnitude from the
reverberant counterpart. Our models are capable of extracting
features that take into account both short and long-term de-
pendencies in the signal through a convolutional encoder (which
extracts features from a short, bounded context of frames) and a
recurrent neural network for extracting long-term information.
Our model outperforms a recently proposed model that uses
different context information depending on the reverberation
time, without requiring any sort of additional input, yielding
improvements of up to 0.4 on PESQ, 0.3 on STOI, and 1.0 on
POLQA relative to reverberant speech. We also show our model
is able to generalize to real room impulse responses even when
only trained with simulated room impulse responses, different
speakers, and high reverberation times. Lastly, listening tests
show the proposed method outperforming benchmark models in
reduction of perceived reverberation.

Index Terms—Dereverberation, speech enhancement, deep
learning, recurrent neural networks, reverberation.

I. INTRODUCTION

REVERBERATION plays an important role in the per-
ceived quality of a sound signal produced in an enclosed

environment. In highly reverberant environments, perceptual
artifacts such as coloration and echoes are added to the
direct sound signal, thus drastically reducing speech sig-
nal intelligibility, particularly for the hearing impaired [1].
Automatic speech recognition (ASR) performance is also
severely affected, especially when reverberation is combined
with additive noise [2]. To deal with the distortions in such
environments, several types of speech enhancement systems
have been proposed, ranging from single-channel systems
based on simple spectral subtraction [3] to multistage systems
which leverage signals from multiple microphones [4].

Deep neural networks (DNNs) are currently part of many
large-scale ASR systems, both as separate acoustic and lan-
guage models as well as in end-to-end systems. To make these
systems robust to reverberation, different strategies have been
explored, such as feature enhancement during a preprocessing
stage [5] and DNN-based beamforming on raw multichannel
speech signals for end-to-end solutions [6]. On the other hand,
the application of DNNs to more general speech enhancement
problems such as denoising [7], dereverberation [8], and
source separation [9] is comparatively in early stages.

Recently, several works have explored deep neural networks
for speech enhancement through two main approaches: spec-
tral estimation and spectral masking. In the first, the goal
of the neural network is to predict the magnitude spectrum
of enhanced speech signal directly, while the latter aims at

predicting some form of an ideal mask (either a binary or a
ratio mask) to be applied to the distorted input signal.

Most of the published work in the area uses an architecture
similar to the one first presented in [8]: a relatively large feed-
forward neural network with three hidden layers containing
several hundred units (1600 in [8]), having as input a context
window containing an arbitrary number of frames (11 in [8])
of the log-magnitude spectrum and as target the dry/clean
center frame of that window. The output layer uses a sigmoid
activation function, which is bounded between 0 and 1, and
normalizes targets between 0 and 1 using the minimum and
maximum energies in the data. Moreover, an iterative signal
reconstruction scheme inspired by [10] is used to reduce the
effect of using the reverberant phase for reconstruction of the
enhanced signal.

In [11], the authors performed a study on target feature acti-
vation and normalization and their impacts on the performance
of DNN based speech dereverberation systems. The authors
compared the target activation/normalization scheme in [8]
with a linear (unbounded) activation function and output nor-
malized by its mean and variance. Their experiments showed
the latter activation/normalization scheme leads to higher
PESQ and frequency-weighted segmental SNR (fwSegSNR)
scores than the sigmoid/min-max scheme.

In a follow-up study [12], the same authors proposed a
reverberation-time-aware model for dereverberation that lever-
ages knowledge of the fullband reverberation time (T60) in
two different ways. First, the step size of the short-time Fourier
transform (STFT) is adjusted depending on T60, varying from
2 ms up to 8 ms (the window size is fixed at 32 ms).
Second, the frame context used at the input of the network
is also adjusted, from 1 frame (no context) up to 11 frames
(5 future and 5 past frames). Since the input of the network
has a fixed size, the context length is adjusted by zeroing
the unused frames. The model was trained using speech from
the TIMIT dataset convolved with 10 room impulse responses
(RIR) generated at a room with fixed geometry (6 by 4 by 3
meters), with T60 ranging from 0.1 to 1.0 s. The full training
data had about 40 hours of reverberant speech, but the authors
also presented results on a smaller subset with only 4 hours.
The model proposed was a feedforward neural network with 3
hidden layers with 2048 hidden units each, trained using all the
different step sizes and frame context configurations in order
to find the best configuration for each T60 value. The authors
considered the true T60 value to be known at test time (oracle
T60), as well as estimated using the T60 estimator proposed
by Keshavarz et al. [13].

ar
X

iv
:1

71
1.

06
30

9v
1 

 [
cs

.S
D

] 
 1

6 
N

ov
 2

01
7



2

The other well-known approach for speech enhancement
using deep neural networks is to predict arbitrary ideal masks
instead of the magnitude spectrum [14]. The ideal binary mask
(IBM) target transforms the speech enhancement problem into
a classification problem, where the goal of the model is to
predict which time-frequency cells from the input should be
masked, and has been shown to improve intelligibility substan-
tially. The ideal binary mask is defined quantitatively based on
a local criterion threshold for the signal-to-noise ratio (SNR).
Namely, if the SNR of a given time-frequency cell is lower
than the threshold, that time-frequency cell is masked (set to
zero). Alternatively, the ideal ratio mask is closely related to
the frequency-domain Wiener filter with uncorrelated speech
and noise. It is a soft masking technique where the mask
value corresponds to the local ratio between the signal and
the signal-plus-noise energies for each time-frequency cell.
Recently, [15] has proposed the complex ideal ratio mask,
which is applied to the real and imaginary components of the
STFT instead of just the magnitude. Models based on mask
prediction usually include several different features at the input
(such as amplitude modulation spectrograms, RASTA-PLP,
MFCC, and gammatone filterbank energies), instead of using
just the magnitude spectrum from the STFT representation
like the works previously described here. Masks are also often
predicted in the gammatone filterbank domain.

In [16], the authors present a model that predicts log-
magnitude spectrum and their delta/delta-delta, then perform
enhancement by solving a least-squares problem with the
predicted features, which aims at improving the smoothness
of the enhanced magnitude spectrum. The method was shown
to improve cepstral distance (CD), SNR, and log-likelihood
ratio (LLR), but caused slight degradation of the speech-
to-reverberation modulation energy ratio (SRMR). They also
reported that the DNN mapping causes distortion for high T60.

Very few studies use architectures other than feed-forward
for dereverberation. In [17], the authors propose an architec-
ture based on long short-term memory (LSTM) for derever-
beration. However, they only report mean-squared error and
word-error rates for a baseline ASR system (the REVERB
Challenge evaluation system) and do not report its effect on
objective metrics for speech quality and intelligibility. The
method described in [9] also uses recurrent neural networks
based on LSTMs for speech separation in the mel-filterbank
energies domain. Although their system predicts soft masks,
similar to the ideal ratio mask, they use a signal-approximation
objective instead of predicting arbitrary masks (i.e., the target
are the mel-filterbank features of the clean signal, not an
arbitrarily-designed mask).

Most current models reported in the literature only explore
one of two possible contexts from the reverberant signal. Feed-
forward models with a fixed window of an arbitrary number
of past and future frames only take into account the local
context (e.g. [12]) and are unable to represent the long-term
structure of the signal. Also, since feed-forward models do not
have an internal state that is kept between frames, the model
is not aware of the frames it has predicted previously, which
can lead to artifacts due to spectral discontinuities. LSTM-
based architectures, on the other hand, are able to learn both

short- and long-term structure. However, learning either of
these structures is not enforced by the training algorithm or
the architecture, so one cannot control whether the internal
state will represent short-term, long-term context, or both.

In this paper, we propose a novel architecture for speech
dereverberation that leverages both short- and long-term con-
text information. First, fixed local context information is
generated directly from the input sequence by a convolutional
context encoder. We train the network to learn how to use long-
term context information by using recurrent layers and training
it to enhance entire sentences at once, instead of a single frame
at a time. Additionally, we leverage residual connections from
the input to hidden layers and between hidden layers. We
show that combining short and long-term contexts, as well
as including such residual connections, substantially improves
the dereverberation performance across four different objec-
tive speech quality and intelligibility metrics (PESQ, SRMR,
STOI, and POLQA), and also reduces the amount of perceived
reverberation according to subjective tests.

II. PROPOSED MODEL

The architecture of the proposed model can be seen in
Fig. 1. As discussed previously, our model combines both
short- and long-term context by using a convolutional context
encoder to create a representation of the short-term structure
of the signal, and a recurrent decoder which is able to learn
long-term structure from that representation. The decoder also
benefits from residual connections, which allow each of its
recurrent stages to have access both to a representation of the
input signal and the state of the previous recurrent layer. Each
of the blocks is further detailed in the sections to follow.

A. Context encoder

As shown in other studies, incorporating past and future
frames can help on the task of estimating the current frame
for dereverberation. Most works, however, use a fixed context
window as the input to a fully-connected layer [8], [11]. In
this work, we decided to extract local context features using
2D convolutional layers instead. By using a 2D convolutional
layer, these features encode local context both in the frequency
and the time axis. Our context encoder is composed by a single
2D convolutional layer with 64 filters with kernel sizes of
(21, C), where 21 corresponds to the number of frequency
bins covered by the kernel and C to the number of frames
covered by the kernel in the time axis. In our implementation,
C is always an odd number as we use an equal number of
past and future frames in the context window (e.g., C = 11
means the current frame plus 5 past and 5 future frames). We
report the performance of the model for different values of
C in section IV-A. The convolution has a stride of 2 in the
frequency axis and is not strided in the time axis.

B. Decoder

Following the encoder, we have a stack of three gated
recurrent unit (GRU) layers [18] with 256 units each. The
input to the first layer is the output of the convolutional context
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Fig. 1. Architecture of the proposed model

encoder with all of the channels concatenated to yield an input
of shape (F, T ), where

F = 64×
⌊
B −Ncontext + 1

2
+ 1

⌋
,

64 is the number of filters in the convolutional layer, T is the
number of STFT frames in a given sentence, B is the number
of FFT bins (257 in our experiments), and b.c is the floor
operation (rounds its argument down to an integer).

The outputs to the remaining GRU layers are a combina-
tion of affine projections of the input and the states of the
previous GRU layers. Consider xenc(t) to be the encoded
input at timestep t, and h1(t), h2(t), h3(t) as the hidden state
at timestep t for the first, second, and third GRU layers,
respectively. Then, the inputs i1(t), i2(t), i3(t) are as follows:

i1(t) = xenc(t),

i2(t) = f2(x(t)) + g1,2(h1(t)),

i3(t) = f3(x(t)) + g1,3(h1(t)) + g2,3(h2(t)),

where fi, gi,j are affine projections from the input or previous
hidden states. The parameters of those projections are learned
during training, and all projections have an output dimension
of 256 in order to match the input dimension of the GRUs
when added together.

Similarly, the output layer following the stacked GRUs has
as its input the sum of affine projections oi of h1, h2, h3:

iout(t) = o1(h1(t)) + o2(h2(t)) + o3(h3(t)).

The parameters of those projections are also learned during
training. All of these projections have an output dimension of
256.

III. EXPERIMENTAL SETUP

A. Datasets

In order to assess the benefits of the proposed architecture
for speech dereverberation, we ran a series of experiments with
both the proposed model and two other models as baselines:
the T60-aware model proposed in [12] and a similar model
without T60 information that uses a fixed overlap of 16 ms
and a fixed context of 11 frames (5 past and 5 future frames).
For the T60 aware model, we extracted T60 values directly
from the RIRs (oracle T60s) using a method similar to the one
used for the ACE Challenge dataset [19], [20]. The fullband
T60 we used was computed as the average of the estimates
for the bands with center frequencies of 400 Hz, 500 Hz, 630
Hz, 800 Hz, 1000 Hz, and 1250 Hz.

For the single speaker experiments, a recording of the IEEE
dataset uttered by a single male speaker was used [21]. The
dataset consists of 72 lists with 10 sentences each recorded
under anechoic and noise-free conditions. We used the first
67 lists for the training set and the remaining 5 lists for
testing. Reverberant utterances were generated by convolving
randomly selected subsets of the utterances in the training
set with 740 RIRs generated using a fast implementation
of the image-source method [22], with T60 ranging from
0.2 s to 2.0 s in 0.05 s steps. Twenty different RIRs (with
different room geometry, source-microphone positioning and
absorption characteristics) were generated for each T60 value.
Fifty random utterances from the training set were convolved
with each of these 740 RIRs, resulting in 37,000 files. A
random subset of 5% of these files was selected as a validation
set and used for model selection and the remaining 35,150 files
were used to train the models. The test set was generated in
a similar way, but using a different set of 740 simulated RIRs
and 5 utterances (randomly selected from the test lists) were
convolved with each RIR.

For the multi-speaker experiments, we performed a similar
procedure but using the TIMIT dataset [23] instead of the
IEEE dataset. The default training set (without the “SA” ut-
terances, since these utterances were recorded by all speakers)
was used for generating the training and validation sets, and
the test set (with the SA utterances removed as well) was
used for generating the test set. The training and test sets had
a total of 462 and 168 speakers, respectively. The utterances
were convolved with the same RIRs used for the single speaker
experiments. A total of 3696 clean utterances were used for
the training and validation set, and 1336 for the test set. As
with the single speaker dataset, 50 sentences were chosen at
random from the training and validation sets (which include
all of the utterances from all speakers) and convolved to each
of the 740 simulated RIRs to generate the training/validation
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sets. The test set was generated following the same procedure
as used for the single speaker dataset.

Additionally, in order to explore the performance of the pro-
posed and baseline models on realistic settings, we tested the
same single speaker models described above with sentences
convolved with real RIRs from the ACE Challenge dataset
[19]. We used the RIRs corresponding to channels 1 and 5
of the cruciform microphone array for all of the seven rooms
and two microphone positions, leading to a total of 28 RIRs.
The test sentences were the same as for the experiments with
simulated RIRs. The interested reader can refer to [19] for
more details about the ACE Challenge RIRs.

B. Model Training

Both the proposed model and the baselines were imple-
mented using the PyTorch library [24] (revision e1278d4) and
trained using the Adam optimizer [25] with a learning rate of
0.001, β1 = 0.9, and β2 = 0.999. The models were trained
for 100 epochs and the parameters corresponding to the epoch
with the lowest validation error were used for evaluation. Since
sequences in the dataset have different lengths, we padded
sequences in each minibatch and used masking to compute
the MSE loss only for valid timesteps. The models used
for evaluation were the ones with the lowest validation loss
amongst the 100 epochs.

C. Objective evaluation metrics

We compare the performance of the models using four dif-
ferent objective metrics. The Perceptual Evaluation of Speech
Quality (PESQ) [26] and Perceptual Objective Listening Qual-
ity Assessment (POLQA) [27] are both ITU-T standards for
intrusive speech quality measurement. The PESQ standard
was designed for a very limited test scenario (automated
assessment of band-limited speech quality by a user of a
telephony system), and was superseded by POLQA. The two
metrics work in a similar way, by computing and accumu-
lating distortions, and then mapping them into a five-point
mean opinion score (MOS) scale. Even though PESQ is not
recommended as a metric for enhanced or reverberant speech,
several works report PESQ scores for these types of processing
and we report it here for the sake of completeness. POLQA is a
more complete model and allows measurement in a broader set
of conditions (e.g., super-wideband speech, combined additive
noise and reverberation). The Short-Time Objective Intelligi-
bility (STOI) [28] metric is an intrusive speech intelligibility
metric based on the correlation of normalized filterbank en-
velopes in short-time (400 ms) frames of speech. Finally, the
speech-to-reverberation modulation energy ratio (SRMR) is a
non-intrusive speech quality and intelligibility metric based on
the modulation spectrum characteristics of clean and distorted
speech, which has been shown to perform well for reverberant
and dereverberated speech [29], [30].

D. Subjective listening tests

To further gauge the benefits of the proposed architecture for
speech enhancement, we performed a small-scale subjective

TABLE I
NUMBER OF PARAMETERS IN EACH MODEL

Model # of parameters
GRU 4,458,753

Wu2016 and Wu2017 14,711,041
Proposed without context 1,838,593

Proposed, context = 3 frames 7,429,121
Proposed, context = 7 frames 7,434,497
Proposed, context = 11 frames 7,439,873

listening test to assess how effective different methods are in
reducing the amount of perceived reverberation. In particular,
comparisons with the baseline model Wu2016 were performed
as it resulted in improved performance with unmatched speak-
ers relative to the benchmark Wu2017 model. The test protocol
we used was the recently proposed MUSHRAR test [31].

For the reverberation perception tests, five random samples
of the TIMIT test dataset were chosen for each of simulated
RIRs with T60s of 0.6, 0.9, 1.2, and 1.5 s and participants were
asked to compare the outputs of all models and the reverberant
signal to a reference signal. In addition to the model outputs
and the reverberant signal, a hidden reference and anchor
were used for both experiments: the reference signal was the
anechoic signal convolved with an RIR with T60 of 0.2 s
and the anchor was the anechoic signal convolved with a RIR
with a T60 of 2.0 s. Users were asked to rate the amount of
perceived reverberation on a 0-100 scale, with higher values
corresponding to higher perceived reverberation. A total of
nine participants took part in the test. Tests were performed
using a web interface which is freely available online1.

IV. EXPERIMENTAL RESULTS

In this Section, we present the results for four different
experiments, namely:

A. Evaluation of the effect of the context size (using the
single-speaker, simulated RIR dataset)

B. Comparison between the proposed architecture and base-
lines on matched conditions (same speaker, simulated
RIRs for training and testing)

C. Comparison between the proposed architecture and base-
lines on mismatched speakers (multispeaker dataset with
simulated RIRs)

D. Comparison between the proposed architecture and base-
lines under realistic reverberation conditions (models
trained on single-speaker, simulated RIR dataset, and
tested on single-speaker, real RIR dataset).

Since some of the models have a large difference in the
number of learnable parameters, we list the number of param-
eters for each of the models that was used in our experiments
in Table I.

A. Effect of context size

We first analyze the effect of the context size in the
proposed model by comparing models with context sizes of
3, 7, and 11. We also included a baseline model based on

1Software available at https://github.com/jfsantos/mushra-ruby

https://github.com/jfsantos/mushra-ruby
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GRUs without residual connections and a model without the
context encoder and residual connections in these tests. All
the models were trained and tested with single-speaker data
convolved with simulated RIRs. The results can be seen in
Figure 2. For this and all of the subsequent experiments in
this section, we have subplots for the four objective metrics
listed in Section III-C: (a) PESQ, (b) SRMR, (c) STOI and
(d) POLQA in this order. The GRU-only model (without the
context encoder and residual connections) underperforms in
all metrics, and in the cases of PESQ and POLQA, even leads
to lower scores than the reverberant utterances. Adding only
the residual connections and no context at all (which allows
the model to perform at real-time) significantly increases the
performance and leads to improvements in all metrics, except
for reverberation times under 400 ms (noticeable in both
PESQ and POLQA). Adding the context encoder, even with
a short context of one previous and one future frame (shown
as “3 frames” in the plots), leads to additional improvements.
Adding more frames (“7 frames” and “11 frames”) improves
the performance even further. However, we see diminishing
returns around 7-11 frames, as these two models have similar
performances for SRMR and STOI and only a slight difference
in PESQ and POLQA. Since the model with a context of
11 frames (5 past and 5 future frames) showed the best
performance amongst all context sizes, in the next experiments
we show only results with this context size for the proposed
model.

B. Comparison with baseline models

Figure 3 shows a comparison between our best model,
Wu2016 (fixed STFT window and hop sizes) and Wu2017
(STFT window and hop sizes dependent on the oracle T60
values). The interested reader is referred to this manuscript’s
supplementary material page to listen to audio samples gen-
erated by the proposed and benchmark algorithms 2. A more
complete audio demo can be found in [32]. It can be seen
that our model outperforms these two feed-forward mod-
els in most scenarios and metrics, except for SRMR with
T60 < 0.7 s, where the results are very similar. It should
be noted, however, that the SRMR metric is less accurate for
lower T60s [29]. Even though it uses oracle T60 information,
the model Wu2017 does not have a large improvement in
metrics when compared to Wu2016, especially in the STOI
and POLQA metrics (which are more sensitive to the effects
of reverberation than PESQ). Using T60 information to adapt
the STFT representation seems to have a stronger effect for
lower T60. It should also be noted that these models lead
to a reduction in PESQ scores for lower reverberation times
in the PESQ and POLQA metrics, which is probably due to
the introduction of artifacts. This is also observed for the
proposed model, but only in the PESQ metric and only for
T60 < 0.4 s. On the other hand, STOI indicates all models
lead to an improvement in intelligibility.

2http://www.seaandsailor.com/demo/index.html

C. Unmatched vs. matched speakers
Although testing dereverberation models with single speaker

datasets allows assessing basic model functionality, in real-
world conditions, training a model for a single speaker is not
practical and has very limited applications. It is important to
evaluate the generalization capabilities of such models with
mismatched speakers, as this is a more likely scenario. Figure
4 shows the results for Wu2016, Wu2017, the proposed model,
as well as for the reverberant files in the test set. Between the
baseline models, we can see that Wu2017 now underperforms
Wu2016 in all metrics, and either reduces metric scores (as
for PESQ and POLQA for low T60) or does not change them.
However, the version of the model that does not depend on
T60 leads to higher scores. Although we do not have a clear
explanation for this behaviour, we believe the optimal scores
for the STFT hop size and context might depend both on T60
and speaker, but the Wu2017 model uses fixed values that
depend only on T60. Since the model has now less data from
each speaker, it was not able to exploit these adapted features
properly.

The proposed model, on the other hand, outperforms both
baselines in 3 out of 4 metrics, only achieving similar scores
in the SRMR metric. Compared to Wu2016, our model leads
to improvements of around 0.4 in PESQ, 0.1 in STOI, and 0.5
in POLQA.

D. Real vs. simulated RIR
In our last experiment, we test the generalization capability

of the models trained on simulated RIRs to real RIR. To that
end, we used speech convolved with real RIRs from the ACE
Challenge dataset, as specified in Section IV. The results are
reported in Figure 5. Note that the x-axis in that figure does not
have linear spacing in time, as we are showing the results for
each T60 as a single point uniformly spaced from its nearest
neighbours in the data. Note also the larger variability in scores
for reverberant files, which is due to the scores here not being
averaged across many RIRs.

In this test, the proposed method achieves the highest
scores in all metrics. It is also the only method to improve
PESQ and POLQA across all scenarios, while the baselines
either decrease or do not improve such metrics. Although the
baselines do improve STOI in most cases, in some scenarios
they actually decrease STOI.

E. Subjective Listening Tests
The results of MUSHRAR tests are summarized in Table

IV-E. The results for the original, unprocessed reverberant files
are also reported. When rating how reverberant the enhanced
stimuli were, participants rated the outputs of the proposed
model as less reverberant than the baseline and reverberant sig-
nals for all T60 values, while the baseline model only achieved
a lower reverberation perception for lower reverberation times.

V. DISCUSSION

A. Effect of the context size and residual connections
In this paper, we propose the addition of a few components

to the architecture of deep neural networks for dereverberation.

http://www.seaandsailor.com/demo/index.html
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(a) (b)

(c) (d)

Fig. 2. Effect of context size on scores: (a) PESQ, (b) SRMR, (c) STOI, and (d) POLQA.

TABLE II
RESULTS OF THE MUSHRAR TEST FOR REVERBERATION PERCEPTION

FOR DIFFERENT T60 VALUES. LOWER IS BETTER.

Model 0.6 s 0.9 s 1.2 s 1.5 s
Reverb 42.62 60.06 71.73 82.24

Wu2016 32.27 38.08 46.27 43.89
Proposed 24.44 23.89 29.93 31.64

Using a context window for speech enhancement is not a new
idea, and most studies using deep neural networks use similar
context sizes. The novelty in our approach, however, is to use
a convolutional layer as a local context encoder, which we
believe helps the model to learn how to extract local features
both in the time and the frequency axes in a more efficient
way than just using a single context window as the input
for a feedforward model. This local context, together with
the residual input connections, is used as an input for the
recurrent decoder, which is able to learn longer-term features.
Similar architectures (save for the residual connections) have
been successfully used for speech recognition tasks [33] but,
to the best of our knowledge, this is the first work where such
an architecture is used with the goal of estimating the clean
speech magnitude spectrum.

Regarding the effect of the context size, our results agree
with the intuition that including more past and future frames
would help in predicting the current frame. However, we also
show that there is a very small difference between using 7 vs.
11 frames as context. A window of 7 frames encompasses
a total of 144 ms, vs. 208 ms for 11 frames. Both sizes
are still much smaller than most of the reverberation times
being used for our study, but they already start allowing
the model to easily extract features related to amplitude
modulations with lower frequencies, which are very important
for speech intelligibility. We believe the combination of short-
and long-term contexts, by having both the short-term context
encoder and longer-term features through the recurrent layers,
allows our architecture to benefit even from a shorter context
window at the input. Lower modulation frequencies can still
be captured through the recurrent layers, although we cannot
explicitly control or assess how long these contexts are since
they are learned implicitly through training and might be input-
dependant.

We also introduce the use of residual and skip connections
in the context of speech enhancement. Residual connections
have a very close corresponding method in speech enhance-
ment, namely spectral subtraction. The output of a speech
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(a) (b)

(c) (d)

Fig. 3. Single speaker, simulated RIR scores: (a) PESQ, (b) SRMR, (c) STOI, and (d) POLQA.

enhancement model is likely to be very similar to the input,
save for a signal that has to be subtracted from it (e.g. in the
case of additive noise). In our case, our model is not restricted
to subtraction due to how our architecture was designed.
Consider the architecture as shown in Figure 1. The input to
each recurrent layer is the sum of projections of the corrupted
input (via the linear layers f1, f2, and f3), and the output of
the previous layers (via the linear layers g1, g2, and g3). One
possible solution to the problem, given this architecture, is
for each recurrent layer to perform a new stage of spectral
estimation given the difference between what the previous
stage has predicted and the input at a given time. The output
layer uses skip connections to the output of each recurrent
layer and combines their predictions, allowing each layer to
specialize on removing different types of distortions or to
successively improve the signal. Our architecture was inspired
by the work on generative models by Alex Graves [34], which
uses a similar scheme of connections between recurrent layers.
The recently proposed WaveNet architecture [35], which is a
generative model for audio signals able to synthesize high-
quality speech, also makes use of residual connections and
skip connections from each intermediate layer and the output
layer.

B. Comparison with baselines

As seen in the previous section, our model outperforms both
baselines based on feed-forward neural networks. One clear
advantage of our approach is that we do not need to predict
T60, which is a hard problem in itself and adds another layer
of complexity to the model, especially under the presence of
other distortions such as background noise [19].

Regarding model size, as seen in Table 1, it is important
to note that despite having a significantly smaller number
of parameters than the baseline models, our proposed model
consistently outperforms them in most experiments. Our best
model (shown in the last line of Table 1) has approximately
half the number of parameters but uses these parameters more
efficiently because of its architectural characteristics.

Although the authors of [12] argue that their model leads to
improvements in PESQ scores, the differences reported were
not significant. Also, the authors have used PESQ scores for
selecting the best models; however, that might be an issue,
especially because PESQ is not a recommended metric for
reverberant/dereverberated speech. In our experiments we used
the best validation loss (MSE) for model selection for all the
models, including the baselines. Using a proper speech quality
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Fig. 4. Scores for experiment with unmatched speakers: (a) PESQ, (b) SRMR, (c) STOI, and (d) POLQA.

or intelligibility metric as a function for model selection
would be a good, but costlier solution because one has to
generate/evaluate samples using that metric for all epochs,
while MSE can be computed directly from the output of the
model.

C. Generalization capabilities

Another important aspect of our study, when compared
to [12], is that we train and test the models under several
different room impulse responses, both real and simulated.
The results we report for Wu2017 have much lower perfor-
mance than those reported in [12] for similar T60 values;
however, it must be noted we used random room geometries
and random source and microphone locations for our RIRs,
while in their experiments the authors used a fixed room
geometry with different T60 values (corresponding to different
absorption coefficients in the surfaces of the room) and a fixed
location. Although they tried to show the model generalizes
to different room sizes, they tested generalization by means
of two tests: (a) a single different room size with the same
source-microphone positioning and (b) and a single different
source-microphone positioning with fixed room geometry. We

believe those experiments were not sufficient to show the
generalization capabilities of the model, and experiments 1
and 3 in our work confirm that hypothesis. In our work, we
tried to expose the model to several different room geometries
and source-microphone positioning, since this is closer to real-
world conditions and helps the model to better generalize to
unseen rooms and setups.

D. Anedoctal comparison with mask-based methods
Although we did not compare our method to masking

alternatives in this study, we would like to briefly mention
the results reported in the most recent paper with a masking
approach [36], which used a similar single-speaker dataset
(IEEE sentences uttered by a male speaker), simulated and
real RIR for the dereverberation task. Although the range of
T60s in our study and theirs is not similar, we can roughly
compare the metrics of our model in the same range used
in their study. The STOI improvements for our method are
higher than the so-called cRM method proposed in that paper:
our method has a STOI improvement of approximately 0.2 in
all simulated T60s they report (0.3, 0.6, and 0.9 s), while their
highest improvement is of 0.06 for 0.9 s. The cRM method,
however, slightly decreased STOI for a T60 of 0.3 s.
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(a) (b)
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Fig. 5. Scores for experiment with real RIRs: (a) PESQ, (b) SRMR, (c) STOI, and (d) POLQA.

E. Study limitations

Although we report both PESQ and SRMR scores in
this work, these results should be taken cautiously. PESQ
has been shown to not correlate well with reverberant and
dereverberated speech. SRMR, on the other hand, is a non-
intrusive metric, so it is affected by speech- and speaker-
related variability [29]. It is also more sensitive to high
reverberation times (0.8 s as shown in [37]), so measurements
in low reverberation times might not be accurate enough for
drawing conclusions about the performance of a given model.

A characteristic common to all DNN-based models and also
other algorithms based on spectral magnitude estimation is
a higher level of distortion due to reusing the reverberant
phase, especially in higher T60. This is added to magnitude
estimation errors which are also higher in higher T60, since
the input signal is very different from the target due to
the combined effect of coloration and longer decay times.
Although we do not try to tackle this issue here, there are
recent developments in the field that could be applied jointly
with our model, such as the method recently proposed in [38].
This exploration is left for future work.

VI. CONCLUSION

We proposed a novel deep neural network architecture for
performing speech dereverberation through magnitude spec-
trum estimation. We showed that this architecture outperforms
current state-of-the-art architectures and generalizes over dif-
ferent room geometries and T60s (including real RIR), as well
as to different speakers. Our architecture extracts features both
in a local context (i.e., a few frames to the past/future of the
frame being estimated) as well as long-term context. As future
work, we intend to explore improved cost functions (e.g.,
incorporating sparsity in the outputs [39]) as well as applying
the architecture to signals distorted with both additive noise
and reverberation. We also intend to propose a multichannel
extension of the architecture in the future. Finally, we intend
to explore a number of solutions to the issue of reconstructing
the signal using the reverberant phase.
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