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Abstract—Dense word embeddings, which encode meanings
of words to low dimensional vector spaces, have become very
popular in natural language processing (NLP) research due to
their state-of-the-art performances in many NLP tasks. Word
embeddings are substantially successful in capturing semantic
relations among words, so a meaningful semantic structure must
be present in the respective vector spaces. However, in many
cases, this semantic structure is broadly and heterogeneously
distributed across the embedding dimensions making interpre-
tation of dimensions a big challenge. In this study, we propose
a statistical method to uncover the underlying latent semantic
structure in the dense word embeddings. To perform our analysis,
we introduce a new dataset (SEMCAT) that contains more
than 6,500 words semantically grouped under 110 categories.
We further propose a method to quantify the interpretability
of the word embeddings. The proposed method is a practical
alternative to the classical word intrusion test that requires
human intervention.

Index Terms—Interpretability, Semantic Structure, Word Em-
beddings.

I. INTRODUCTION

ORDS are the smallest elements of a language with

a practical meaning. Researchers from diverse fields
including linguistics [[1]], computer science [2]] and statistics [3|]
have developed models that seek to capture “word meaning”
so that these models can accomplish various NLP tasks such as
parsing, word sense disambiguation and machine translation.
Most of the effort in this field is based on the distributional
hypothesis [4]] which claims that a word is characterized
by the company it keeps [5]. Building on this idea, several
vector space models such as well known Latent Semantic
Analysis (LSA) [[6] and Latent Dirichlet Allocation (LDA)
[7] that make use of word distribution statistics have been
proposed in distributional semantics. Although these methods
have been commonly used in NLP, more recent techniques that
generate dense, continuous valued vectors, called embeddings,
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have been receiving increasing interest in NLP research.
Approaches that learn embeddings include neural network
based predictive methods [2], [8] and count-based matrix-
factorization methods [9]. Word embeddings brought about
significant performance improvements in many intrinsic NLP
tasks such as analogy or semantic textual similarity tasks,
as well as downstream NLP tasks such as part-of-speech
(POS) tagging [[10], named entity recognition [11]], word sense
disambiguation [[12f], sentiment analysis [[13]] and cross-lingual
studies [14].

Although high levels of success have been reported in many
NLP tasks using word embeddings, the individual embedding
dimensions are commonly considered to be uninterpretable
[15]. Contrary to some earlier sparse vector space models
such as Hyperspace Analogue to Language (HAL) [16],
what is represented in each dimension of word embeddings
is often unclear, rendering them a black-box approach. In
contrast, embedding models that yield dimensions that are
more easily interpretable in terms of the captured information
can be better suited for NLP tasks that require semantic
interpretation, including named entity recognition and retrieval
of semantically related words. Model interpretability is also
becoming increasingly relevant from a regulatory standpoint,
as evidenced by the recent EU regulation that grants people
with a “right to explanation” regarding automatic decision
making algorithms [17].

Although word embeddings are a dominant part of NLP
research, most studies aim to maximize the task performance
on standard benchmark tests such as MEN [18]] or Simlex-
999 [19]. While improved test performance is undoubtedly
beneficial, an embedding with enhanced performance does not
necessarily reveal any insight about the semantic structure that
it captures. A systematic assessment of the semantic structure
intrinsic to word embeddings would enable an improved un-
derstanding of this popular approach, would allow for compar-
isons among different embeddings in terms of interpretability
and potentially motivate new research directions.

In this study, we aim to bring light to the semantic con-
cepts implicitly represented by various dimensions of a word
embedding. To explore these hidden semantic structures, we
leverage the category theory [20] that defines a category
as a grouping of concepts with similar properties. We use
human-designed category labels to ensure that our results
and interpretations closely reflect human judgements. Human
interpretation can make use of any kind of semantic relation
among words to form a semantic group (category). This
does not only significantly increase the number of possible



categories but also makes it difficult and subjective to define a
category. Although several lexical databases such as WordNet
[1] have a representation for relations among words, they
do not provide categories as needed for this study. Since
there is no gold standard for semantic word categories to the
best of our knowledge, we introduce a new category dataset
where more than 6,500 different words are grouped in 110
semantic categories. Then, we propose a method based on
distribution statistics of category words within the embedding
space in order to uncover the semantic structure of the dense
word vectors. We apply quantitative and qualitative tests to
substantiate our method. Finally, we claim that the semantic
decomposition of the embedding space can be used to quantify
the interpretability of the word embeddings without requiring
any human effort unlike the word intrusion test [21].

This paper is organized as follows: Following a discussion
of related work in Section we describe our methods in
Section [l In this section we introduce our dataset and
also describe methods we used to investigate the semantic
decomposition of the embeddings, to validate our findings and
to measure the interpretability. In Section we present the
results of our experiments and finally we conclude the paper
in Section [V]

II. RELATED WORK

In the word embedding literature, the problem of inter-
pretability has been approached via several different routes.
For learning sparse, interpretable word representations from
co-occurrence variant matrices, [22]] suggested algorithms
based on non-negative matrix factorization (NMF) and the
resulting representations are called non-negative sparse em-
beddings (NNSE). To address memory and scale issues of the
algorithms in [22], [23|] proposed an online method of learning
interpretable word embeddings. In both studies, interpretability
was evaluated using a word intrusion test introduced in [21]].
The word intrusion test is expensive to apply since it requires
manual evaluations by human observers separately for each
embedding dimension. As an alternative method to incorporate
human judgement, [24]] proposed joint non-negative sparse
embedding (JNNSE), where the aim is to combine text-based
similarity information among words with brain activity based
similarity information to improve interpretability. Yet, this ap-
proach still requires labor-intensive collection of neuroimaging
data from multiple subjects.

Instead of learning interpretable word representations di-
rectly from co-occurrence matrices, [25] and [26] proposed
to use sparse coding techniques on conventional dense word
embeddings to obtain sparse, higher dimensional and more
interpretable vector spaces. However, since the projection
vectors that are used for the transformation are learned from
the word embeddings in an unsupervised manner, they do not
have labels describing the corresponding semantic categories.
Moreover, these studies did not attempt to enlighten the dense
word embedding dimensions, rather they learned new high
dimensional sparse vectors that perform well on specific tests
such as word similarity and polysemy detection. In [26], in-
terpretability of the obtained vector space was evaluated using

the word intrusion test. An alternative approach was proposed
in [27], where interpretability was quantified by the degree
of clustering around embedding dimensions and orthogonal
transformations were examined to increase interpretability
while preserving the performance of the embedding. Note,
however, that it was shown in [27] that total interpretability of
an embedding is constant under any orthogonal transformation
and it can only be redistributed across the dimensions. With a
similar motivation to [27]], [28] proposed rotation algorithms
based on exploratory factor analysis (EFA) to preserve the
expressive performance of the original word embeddings while
improving their interpretability. In [28]], interpretability was
calculated using a distance ratio (DR) metric that is effectively
proportional to the metric used in [27]. Although interpretabil-
ity evaluations used in [27] and [28]] are free of human effort,
they do not necessarily reflect human interpretations since they
are directly calculated from the embeddings.

Taking a different perspective, a recent study, [29], at-
tempted to elucidate the semantic structure within NNSE
space by using categorized words from the HyperLex dataset
[30]. The interpretability levels of embedding dimensions
were quantified based on the average values of word vectors
within categories. However, HyperLex is constructed based
on a single type of semantic relation (hypernym) and average
number of words representing a category is significantly low
(= 2) making it challenging to conduct a comprehensive
analysis.

III. METHODS

To address the limitations of the approaches discussed
in Section in this study we introduce a new conceptual
category dataset. Based on this dataset, we propose statistical
methods to capture the hidden semantic concepts in word
embeddings and to measure the interpretability of the embed-
dings.

A. Dataset

Understanding the hidden semantic structure in dense word
embeddings and providing insights on interpretation of their
dimensions are the main objectives of this study. Since em-
beddings are formed via unsupervised learning on unannotated
large corpora, some conceptual relationships that humans
anticipate may be missed and some that humans do not
anticipate may be formed in the embedding space [31]]. Thus,
not all clusters obtained from a word embedding space will be
interpretable. Therefore, using the clusters in the dense embed-
ding space might not take us far towards interpretation. This
observation is also rooted in the need for human judgement
in evaluating interpretability.

To provide meaningful interpretations for embedding di-
mensions, we refer to the category theory [20] where concepts
with similar semantic properties are grouped under a common
category. As mentioned earlier, using clusters from the embed-
ding space as categories may not reflect human expectations
accurately, hence having a basis based on human judgements is
essential for evaluating interpretability. In that sense, semantic
categories as dictated by humans can be considered a gold



TABLE I
SUMMARY STATISTICS OF SEMCAT AND HYPERLEX

SEMCAT | HperLex
Number of Categories 110 1399
Number of Unique Words 6559 1752
Average Word Count per Category 91 2
Standard Deviation of Word Counts 56 3

standard for categorization tasks since they directly reflect
human expectations. Therefore, using supervised categories
can enable a proper investigation of the word embedding
dimensions. In addition, by comparing the human-categorized
semantic concepts with the unsupervised word embeddings,
one can acquire an understanding of what kind of concepts can
or cannot be captured by the current state-of-the-art embedding
algorithms.

In the literature, the concept of category is commonly used
to indicate super-subordinate (hyperonym-hyponym) relations
where words within a category are types or examples of
that category. For instance, the furniture category includes
words for furniture names such as bed or table. The HyperLex
category dataset [30], which was used in [29] to investigate
embedding dimensions, is constructed based on this type of
relation that is also the most frequently encoded relation
among sets of synonymous words in the WordNet database
[1]. However, there are many other types of semantic relations
such as meronymy (part-whole relations), antonymy (opposite
meaning words), synonymy (words having the same sense) and
cross-Part of Speech (POS) relations (i.e. lexical entailments).
Although WordNet provides representations for a subset of
these relations, there is no clear procedure for constructing
unified categories based on multiple different types of re-
lations. It remains unclear what should be considered as a
category, how many categories there should be, how narrow
or broad they should be, and which words they should contain.
Furthermore, humans can group words by inference, based on
various physical or numerical properties such as color, shape,
material, size or speed, increasing the number of possible
groups almost unboundedly. For instance, words that may
not be related according to classical hypernym or synonym
relations might still be grouped under a category due to shared
physical properties: sun, lemon and honey are similar in terms
of color; spaghetti, limousine and sky-scanner are considered
as tall; snail, tractor and tortoise are slow.

In sum, diverse types of semantic relationships or proper-
ties can be leveraged by humans for semantic interpretation.
Therefore, to investigate the semantic structure of the word
embedding space using categorized words, we need categories
that represent a broad variety of distinct concepts and distinct
types of relations. To the best of our knowledge, there is
no comprehensive word category dataset that captures the
many diverse types of relations mentioned above. What we
have found closest to the required dataset are the online
categorized word—list{] that were constructed for educational
purposes. There are a total of 168 categories on these word-

'www.enchantedlearning.com/wordlist/

TABLE I
10 SAMPLE WORDS FROM EACH OF THE 6 REPRESENTATIVE SEMCAT
CATEGORIES.

Science Sciences Art Car Cooking | Geography
atom astronomy abstract auto bake africa
cell botany artist car barbeque border

chemical economics brush convertible boil capital
data genetics composition hybrid dough cartography

element linguistics draw jeep grill continent
evolution neuroscience masterpiece limo juice earth
laboratory psychology photograph runabout marinate east
microscope taxonomy perspective rv oil 2ps

scientist thermodynamics sketch taxi roast river

theory zoology style van serve sea

lists. To build a word-category dataset suited for assessing the
semantic structure in word embeddings, we took these word-
lists as a foundational basis. We filtered out words that are not
semantically related but share a common nuisance property
such as their POS tagging (verbs, adverbs, adjectives etc.) or
being compound words. Several categories containing proper
words or word phrases such as the chinese new year and good
luck symbols categories, which we consider too specific, are
also removed from the dataset. Vocabulary is limited to the
most frequent 50,000 words, where frequencies are calculated
from English Wikipedia, and words that are not contained
in this vocabulary are removed from the dataset. We call
the resulting semantically grouped word dataset “SEMCATH’
(SEMantic CATegories). Summary statistics of SEMCAT and
HyperLex datasets are given in Table[[} 10 sample words from
each of 6 representative SEMCAT categories are given in Table

m

B. Semantic Decomposition

In this study, we use GloVe [9] as the source algorithm for
learning dense word vectors. The entire content of English
Wikipedia is utilized as the corpus. In the preprocessing step,
all non-alphabetic characters (punctuations, digits, etc.) are
removed from the corpus and all letters are converted to low-
ercase. Letters coming after apostrophes are taken as separate
words (she’ 11 becomes she 11). The resulting corpus is
input to the GloVe algorithm. Window size is set to 15, vector
length is chosen to be 300 and minimum occurrence count is
set to 20 for the words in the corpus. Default values are used
for the remaining parameters. The word embedding matrix, &,
is obtained from GloVe after limiting vocabulary to the most
frequent 50,000 words in the corpus (i.e. £ is 50,000x300).
The GloVe algorithm is again used for the second time on
the same corpus generating a second embedding space, £2,
to examine the effects of different initializations of the word
vectors prior to training.

To quantify the significance of word embedding dimensions
for a given semantic category, one should first understand
how a semantic concept can be captured by a dimension,
and then find a suitable metric to measure it. [29]] assumed
that a dimension represents a semantic category if the average
value of the category words for that dimension is above an

2github.com/avaapm/SEMCATdataset2018



empirical threshold, and therefore took that average value as
the representational power of the dimension for the category.
Although this approach may be convenient for NNSE, directly
using the average values of category words is not suitable for
well-known dense word embeddings due to several reasons.
First, in dense embeddings it is possible to encode in both
positive and negative directions of the dimensions making a
single threshold insufficient. In addition, different embedding
dimensions may have different statistical characteristics. For
instance, average value of the words from the jobs category
of SEMCAT is around 0.38 and 0.44 in 221°* and 57"
dimensions of & respectively; and the average values across
all vocabulary are around 0.37 and -0.05 respectively for
the two dimensions. Therefore, the average value of 0.38
for the jobs category may not represent any encoding in the
221" dimension since it is very close to the average of any
random set of words in that dimension. In contrast, an average
of similar value 0.44 for the jobs category may be highly
significant for the 57*" dimension. Note that focusing solely on
average values might be insufficient to measure the encoding
strength of a dimension for a semantic category. For instance,
words from the car category have an average of -0.08 that
is close to the average across all vocabulary, -0.04, for the
133tk embedding dimension. However, standard deviation of
the words within the car category is 0.15 which is significantly
lower than the standard deviation of all vocabulary, 0.35, for
this particular dimension. In other words, although average
of words from the car category is very close to the overall
mean, category words are more tightly grouped compared to
other vocabulary words in the 133" embedding dimension,
potentially implying significant encoding.

From a statistical perspective, the question of “How strong
a particular concept is encoded in an embedding dimension?”
can be interpreted as “How much information can be extracted
from a word embedding dimension regarding a particular
concept?”. If the words representing a concept (i.e. words in
a SEMCAT category) are sampled from the same distribution
with all vocabulary words, then the answer would be zero
since the category would be statistically equivalent to a random
selection of words. For dimension ¢ and category j, if P; ;
denotes the distribution from which words of that category
are sampled and Q; ; denotes the distribution from which
all other vocabulary words are sampled, then the distance
between distributions P; ; and Q; ; will be proportional to the
information that can be extracted from dimension ¢ regarding
category j. Based on this argument, Bhattacharya distance
[32] with normal distribution assumption is a suitable metric,
which is given in (I), to quantify the level of encoding in
the word embedding dimensions. Normality of the embedding
dimensions are tested using one-sample Kolmogorov-Smirnov
test (KS test, Bonferroni corrected for multiple comparisons).

1 1 (o2 ol
Wr(i,j) = ; In <4 (UZ Lot 2))
Qi j Pij

2
+ 1 (:u’Pq',j - :ulh'.j) (1)
4 02 +o2

Pij i,j

In (1), Wg is a 300 x 110 Bhattacharya distance matrix,
which can also be considered as a category weight matrix, ¢
is the dimension index (¢ € {1,2,...,300}), j is the category
index (j € {1,2,...,110}). p;; is the vector of the 4*"
dimension of each word in j*" category and g;,; is the vector
of the i*" dimension of all other vocabulary words (p; ; is of
length n; and g; ; is of length (50000 — n;) where n; is the
number of words in the j** category). 1 and o are the mean
and the standard deviation operations, respectively. Values in
Whg can range from 0 (if p; ; and ¢; ; have the same means
and variances) to co. In general, a better separation of category
words from remaining vocabulary words in a dimension results
in larger WWp elements for the corresponding dimension.

Based on SEMCAT categories, for the learned embedding
matrices £ and £2, the category weight matrices Vg and
W#%) are calculated using Bhattacharya distance metric (T).

C. Interpretable Word Vector Generation

If the weights in Wp truly correspond to the categorical de-
composition of the semantic concepts in the dense embedding
space, then Wp can also be considered as a transformation
matrix that can be used to map word embeddings to a
semantic space where each dimension is a semantic category.
However, it would be erroneous to directly multiply the word
embeddings with category weights. The following steps should
be performed in order to map word embeddings to a semantic
space where dimensions are interpretable:

1) To make word embeddings compatible in scale with
the category weights, word embedding dimensions are
standardized (€£g) such that each dimension has zero
mean and unit variance since category weights have been
calculated based on the deviations from the general mean
(second term in (T)) and standard deviations (first term
in (I)).

2) Category weights are normalized across dimensions such
that each category has a total weight of 1 Wy p). This is
necessary since some columns of Wp dominate others
in terms of representation strength (will be discussed
in Section in more detail). This inequality across
semantic categories can cause an undesired bias towards
categories with larger total weights in the new vector
space. ¢; normalization of the category weights across
dimensions is performed to prevent bias.

3) Word embedding dimensions can encode semantic cat-
egories in both positive and negative directions (1, ; —
Hq; ; can be positive or negative) that contribute equally
to the Bhattacharya distance. However, since encoding
directions are important for the mapping of the word
embeddings, Wy is replaced with its signed version
Whiss (f iy, ; — g, ; is negative, then Wisp(i,7) =
—Whnp(i,j), otherwise Wnsp(i,j) = Wnp(4,]))
where negative weights correspond to encoding in the
negative direction.

Then, interpretable semantic vectors (Zs0000x110) are ob-

tained by multiplying £s with Wxgp.

One can reasonably suggest to alternatively use the centers
of the vectors of the category words as the weights for the
corresponding category as given in (2).
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Fig. 1.

Flow chart for the generation of the interpretable embedding spaces Z and Z*. First, word vectors are obtained using the GloVe algorithm on

Wikipedia corpus. To obtain Z*, weight matrix W¢ is generated by calculating the means of the words from each category for each embedding dimension
and then W is multiplied by the embedding matrix (see Section @ To obtain Z, weight matrix WWp is generated by calculating the Bhattacharya distance
between category words and remaining vocabulary for each category and dimension. Then, Wpg is normalized (see section@item 2), sign corrected (see
section [[l-C] item 3) and finally multiplied with standardized word embedding (€, see Section [[lI-C|item 1)

WC(%]) = :U/pi,j (2)

A second interpretable embedding space, Z*, is then ob-
tained by simply projecting the word vectors in £ to the
category centers. (3) and (4) show the calculation of Z and
T* respectively. Figure [T shows the procedure for generation
of interpretable embedding spaces Z and Z*.

Z=EsWnsa 3)
5 =EWe 4)

D. Validation

7 and Z* are further investigated via qualitative and quanti-
tative approaches in order to confirm that Wpg is a reasonable
semantic decomposition of the dense word embedding dimen-
sions, that 7 is indeed an interpretable semantic space and that
our proposed method produces better representations for the
categories than their center vectors.

If Wp and W represent the semantic distribution of the
word embedding dimensions, then columns of Z and Z* should
correspond to semantic categories. Therefore, each word vec-
tor in Z and Z* should represent the semantic decomposition
of the respective word in terms of the SEMCAT categories.
To test this prediction, word vectors from the two semantic
spaces (Z and Z*) are qualitatively investigated.

To compare Z and Z*, we also define a quantitative test
that aims to measure how well the category weights represent
the corresponding categories. Since weights are calculated
directly using word vectors, it is natural to expect that words
should have high values in dimensions that correspond to
the categories they belong to. However, using words that are
included in the categories for investigating the performance of
the calculated weights is similar to using training accuracy
to evaluate model performance in machine learning. Using
validation accuracy is more adequate to see how well the
model generalizes to new, unseen data that, in our case,
correspond to words that do not belong to any category.

During validation, we randomly select 60% of the words
for training and use the remaining 40% for testing for each
category. From the training words we obtain the weight matrix
Wpg using Bhattacharya distance and the weight matrix W¢
using the category centers. We select the largest & weights
(k € {5,7,10,15,25,50,100,200,300}) for each category
(i.e. largest k elements for each column of Wg and W) and
replace the other weights with O that results in sparse category
weight matrices V3 and W¢,). Then projecting dense word
vectors onto the sparse weights from W3 and W¢, we obtain
interpretable semantic spaces 7, and Z;;. Afterwards, for each
category, we calculate the percentages of the unseen test words
that are among the top n, 3n and 5n words (excluding the
training words) in their corresponding dimensions in the new
spaces, where n is the number of test words that varies across
categories. We calculate the final accuracy as the weighted
average of the accuracies across the dimensions in the new
spaces, where the weighting is proportional to the number of
test words within the categories. We repeat the same procedure
for 10 independent random selections of the training words.

E. Measuring Interpretability

In addition to investigating the semantic distribution in the
embedding space, a word category dataset can be also used to
quantify the interpretability of the word embeddings. In several
studies, [21]—{23], interpretability is evaluated using the word
intrusion test. In the word intrusion test, for each embedding
dimension, a word set is generated including the top 5 words in
the top ranks and a noisy word (intruder) in the bottom ranks of
that dimension. The intruder is selected such that it is in the top
ranks of a separate dimension. Then, human editors are asked
to determine the intruder word within the generated set. The
editors’ performances are used to quantify the interpretability
of the embedding. Although evaluating interpretability based
on human judgements is an effective approach, word intrusion
is an expensive method since it requires human effort for each
evaluation. Furthermore, the word intrusion test does not quan-
tify the interpretability levels of the embedding dimensions,
instead it yields a binary decision as to whether a dimension is
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Fig. 2. Semantic category weights (WWp 300x110) for 110 categories and
300 embedding dimensions obtained using Bhattacharya distance. Weights
vary between O (represented by black) and 0.63 (represented by white). It
can be noticed that some dimensions represent larger number of categories
than others do and also some categories are represented strongly by more
dimensions than others.

interpretable or not. However, using continuous values is more
adequate than making binary evaluations since interpretability
levels may vary gradually across dimensions.

We propose a framework that addresses both of these issues
by providing automated, continuous valued evaluations of
interpretability while keeping the basis of the evaluations as
human judgements. The basic idea behind our framework is
that humans interpret dimensions by trying to group the most
distinctive words in the dimensions (i.e. top or bottom rank

6

words), an idea also leveraged by the word intrusion test.
Based on this key idea, it can be noted that if a dataset
represents all the possible groups humans can form, instead of
relying on human evaluations, one can simply check whether
the distinctive words of the embedding dimensions are present
together in any of these groups. As discussed earlier, the num-
ber of groups humans can form is theoretically unbounded,
therefore it is not possible to compile an all-comprehensive
dataset for all potential groups. However, we claim that a
dataset with a sufficiently large number of categories can still
provide a good approximation to human judgements. Based
on this argument, we propose a simple method to quantify the
interpretability of the embedding dimensions.

We define two interpretability scores for an embedding
dimension-category pair as:

1S, NV x ny)|
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where [ S;,r j 1s the interpretability score for the positive
direction and [ S, ; 1s the interpretability score for the negative
direction for the i*" dimension (i € {1,2,..., D} where D
is the dimensionality of the embedding) and ;! category
(j € {1,2,..., K} where K is the number of categories in
the dataset). S; is the set representing the words in the j*"
category, n; is the number of the words in the 4t category
and V;" (XA x n;), V;”(X x n;) refer to the distinctive words
located at the top and bottom ranks of the i*" embedding
dimension, respectively. A x n; is the number of words taken
from the upper and bottom ranks where A is the parameter
determining how strict the interpretability definition is. The
smallest value for A is 1 that corresponds to the most strict
definition and larger A values relax the definition by increasing

the range for selected category words. N is the intersection
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Fig. 3. Total representation strengths of 110 semantic categories from SEM-
CAT. Bhattacharya distance scores are summed across dimensions and then
sorted. Red horizontal line represents the baseline strength level obtained for a
category composed of 91 randomly selected words from the vocabulary (where
91 is the average word count across categories in SEMCAT). The metals
category has the strongest total representation among SEMCAT categories due
to relatively few and well clustered words it contains while the pirate category
has the lowest total representation due to widespread words it contains.
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Fig. 4. Categorical decompositions of the 2%, 6t* and 45" word embedding dimensions are given in the left column. A dense word embedding dimension
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(middle row). Dimensional decompositions of the math, animal and tools categories are shown in the right column. Semantic information about a category
may be encoded in a few word embedding dimensions (top row) or it can be distributed across many of the dimensions (bottom row).

operator between category words and top and bottom ranks
words, |.| is the cardinality operator (number of elements) for
the intersecting set.

We take the maximum of scores in the positive and negative
directions as the overall interpretability score for a category
(IS; ;). The interpretability score of a dimension is then taken
as the maximum of individual category interpretability scores
across that dimension (/.5;). Finally, we calculate the overall
interpretability score of the embedding (/5) as the average of
the dimension interpretability scores:

ISi’j = max(IS+

2,77

ISl = maXISZ-}j
J

1 D
IS:BEISZ-

We test our method on the GloVe embedding space, on
the semantic spaces Z and Z*, and on a random space where
word vectors are generated by randomly sampling from a zero
mean, unit variance normal distribution. Interpretability scores
for the random space are taken as our baseline. We measure
the interpretability scores as A values are varied from 1 (strict
interpretability) to 10 (relaxed interpretability).

Our interpretability measurements are based on our pro-
posed dataset SEMCAT, which was designed to be a compre-
hensive dataset that contains a diverse set of word categories.
Yet, it is possible that the precise interpretability scores that are
measured here are biased by the dataset used. In general, two
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main properties of the dataset can affect the results: category
selection and within-category word selection. To examine the
effects of these properties on interpretability evaluations, we
create alternative datasets by varying both category selection
and word selection for SEMCAT. Since SEMCAT is compre-
hensive in terms of the words it contains for the categories,
these datasets are created by subsampling the categories and
words included in SEMCAT. Since random sampling of words
within a category may perturb the capacity of the dataset in
reflecting human judgement, we subsample 1% of the words
that are closest to category centers within each category, where
r € {40,60,80,100}. To examine the importance of number
of categories in the dataset we randomly select m categories
from SEMCAT where m € {30, 50,70,90,110}. We repeat
the selection 10 times independently for each m.

IV. RESULTS
A. Semantic Decomposition

The KS test for normality reveals that 255 dimensions of £
are normally distributed (p > 0.05). The average test statistic
for these 255 dimensions is 0.0064+0.0016 (mean =+ standard
deviation). While the normality hypothesis was rejected for
the remaining 45 dimensions, a relatively small test statistic
of 0.0156+0.0168 is measured, indicating that the distribution
of these dimensions is approximately normal.

The semantic category weights calculated using the method
introduced in Section [[II-B| is displayed in Figure 2} A close
examination of the distribution of category weights indicates
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Fig. 5. Semantic decompositions of the words window, bus, soldier and
article for 20 highest scoring SEMCAT categories obtained from vectors in
T. Red bars indicate the categories that contain the word, blue bars indicate
the categories that do not contain the word.

that the representation of semantic concepts are broadly dis-
tributed across many dimensions of the GloVe embedding
space. This suggests that the raw space output by the GloVe
algorithm has poor interpretability.

In addition, it can be observed that the total representa-
tion strength summed across dimensions varies significantly
across categories, some columns in the category weight ma-
trix contain much higher values than others. In fact, total
representation strength of a category greatly depends on its
word distribution. If a particular category reflects a highly
specific semantic concept with relatively few words such as
the metals category, category words tend to be well clustered
in the embedding space. This tight grouping of category words
results in large Bhattacharya distances in most dimensions
indicating stronger representation of the category. On the
other hand, if words from a semantic category are weakly
related, it is more difficult for the word embedding to encode
their relations. In this case, word vectors are relatively more
widespread in the embedding space, and this leads to smaller
Bhattacharya distances indicating that the semantic category
does not have a strong representation across embedding dimen-
sions. The total representation strengths of the 110 semantic
categories in SEMCAT are shown in Figure [3] along with the
baseline strength level obtained for a category composed of 91
randomly selected words where 91 is the average word count
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Fig. 6. Categorical decompositions of the words window, bus, soldier and
article for 20 highest scoring categories obtained from vectors in Z*. Red bars
indicate the categories that contain the word, blue bars indicate the categories
that do not contain the word.

across categories in SEMCAT. The metals category has the
strongest total representation among SEMCAT categories due
to relatively few and well clustered words it contains, whereas
the pirate category has the lowest total representation due to
widespread words it contains.

To closely inspect the semantic structure of dimensions
and categories, let us investigate the decompositions of three
sample dimensions and three specific semantic categories
(math, animal and tools). The left column of Figure E| dis-
plays the categorical decomposition of the 2"?, 6t and 45'"
dimensions of the word embedding. While the 2"¢ dimension
selectively represents a particular category (sciences), the 45"
dimension focuses on 3 different categories (housing, rooms
and sciences) and the 6! dimension has a distributed and
relatively uniform representation of many different categories.
These distinct distributional properties can also be observed
in terms of categories as shown in the right column of Figure
@] While only few dimensions are dominant for representing
the math category, semantic encodings of the tools and animals
categories are distributed across many embedding dimensions.

Note that these results are valid regardless of the random
initialization of the GloVe algorithm while learning the embed-
ding space. For the weights calculated for our second GloVe
embedding space £2, where the only difference between &
and £? is the independent random initializations of the word
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Fig. 7. Category word retrieval performances for top n, 3n and 5n words where n is the number of test words varying across categories. Category weights
obtained using Bhattacharya distance represent categories better than the center of the category words. Using only 25 largest weights from Wp for each
category (k = 25) gives better performance than using category centers with any k& (shown with dashed line).

vectors before training, we observe nearly identical decompo-
sitions for the categories ignoring the order of the dimensions
(similar number of peaks and similar total representation
strength; not shown).

B. Validation

A representative investigation of the semantic space Z is
presented in Figure [5] where semantic decompositions of 4
different words, window, bus, soldier and article, are dis-
played using 20 dimensions of Z with largest values for each
word. These words are expected to have high values in the
dimensions that encode the categories to which they belong.
However, we can clearly see from Figure [3] that additional
categories such as jobs, people, pirate and weapons that are
semantically related to soldier but that do not contain the word
also have high values. Similar observations can be made for
window, bus, and article supporting the conclusion that the
category weight spread broadly to many non-category words.

Figure [0] presents the semantic decompositions of the words
window, bus, soldier and article obtained form Z* that is cal-
culated using the category centers. Similar to the distributions
obtained in Z, words have high values for semantically-related
categories even when these categories do not contain the
words. In contrast to Z, however, scores for words are much
more uniformly distributed across categories, implying that
this alternative approach is less discriminative for categories
than the proposed method.

To quantitatively compare Z and Z*, category word retrieval
test is applied and the results are presented in Figure
As depicted in Figure the weights calculated using our
method (Wp) significantly outperform the weights from the
category centers (JV¢). It can be noticed that, using only 25
largest weights from Wp for each category (k = 25) yields
higher accuracy in word retrieval compared to the alternative
We with any k. This result confirms the prediction that the
vectors that we obtain for each category (i.e. columns of Wpg)
distinguish categories better than their average vectors (i.e.
columns of We).

C. Measuring Interpretability

Figure [§] displays the interpretability scores of the GloVe
embedding, Z, Z* and the random embedding for varying A

values. A can be considered as a design parameter adjusted
according to the interpretability definition. Increasing A relaxes
the interpretability definition by allowing category words to
be distributed on a wider range around the top ranks of a
dimension. We propose that A = 5 is an adequate choice that
yields a similar evaluation to measuring the top-5 error in
category word retrieval tests. As clearly depicted, semantic
space 7 is significantly more interpretable than the GloVe
embedding as justified in Section We can also see that
interpretability score of the GloVe embedding is close to the
random embedding representing the baseline interpretability
level.

Interpretability scores for datasets constructed by sub-
sampling SEMCAT are given in Table for the GloVe, Z,
T* and random embedding spaces for A = 5. Interpretability
scores for all embeddings increase as the number of categories
in the dataset increase (30, 50, 70, 90, 110) for each category
coverage (40%, 60%, 80%, 100%). This is expected since
increasing the number of categories corresponds to taking into
account human interpretations more substantially during eval-
uation. One can further argue that true interpretability scores
of the embeddings (i.e. scores from an all-comprehensive
dataset) should be even larger than those presented in Table
Howeyver, it can also be noticed that the increase in the
interpretability scores of the GloVe and random embedding
spaces gets smaller for larger number of categories. Thus,
there is diminishing returns to increasing number of categories
in terms of interpretability. Another important observation is
that the interpretability scores of Z and Z* are more sensitive
to number of categories in the dataset than the GloVe or
random embeddings. This can be attributed to the fact that
T and 7% comprise dimensions that correspond to SEMCAT
categories, and that inclusion or exclusion of these categories
more directly affects interpretability.

In contrast to the category coverage, the effects of within-
category word coverage on interpretability scores can be
more complex. Starting with few words within each cate-
gory, increasing the number of words is expected to more
uniformly sample from the word distribution, more accurately
reflect the semantic relations within each category and thereby
enhance interpretability scores. However, having categories
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Fig. 8. Interpretability scores for GloVe, Z, Z* and random embeddings
for varying A values where X is the parameter determining how strict the
interpretability definition is (A = 1 is the most strict definition, A = 10 is
a relaxed definition). Semantic spaces Z and Z* are significantly more inter-
pretable than GloVe as expected. Z outperforms Z* suggesting that weights
calculated with our proposed method more distinctively represent categories
as opposed weights calculated as the category centers. Interpretability scores
of Glove are close to the baseline (Random) implying that the dense word
embedding has poor interpretability.

over-abundant in words might inevitably weaken semantic
correlations among them, reducing the discriminability of the
categories and interpretability of the embedding. Table
shows that, interestingly, changing the category coverage has
different effects on the interpretability scores of different types
of embeddings. As category word coverage increases, inter-
pretability scores for random embedding gradually decrease
while they monotonically increase for the GloVe embedding.
For semantic spaces Z and Z*, interpretability scores increase
as the category coverage increases up to 80% of that of SEM-
CAT, then the scores decrease. This may be a result of having
too comprehensive categories as argued earlier, implying that
categories with coverage of around 80% of SEMCAT are better
suited for measuring interpretability. However, it should be
noted that the change in the interpretability scores for different
word coverages might be effected by non-ideal subsampling of
category words. Although our word sampling method, based
on words’ distances to category centers, is expected to generate
categories that are represented better compared to random
sampling of category words, category representations might
be suboptimal compared to human designed categories.

V. DISCUSSION AND CONCLUSION

In this paper, we propose a statistical method to uncover
the latent semantic structure in dense word embeddings. Based
on a new dataset (SEMCAT) we introduce that contains more
than 6,500 words semantically grouped under 110 categories,
we provide a semantic decomposition of the word embedding
dimensions and verify our findings using qualitative and
quantitative tests. We also introduce a method to quantify the
interpretability of word embeddings based on SEMCAT that

TABLE III
AVERAGE INTERPRETABILITY SCORES (%) FOR A = 5. RESULTS ARE
AVERAGED ACROSS 10 INDEPENDENT SELECTIONS OF CATEGORIES FOR
EACH CATEGORY COVERAGE.

Number of Categories

30 50 70 90 | 110

Random | 49 | 55 | 60 | 64 | 67

40 | Glove 56 | 68 | 77 | 83 | 89

z* 259 | 33.6 | 402 | 448 | 49.1
—~ T 342 | 452 | 555 | 629 | 69.2
) Random | 45 | 49 | 53 | 56 | 58
% | ¢ | Glove 67 | 78 | 90 | 9.7 | 102
g z* 27.6 | 358 | 424 | 477 | 51.6
z z 36.1 | 484 | 59.0 | 67.0 | 728
) Random 4.2 4.6 49 5.1 53
£ | go | Glove 76 | 89 | 97 | 104 | 11.0
50 z* 302 | 31.1 | 432 | 48.1 | 52.0
& T 39.8 | 50.7 | 60.1 | 67.4 | 732
Random 4.3 4.6 4.8 5.0 5.1
100 | Glove 84 | 98 | 108 | 114 | 12,0

z* 303 | 377 | 434 | 48.1 | 515

T 389 | 499 | 59.0 | 657 | 713

can replace the word intrusion test that relies heavily on human
effort while keeping the basis of the interpretations as human
judgements.

Our proposed method to investigate the hidden semantic
structure in the embedding space is based on calculation of
category weights using a Bhattacharya distance metric. This
metric implicitly assumes that the distribution of words within
each embedding dimension is normal. Our statistical assess-
ments indicate that the GloVe embedding space considered
here closely follows this assumption. In applications where
the embedding method yields distributions that significantly
deviate from a normal distribution, nonparametric distribution
metrics such as Spearman’s correlation could be leveraged as
an alternative. The resulting category weights can seamlessly
be input to the remaining components of our framework.

Since our proposed framework for measuring interpretabil-
ity depends solely on the selection of the category words
dataset, it can be used to directly compare different word
embedding methods (e.g., GloVe, word2vec, fasttext) in terms
of the interpretability of the resulting embedding spaces. A
straightforward way to do this is to compare the category
weights calculated for embedding dimensions across various
embedding spaces. Note, however, that the Bhattacharya dis-
tance metric for measuring the category weights does not
follow a linear scale and is unbounded. For instance, consider
a pair of embeddings with category weights 10 and 30 versus
another pair with weights 30 and 50. For both pairs, the latter
embedding can be deemed more interpretable than the former.
Yet, due to the gross nonlinearity of the distance metric, it
is challenging to infer whether a 20-unit improvement in the
category weights corresponds to similar levels of improvement
in interpretability across the two pairs. To alleviate these
issues, here we propose an improved method that assigns
normalized interpretability scores with an upper bound of
100%. This method facilitates interpretability assessments and
comparisons among separate embedding spaces.

The results reported in this study for semantic analysis
and interpretability assessment of embeddings are based on
SEMCAT. SEMCAT contains 110 different semantic cate-
gories where average number of words per category is 91



rendering SEMCAT categories quite comprehensive. Although
the HyperLex dataset contains a relatively larger number of
categories (1399), the average number of words per category is
only 2, insufficient to accurately represent semantic categories.
Furthermore, while HyperLex categories are constructed based
on a single type of relation among words (hyperonym-
hyponym), SEMCAT is significantly more comprehensive
since many categories include words that are grouped based
on diverse types of relationships that go beyond hypernym-
hyponym relations. Meanwhile, the relatively smaller number
of categories in SEMCAT is not considered a strong limita-
tion, as our analyses indicate that the interpretability levels
exhibit diminishing returns when the number of categories
in the dataset are increased and SEMCAT is readily yielding
near optimal performance. That said, extended datasets with
improved coverage and expert labeling by multiple observers
would further improve the reliability of the proposed approach.
To do this, a synergistic merge with existing lexical databases
such as WordNet might prove useful.

Methods for learning dense word embeddings remain an
active area of NLP research. The framework proposed in
this study enables quantitative assessments on the intrinsic
semantic structure and interpretability of word embeddings.
Providing performance improvements in other common NLP
tasks might be a future study. Therefore, the proposed frame-
work can be a valuable tool in guiding future research on
obtaining interpretable yet effective embedding spaces for
many NLP tasks that critically rely on semantic information.
For instance, performance evaluation of more interpretable
word embeddings on higher level NLP tasks (i.e. sentiment
analysis, named entity recognition, question answering) and
the relation between interpretability and NLP performance can
be worthwhile.
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