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Abstract

We investigate a structured sparse spectral transform method for voice conversion (VC) to perform 

frequency warping and spectral shaping simultaneously on high-dimensional (D) STRAIGHT 

spectra. Learning a large transform matrix for high-D data often results in an overfit matrix with 

low sparsity, which leads to muffled speech in VC. We address this problem by using the 

frequency-warping characteristic of a source–target speaker pair to define a region of support 

(ROS) in a transform matrix, and further optimize it by nonnegative matrix factorization (NMF) to 

obtain structured sparse transform. We also investigate structural measures of spectral and 

temporal covariance and variance at different scales for assessing VC speech quality. Our 

experiments on ARCTIC dataset of 12 speaker pairs show that embedding the ROS in spectral 

transforms offers flexibility in tradeoffs between spectral distortion and structure preservation, and 

the structural measures provide quantitatively reasonable results on converted speech. Our 

subjective listening tests show that the proposed VC method achieves a mean opinion score of 

“very good” relative to natural speech, and in comparison with three other VC methods, it is the 

most preferred one in naturalness and in voice similarity to target speakers.
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I. Introduction

VOICE conversion (VC) has been an active topic of research with many potential 

applications. In voice conversion, the spectral and prosodic features of a source speaker’s 
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speech are modified to make the resynthesized speech sound like that from a target speaker. 

As spectral features carry significant personal voice characteristics, spectral conversion has 

been the focus of study by many researchers. Typical spectral conversion approaches include 

spectral mapping based on Gaussian mixture model (GMM) and hidden Markov models 

(HMM) [1]–[4], vector quantization [5], linear or locally linear spectral transformation [6], 

[7] and frequency warping [8], [9], exemplar-based sparse representations using NMF [10]–

[12] with extensions to unit selection [13], [14], and nonlinear spectral transformation 

through neural networks [15]–[18]. In prosody conversion, a pitch contour is often linearly 

transformed so that the mean and standard deviation of the converted log F0 match that of 

the target speaker [1]. Time scale and pitch scale modifications for VC are also suggested in 

PSOLA analysis and synthesis [19]. Although much progress has been made over the years, 

the 2016 Voice Conversion Challenge [20], [21] has revealed that the speech quality of 

converted voices is still below that of natural speech by a large margin, and objective 

measures that closely correlate with human perception need to be developed to facilitate VC 

research.

One well recognized shortcoming in voice conversion is that the converted speech often 

sounds muffled. This is attributable to excessive smoothing on speech spectral and temporal 

structures when minimizing mean spectral distortion in VC. Several efforts have aimed to 

address this issue. The approach of global variance directly compensates for the reduced 

spectral contrast in VC by enhancing temporal variance in each feature dimension. 

Maximum-likelihood estimation of spectral parameter trajectories was employed to increase 

the global variance of converted speech [3], and constrained optimization was formulated to 

match the global variance of converted and target speech while minimizing mean spectral 

distortion [22]. The approach of frequency warping attempts to keep the spectral details of 

source speech while warping its frequency axis to match that of target speech. Based on low-

D line-spectral-pair (LSP) GMM, piecewise linear frequency-warping functions were 

derived to match the formants of source and target speech [8] or to maximize spectral 

segment correlations of source and target speech [23]. Based on high-D STRAIGHT spectra, 

dynamic frequency warping was performed directly [9] or combined with exemplar-based 

sparse representation [24]. These methods of frequency warping all required a follow-up 

step of spectral energy correction, referred to as amplitude scaling or residue compensation. 

The approach of sparse learning attempts to discover structure through regularization, as 

commonly practiced in machine learning for high-D data, for example, sparse principal 

component analysis [25]. In exemplar–based voice conversion, parameter optimization was 

also regularized by a L-1 constraint [10]–[12].

Although it is desirable to assess speech quality by human listeners, subjective listening tests 

are time consuming and subject to variability due to listener experience and compliance. 

Meanwhile, current objective measures for VC put emphasis on spectral distortion but 

overlook the loss of spectral-temporal structure due to over smoothing. As such, the 

outcomes often do not correlate well with subjective judgement of speech quality, which 

becomes a barrier to VC research. In image processing, the traditional mean squared error 

(MSE) measure also does not correlate well with human perceived image quality, making 

automatic assessment of algorithms such as compression and enhancement a challenging 

task. The structural-similarity-based objective measure [26] that is focused on structural 
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degradation instead of MSE has been shown to correlate much better with human visual 

perception and has gained wide spread adoption. In speech enhancement and source 

separation, predicting the intelligibility of noisy and enhanced speech is an important issue. 

Several types of subband covariance measures (normalized by variance) have been proposed 

for this purpose [27], and the method STOI that computes subband correlation coefficients 

over a temporal integration interval of 384 ms has been shown successful [28].

In the current work, we investigate novel methods of spectral conversion and objective 

quality assessment to address the above issues in voice conversion. We propose to use 

structured sparse transforms for simultaneous frequency warping and spectral shaping on 

high-D STRAIGHT spectra. Converting high-D spectra directly preserves spectral details 

better than converting low-D spectral features, and accurate spectral envelop representation 

is important to speech timbre perception [29]. However, learning a large transform matrix 

for high-D spectra generally results in overfitting. As an overfit transform lacks the physical 

structure or sparsity underlying the conversion problem, irrelevant source spectral 

components may mix into a target spectral component to produce muffled speech in VC. In 

our approach, we reinforce the physical structure or sparsity property of spectral transforms 

by using source-target frequency-warping constraints to form region-of-support (ROS) in 

transform matrices and optimize the matrices by nonnegative matrix factorization (NMF) 

[30], making the elements within ROS fine tuned for spectral conversion and the elements 

outside ROS fixed as zeros, which is difficult to achieve by L-1 alone. To emphasize 

structural similarity between converted and target speech, we measure local and global 

spectral and temporal covariance; to emphasize structural contrasts in converted speech, we 

measure local and global spectral and temporal variances. The proposed methods are 

evaluated on ARCTIC dataset [31] with 12 speaker pairs, by using spectral distortion and the 

proposed structural measures, and by subjective listening tests on speech quality, voice 

similarity to target speakers, as well as naturalness.

The rest of this paper is organized as follows. In Section II, the proposed spectral transform 

method using different ROS structures is described. In Section III, the spectral and temporal 

structural measures are defined. In Section IV, experiments and results are detailed. In 

Section V, conclusions are drawn.

II. Structured Sparse Spectral Conversion

The task of converting a source magnitude spectrum x = [x1 ⋯ xd]T to a target magnitude 

spectrum y = [y1 ⋯ yd]T can be implemented by y = Wx, with W = [wi,j]d×d the transform 

matrix. If W is adequately sparse, then the transform may be interpreted as performing 

frequency warping and spectral shaping simultaneously, i.e.,

yi = ∑
j:φα( j) = i

wφα
( j), jx j

(1)

where φα (.) is the function that warps the j-th frequency of the source to the i-th frequency 

of the target, and wφα (j), j scales the contribution of xj to yi.
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Given a set of source-target spectral pairs, W is commonly estimated by minimizing an 

average distortion between the target and the transformed spectra subject to an L-1 

constraint. On the other hand, for magnitude spectra, a sparsity constraint in the form of a 

region of support (ROS) can be directly specified for W, where elements of W outside the 

ROS are all fixed to zeros. This direct embedding of a ROS in W is convenient when using 

the multiplicative parameter update algorithm (MPUA) of NMF [28]. In the iterative 

estimation procedure, MPUA keeps the ROS of the estimated W within the initialized ROS. 

Exploiting this property, we use source-target speakers’ frequency warping paths to form 

different ROS’s and obtain a family of spectral transforms to tradeoff spectral distortion and 

structure preservation.

A. Spectral Transform Estimation

Given parallel training speech of a pair of source-target speakers, dynamic time warping 

(DTW) is applied to generate aligned magnitude spectral sequences:

A = [a1⋯aK]
B = [b1⋯bK],

where ai ∈ Rd and bi ∈ Rd, i = 1,…, K, are the aligned spectral pairs of the source and target, 

respectively. In order to reduce spectral dynamic range for NMF, a cubic root compression 

(x1/3) is applied to spectral components prior to spectral conversion, and the converted 

spectral components are decompressed prior to waveform synthesis, similar to the approach 

of [10].

Using K-L divergence 𝒟KL( ⋅ ‖ ⋅ ) [30] with a L-1 regularization, the cost function of 

approximating B by WA becomes:

J = 𝒟KL(B ∣ ∣ WA) + λ‖W‖1 (2)

The MPUA-based iterative solution for W [30] is

W W ⊗
B

WA AT

1d × KAT + λ1d × d
(3)

where “⊗” and “–” stand for element-wise multiplication and division, respectively, and 

1d×K and 1d×d are all-ones matrices (elements all being 1’s). It is easy to see that the 

element-wise multiplication ensures the zeros in W(r) of the r-th iteration to stay as zeros in 

W(r+1) of the (r+1)-th iteration. Therefore a ROS can be initialized in W(0) and be inherited 

in the converged W.

In Fig. 1(a), operations of the proposed spectral transform method at the training and 

conversion stages are illustrated, and for comparison, in Fig. 1(b) operations of a generic 

NMF-based exemplar approach are illustrated. In (a), at the training stage the parallel 

training spectral matrices DA and DB are used to learn a transform matrix W, and at the 
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conversion stage, W is directly multiplied with the source spectral matrix X to generate the 

converted spectral matrix Y. In (b), during training the aligned parallel training data DA and 

DB are produced as over-complete dictionaries, and during conversion NMF is first 

performed on the source spectral matrix X to derive an activation matrix H by using the 

source dictionary DA, and H is next transferred to the target dictionary DB to produce the 

converted spectral matrix Y. The activation H can also be estimated with the K-L criterion 

[10], [11]. It is easy to see that at the conversion stage, the transform approach has a much 

lower complexity than the exemplar approach, as the latter requires NMF for each source 

utterance, while the former only requires a matrix multiplication.

The method described in Fig. 1(a) is further integrated with GMM to obtain data-dependent 

probabilistic transforms. To do so, mel-frequency cepstral coefficients (MFCC) features of 

source training speech are analyzed with the frame length and shift identical to those used in 

STRAIGHT spectral analysis. A size-M GMM is estimated from the MFCC features by the 

EM algorithm, and the source MFCC vectors are partitioned into M clusters based on the 

maximum posterior probability rule [32]. The clustering structure is transferred to the 

aligned source-target magnitude spectral matrices A and B to yield M pairs of matrices 

{(Am, Bm), m = 1,…, M} for estimating mixture-specific transforms Wm, m = 1,…, M. 

During conversion, the source MFCC features are used to compute the posterior 

probabilities γm,t for each model component m and frame t, and the source magnitude 

spectral vectors xt are transformed as

yt = ∑
m = 1

M
γm, tWmxt (4)

where ∑m = 1
M γm, tWm defines the posterior-probability-weighted transform at time t.

B. Frequency Warping Constrained ROS Embedding

In MPUA (3), the transform W is commonly initialized as an all-ones matrix [30]. Fig. 2(a) 

illustrates the ROS of such a matrix, and it is referred to as WNC hereafter. In this case, the 

task of discovering a sparse structure in W is left to the constrained estimation. Since for 

high-D spectral features the matrix W is large, an L-1 regularization is insufficient for 

obtaining a well structured W. As the result, each target spectral component might be a 

weighted mixture of many source spectral components, making the converted speech sound 

muffled.

To address this problem, we investigate using source-target speakers’ frequency warping 

paths to form a ROS constraint in W(0), and let MPUA (3) to refine only those elements 

within the ROS of W, which is easier than estimating an entire W matrix. For convenience, 

we define frequency warping paths by the bilinear frequency warping function [33]:

φα(ω) = ω + 2 tan−1 (1 − α)sin(ω)
1 − (1 − α)cos(ω) (5)
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where ω is angular frequency and each α value specifies one warping path, with α < 1 warps 

frequency from low to high as in male-to-female conversion, and α > 1 warps frequency 

from high to low as in female-to-male conversion. We quantize the parameter α to a set of 

values within a feasible range [αmin, αmax], and consider three ways of forming a region of 

support: relaxed, intermediate, and strict. It is worth noting that previous efforts on using 

bilinear frequency warping for VC mostly operate on cepstral features [34]–[35], where a 

transform matrix is a function of α, but the warping constraint would not form a ROS to 

define a sparse matrix.

1) Wide Warping Range Support (WWR): This region of support is shown as the 

dotted area in Fig. 2(b), which is enclosed by the two extreme frequency warping paths 

defined by αmin and αmax. Within this ROS, the elements of W(0) are initialized as 1’s, and 

outside it the elements are initialized as 0’s. This ROS makes W sparse, but it still leaves 

NMF with a large degree of freedom within the ROS to learn relations of frequency warping 

and spectral shaping from the source-target parallel speech.

2) Single Warping Path Support (WSP): This region of support is shown as the 

dotted curve in Fig. 2(c), corresponding to the best frequency warping path for a source-

target speaker pair. To determine the best path, α values are enumerated over the range of 

αmin to αmax. For each α value, an ROS based on the corresponding warping path is 

embedded in Wα
(0) (the dependency of W(0) on α is made explicit here to explain the 

selection procedure for α or warping path) and MPUA (3) is performed on the source-target 

speakers’ training data to give an estimated Wα. Frobenius norm is used to measure the 

error: Eα = ‖B − WαA‖
F

, and the best warping path is selected by α* = arg min Eα. Because 

Wα
(0) is very sparse, the selection procedure would not incur heavy computations. However, 

for discretized frequency bins, using a single path may leave certain target frequency bins 

outside the ROS. To prevent this from happening, if a target frequency bin is not on the best 

warping path, then it is linked with the source frequency bins that are warped to the 

neighboring target bins, and the ROS is extended accordingly.

3) Narrow Warping Range Support (WNR): This region of support is shown as the 

dotted area in Fig. 2(d), which is enclosed by the frequency warping paths that are nearest to 

the best warping path (see IV.A for details). Relative to WWR, the WNR method reduces the 

ROS for a source-target speaker pair, preventing irrelevant source spectral components from 

mixing into a target spectral component. Relative to WSP, the slightly relaxed ROS by WNR 

allows NMF to learn a more flexible frequency warping function for a source-target speaker 

pair, since a bilinear function is just an approximation to the actual frequency warping 

relation.

C. Examplar-Based Probabilistic Spectral Conversion

Here we sketch out an exemplar-based probabilistic spectral conversion method that is used 

in the comparative experiments in Section IV. By taking the GMM-clustered magnitude 

spectral matrix pairs {(Am, Bm), m = 1,…, M} as M pairs of source-target exemplar 
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dictionaries, a source spectral matrix X is factorized in M ways as X ≈ AmHm, m = 1,…, M. 

Transferring the activations Hm to the target dictionaries Bm yields a converted spectral 

matrix as

Y = ∑
m = 1

M
BmHmPm (6)

where Pm = diag(γm,1, ⋯, γm,N,) and the γm,t’s are the posterior probabilities (Section 

II.A). The clustered exemplar dictionaries are shorter than a global dictionary and hence the 

activation matrices are smaller, which reduces computation in NMF. In [11], phoneme 

categorized dictionaries were predefined for voice conversion, and for each frame, one 

dictionary was selected and used. In contrast, the multiple dictionaries here are clustered by 

GMM, and the conversion combines the component dictionaries and activations 

probabilistically. The exemplar method as sketched here is only generic, enhancement such 

as using contextual frames [10]–[12] would perform better for VC but is beyond the scope of 

the current work.

III. Spectral and Temporal Structural Measures

The spectral and temporal structural measures include local and global covariance between 

converted and target speech and variance of converted speech in mel filters and frames, 

respectively. The spectral matrices of the target and converted speech are denoted by Y = 

[yi,j] and Y = yi, j , respectively.

A. Spectral Measures

In Fig. 3, the computation of a local covariance centered at a mel filter ko (= 25) and at time 

t (= 0.6s) is illustrated. A window of 2B + 1 mel filters is applied to the t-th columns of Y 

and Y to compute the local covariance

σyy
F (ko, t) = 1

2B + 1 ∑
k = ko − B

ko + B

yk, t − μko, t
F, y yk, t − μko, t

F, y
(7)

where μko, t
F, y = 1

2B + 1 ∑k = ko − B
ko + B

yk, t is the local spectral mean of Y, and μko, t
F, y  is defined 

similarly for Y.

Since the local scales of Y and Y affect the value of σyy
F (ko, t), it is desired to normalize the 

spectral values within each window by their local means, which is equivalent to normalizing 

σyy
F (ko, t) by the local means of Y and Y. This is preferable to using correlation coefficient 

that normalizes co-variance by standard deviations as in STOI, since converted speech in VC 

often suffers from reduced variance, and normalizing by standard deviations would 

artificially boost the normalized covariance values for the low-variance VC methods. Based 

on the notion that larger variance may suggest better speech quality and large covariance 
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may suggest higher similarity, we measure the two statistics separately to keep both of them 

in perspective.

Taking into account of the local scale normalization, the local spectral covariance at the 

utterance level (CovLF) is averaged on σyy
F (ko, t) over (ko, t) as

CovLF = 1
T(L − 2B) ∑

t = 1

T
∑

ko = B + 1

L − B σyy
F (kO, t)

μko, t
F, y μko, t

F, y (8)

where L and T denote the number of mel filters and frames, respectively. The local spectral 

variances of the target and converted speech are simply σyy
F (ko, t) and σyy

F (ko, t). The 

utterance-level average local spectral variance (VarLF) is defined similarly as in (8) with the 

covariance replaced by the respective variance terms. Additionally, global spectral 

covariance CovGF and variance VarGF are obtained by extending the spectral window to 

cover all L mel filters.

B. Temporal Measures

Again in Fig. 3, the computation of a local covariance centered at a time frame to (= 1s) and 

at a fixed mel filter k (= 20) is illustrated. A window of 2Q + 1 frames is applied to the k-th 

rows of Y and Y to compute the local covariance

σyy
T (k, to) = 1

2Q + 1 ∑
t = to − Q

to + Q

yk, t − μk, to
T , y yk, t − μk, to

T , y
(9)

where μk, to
T , y = 1

2Q + 1 ∑t = to − Q
to + Q

yk, t is the local mean of Y and μk, to
T , y  is defined similarly for 

Y. Taking into account of local scale normalization as in spectral covariance, the utterance-

level average temporal local covariance (CovLT) is defined as

CovLT = 1
(T − 2Q)L ∑

to = Q + 1

T − Q
∑

k = 1

L σyy
T (k, tO)

μk, to
T , y μk, to

T , y (10)

The temporal local variances are σyy
T (k, to) and σyy

T (k, to) for the reference and converted 

speech, respectively. The utterance-level average local spectral variance (VarLT) is defined 

similarly as in (10) with the covariance replaced by the respective variance terms. Again, 

global temporal covariance CovGT and variance VarGT are defined by extending the 

temporal window to cover all frames of each utterance.

IV. Experiments and Results

We used the ARCTIC dataset [31] of two male (bdl, rms) and two female (clb, slt) speakers 

(12 source-target speaker pairs) in evaluations. The first 20 sentences a0001 through a0020 

were for system training (the training data size matched that of [23], [24]), and the next 20 
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sentences a0021 through a0040 for conversion testing. TANDEM-STRAIGHT toolbox [36], 

[37] was used to generate magnitude spectra and pitch parameters and to synthesize 

converted speech. speech sampling rate was 16 kHz, and speech analysis used 1024-point 

DFT with the frame shift of 4 ms. HTK toolkit [38] was used to compute 39 MFCC 

parameters (13 MFCCs, 13Δ’s and 13ΔΔ’s) with the window size and frame rate identical to 

sTRAIGHT analysis. To construct the exemplar dictionaries, DA and DB, DTW was first 

applied to the MFCC feature sequences of source and target training speech, and the 

alignments were then transferred to the STRAIGHT spectral sequences, where aligned 

frames with mismatched voicing features (voiced vs. unvoiced) were removed. In pitch 

conversion, the mean and standard deviation of the source speaker’s logF0 contour were 

linearly transformed to match the statistics of the target speaker [1].

In addition to the proposed structured sparse spectral transform method with different ROS 

constraints, we conducted comparative experiments on the generic exemplar method 

discussed in Section II.C, referred to as HEX, the classical GMM method [1], and the global 

variance constrained GMM, referred to as CGMM [22]. The size of GMM was set to 8 for 

all of the VC methods. The hyper-parameters used for regularizing NMF in the spectral 

transform and exemplar methods were empirically chosen, where the four transform 

methods all used λ = 0.2, and the exemplar method used λ = 1.0 on the basis that an 

activation matrix may be quite large for a long utterance. Further details of L-1 

regularization are discussed in Section IV.B.4. Among the three comparison VC methods, 

HEX is closely related to the proposed spectral transform method in using NMF and 

STRAIGHT vocoder, GMM is widely used in statistical VC, CGMM has a global variance 

enhancement to GMM, and the software code of the last two methods are publicly available 

[22]. Although we could not directly compare with many other VC methods due to our 

resource limitations, the outcomes of the current study allow indirect comparisons through 

results available in the literature such as the 2016 Voice Conversion Challenge [20], [21].

In objective evaluation, the conventional root-mean-square error (RMSE) of mel-filter bank 

log spectra and the spectral and temporal measures defined in Section III were used, where 

we compared the proposed spectral transform method using four types of ROS with the VC 

methods of HEX, GMM, and CGMM. In subjective evaluation, listening tests were 

conducted on mean opinion score (MOS), voice similarity to target speaker, and preference 

between voice conversion methods in terms of naturalness and voice similarity to target 

speaker. To make the load of the listening tests manageable, we only compared the spectral 

transform method WNR with the methods of HEX, GMM, and CGMM. The choice on 

WNR was based on an informal listening assessment and a consideration on the distortion-

structure tradeoff. Relative to WNR, WNC and WWR both sounded somewhat muffled, 

consistent with their lower co-variance and variance values. On the other hand, though WSP 

had slightly higher covariance and variance values than WNR, its distortion was also larger, 

and WNR sounded slightly more natural than WSP occasionally.

A. Spectral Transformation

The four different ROS’s in W(0) (Fig. 2) were evaluated, where the same W(0) was used to 

initialize every mixture component in a GMM for MPUA of NMF. The bilinear warping 
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parameter α was enumerated within [0.8 1.2] with a step size of 0.04. For the WSP method, 

given a source-target speaker pair, the best frequency-warping path parameterized by αm 

was determined for the mixture-specific spectral matrix pair (Am, Bm). The mode α* = 

mode{αm, m = 1,…M} (ties were broken randomly) then defined the best warping path and 

ROS for the speaker pair. For the WNR method, a ROS was formed in one of two ways. If 

two αm values were found immediately next to α* from each side, then the frequency 

warping paths parameterized by the two values were used to define the ROS; otherwise if 

only one αm was found immediately next to α*, then the frequency warping paths 

parametrized by the αm and α* itself were used to form the ROS. These were the two 

scenarios used in our experiments but other rules may certainly be introduced for WNR.

To gain insights on the estimated transform matrices, the selected αm’s and α* (bold) for 

each speaker pair are detailed in Table I for WNR. It is observed that for within-gender voice 

conversion, the selected α was close to unity, indicating little or no warping, whereas for 

between-gender voice conversion, the selected α deviated from unity, with α < 1 for male-

to-female conversion and α > 1 for female-to-male conversion, conforming to the needs for 

low-to-high and high-to-low frequency warping in these two directions. It is worth noting 

that the determined αm’s are meaningful for mixture components with mainly voiced spectra 

but not so for unvoiced spectra, and the αm’s in the latter mostly became outliers. With the 

mixture size M = 8, there were normally two mixture components being mainly unvoiced. 

Therefore, for each mixture component we computed a frequency-of-occurrence-based 

voicing probability p: if p < 0.5, then the component would not be considered in selecting 

αm and α*. On the other hand, the derived ROS was used in estimating the transforms for all 

mixture components. Furthermore, spectral energy at very high frequencies was too weak 

for reliable transform estimation. We empirically limited the spectral transforms to be below 

7.55 KHz, where beyond the frequency the source spectral components were directly 

transferred to the target without conversion.

To examine the spectral shaping effect of the transform W, we define a log-sum term for 

each target frequency index i, (log W)i ≜ log(∑φα( j) = i
wφα( j), j), to describe the scaling effect 

on source spectral energy. This term ties closely to the spectral transformation defined in (1). 

Fig. 4(a) shows the log W curve for converting the voice of speaker bdl to speaker slt, and 

Fig. 4(b) shows the curve of converting the voice of slt to bdl. The spectral-shaping effects 

of W are confirmed by the large dynamic ranges in both curves. The approximate peak-

valley reversal between the two curves is appealing as they correspond to opposite 

conversion directions of the same two speakers. In Appendix, the simultaneous frequency 

warping and spectral shaping effect of the transform is further illustrated by 3D plots of the 

estimated W’s for the four cases of ROS.

B. Objective Evaluations

The objective measure of root-mean-square error (RMSE) on mel-filter bank log spectra is 

defined as
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EdB = 1
L ∑

l = 1

L
(10 log10yl − 10 log10yl)

2 (11)

where yl and yl are the target and converted spectral components of the l–th mel filter of two 

aligned frames. There were L = 50 triangular mel filters [39], covering the range of 133.33 

Hz to 6855.5 Hz. The errors were averaged over all aligned spectral pairs.

The local spectral covariance and variance were computed over a wide range of window 

sizes. Because the resulting values exhibited consistent patterns over the large range, to save 

space we only report results for window size (2B + 1) of 7, 11 and 15 mel filters. The 

temporal window sizes (2Q + 1) were 35, 55, and 75 frames, corresponding to 200 ms, 280 

ms, and 360 ms, respectively, based on the notion that auditory system’s temporal 

integration time was within a few hundred miliseconds [40]. The windows were rectangle 

without tapering. In addition, global spectral and temporal covariance and variance were 

computed.

1) Spectral Distortion: In Table II, the RMSE results on the mel-filter spectra are 

provided for the seven VC cases. It is seen that within the spectral transform group, 

imposing the frequency-warping-based ROS increased RMSE, with the trend that the 

stronger the constraint, the larger the error. Similarly, within the GMM-based group, CGMM 

had a much larger error than GMM. The exemplar-based VC method had the lowest error 

among the seven methods.

2) Spectral Covariance and Variance: In Table III, the results of spectral covariance 

and variance are provided, and the variances of target speech (TAR) are also included for 

reference. Within the spectral transform group, imposing the ROS constraints in W(0) 

improved spectral covariance and variance. one trend was that the stronger the constraints, 

the larger the covariance and variance, with the exception that WNR had a slightly larger 

global covariance than WSP. The other trend was that covariance and variance values 

increased with the size of the window. In comparison with the spectral transform methods, 

the exemplar method, HEX, had weaker covariance and variance. Within the GMM group, 

CGMM had much larger covariance and variance than GMM did. The local and global 

variances of the converted speech were below those of the target speech in general, 

suggesting reduced spectral contrasts in converted speech. The transform method of WSP 

gave the largest local covariance and variance values, and WNR was close to WSP. on the 

other hand, CGMM gave the largest global covariance and variance, and its global variance 

exceeded that of the target speech by 4% (the local covariance and variance of CGMM 

remained below those of WSP until the window size approached that of the global window).

3) Temporal Covariance and Variance: In Table IV, the results of local and global 

temporal covariance and variance are detailed. It is observed that WSP again gave the largest 

local covariance and variance, the covariance values given by WNR were comparable to 

those of WSP. While CGMM maintained high variance values, its covariance values were 

below those of WNR. The exemplar method gave slightly lower covariance and variance 
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values than WNC. The effect of imposing ROS in W(0) on temporal structures was similar to 

that on spectral structures (Table III), and so was the effect of window size. At the global 

scale, WSP gave the highest covariance, while CGMM again gave the largest variance. 

Temporal variances of the converted speech remained below those of the target speech at the 

studied time scales.

Overall, the evaluation results of the spectral transform VC method indicated that the looser 

the constraint, the lower the distortion and the weaker the structural preservation, and vice 

versa. The ROS of WNR provided flexibility in tradeoffs between distortion and structure 

preservation. The spectral and temporal structural measures of covariance and variance 

provided informative patterns on converted speech that were not captured by global variance 

alone.

4) Effects of L-1 Regularization: We also studied the effect of the regularization 

hyper-parameter λ in (3) on spectral-transform-based VC within the range of 0.0 ≤ λ ≤ 10.0. 

We found that spectral distortion increased with λ, consistent with the notion that sparsity 

regularization increases estimation bias. Unlike ROS embedding, increasing λ had 

insignificant effect on spectral and temporal covariance and variance. For example, relative 

to λ = 0, the largest increase in global spectral and temporal covariance was 0.87% and 

0.5%, respectively, and in global variance the increase was 1.8% and 2.6%, respectively 

(obtained by λ = 2, beyond which both covariance and variance values decreased). As a 

contrast, relative to WNC, the global spectral and temporal covariance improvement by 

WSP was 9.99% and 14.68%, and in variance the increase was 31.74% and 60.69%, 

respectively. This suggests that L-1 regularization alone was insufficient for preserving 

speech spectral and temporal structures in voice conversion. Detailed results of this study are 

omitted here due to space limitation.

C. Subjective Evaluations

The listeners recruited were students of University of Missouri. Each student volunteer was 

screened for hearing loss and was included only if he or she passed hearing screening at 500 

Hz, 1 k, 2 k, 4 k, and 8 kHz using a 20 dB HL pure tone. The number of listeners varied in 

different listening tests, which were constrained by the hearing screening outcomes and 

students’ availabilities.

1) Speech Quality Assessment: In this test, the 5-scale Mean Opinion Score (MOS) 

(1 = bad, 2 = fair, 3 = good, 4 = very good, 5 = excellent) was used to assess speech quality 

of the four voice conversion methods: HEX, WNR, CGMM, and GMM. In addition, the 

perceived quality of natural speech (NAT) and speech processed by the STRAIGHT vocoder 

(VOC) (without VC) were assessed. There were 42 listeners, each listened to a sound track 

of 56 audio samples, with 48 samples from the combination of 4 VC methods and 12 source-

target speaker pairs (4 × 12), 4 samples from the 4 ARCTIC speakers, and 4 samples from 

the vocoded speech of the 4 ARCTIC speakers. The sentence utterances were randomly 

taken from the test set. The mean and standard deviation (stdev) of the MOS scores are given 

in Table V.
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In Table V, the MOS score of the STRAIGHT vocoded speech (VOC) was slightly inferior 

to that of the natural speech (NAT), while the converted speech all had lower MOS scores 

than that of VOC. Among the 4 VC methods, the proposed WNR had the highest score of 

3.74. As the natural speech MOS was 4.47, we also rescaled all MOS scores relative to NAT 

score = 5, and the scores are shown in the last row of the table. It is seen that relative to 

MOS = 5 for natural speech, the MOS rating of WNR was “very good.” Although the score 

of WNR was still below that of VOC, the latter directly used the prosodic features of 

original speech to its own advantage. The general impressions within the 4 VC methods 

were that speech of WNR sounded clear and natural, speech of HEX and GMM sounded 

muffled, speech of CGMM sounded better than GMM, but it was unnaturally undulating at 

times, which agreed with its large global variances (Tables III and IV). CGMM and GMM 

also sounded slightly distorted at times. Based on the paired Student-t test [41], the mean 

differences in MOS (first row) for WNR vs. HEX, WNR vs. GMM, and WNR vs. CGMM 

were all statistically significant at the level of p ≤ 0.005.

2) Similarity Assessment: In this test, a 4-scale score (1 = different and absolutely 

sure, 2 = different and sure, 3 = same but not sure, 4 = same and absolutely sure) was used to 

assess the voice similarity concerning an audio sample generated by one of the 4 VC 

methods and an audio sample of a target speaker. For sanity check, similarity between target 

speech samples was also assessed. Each listener listened to a sound track of 50 pairs of 

audio samples. Within a pair, the first audio sample always came from a target speaker, and 

the second audio sample was from one of the four VC methods for the corresponding target 

speaker. In each sound track, there were 48 audio sample pairs, covering the combination of 

4 VC methods and 12 speaker pairs evenly, and additionally, there were 2 pairs of target 

sentences. The sentences were randomly taken from the test set, and within each audio 

sample pair, the two sentence texts were different.

In order to check the effect of vocoder on voice similarity assessment, we partitioned this 

test into two subtests. In the first subtest, the target speech was the original natural speech in 

ARCTIC. In the second subtest, the target speech was the ARCTIC speech analyzed and 

synthesized by the STRAIGHT vocoder. There were 18 listeners in the first subtest, and 13 

listeners in the second subtest. The mean and standard deviation of the similarity scores are 

given in Tables VI and VII for the two subtests.

It is observed that among the 4 VC methods, the WNR method received the highest 

similarity score, but the score was more than 1 point below the similarity between the target 

samples. On the other hand, taking the vocoded target speech as the reference increased the 

scores of WNR and HEX (both VC methods used this vocoder in analysis-synthesis), and 

decreased the scores of GMM and CGMM (neither of the two VC methods used this 

vocoder in analysis-synthesis).

Paired Student-t test was used to evaluate the statistical significance of the mean similarity 

score difference between WNR and each of the three comparison VC methods. In Table VI, 

where the target was natural speech, the mean score differences of WNR vs. HEX and WNR 

vs. CGMM were both statistically insignificant at the level of p = 0.01, but the difference 

between WNR and GMM was statistically significant at p = 0.01. In Table VII, where the 
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target was vocoded speech, the mean score difference between WNR and HEX was 

statistically insignificant at the level of p = 0.01, but the difference between WNR vs. GMM 

as well as WNR vs. CGMM was both statistically significant as the level of p ≤ 0.005.

3) Preference Assessment on Similarity: In this test, the WNR method was directly 

compared with each of the 3 other VC methods in term of similarity to target voice. Each 

listener listened to a sound track consisting of 36 triplets of audio samples. Each triplet had 

one sample from a target speaker, one converted by WNR, and one converted by one of 

HEX, GMM, or CGMM. The 36 triplets covered the combinations of the 3 comparison VC 

methods and 12 speaker pairs evenly. In each triplet, the target sample always came first 

which was then followed by two voice-converted speech samples, where the order of WNR 

and the comparison VC method was randomized to avoid order effects. For each triplet, a 

listener selected the preferred VC method based on better voice similarity to the target, with 

“equal” for indistinguishability between the two. Like in the similarity assessment test 2), 

this preference test was partitioned into two subtests, where the first subtest used natural 

speech of ARCTIC as the target and the second subtest used STRAIGHT vocoded speech as 

the target. There were 16 listeners in the first subtest and 20 listeners in the second subtest. 

Listeners’ selection counts are summarized in term of percentage of preference in Tables 

VIII and IX for each pair of VC methods under comparison.

It is seen that the proposed WNR method was preferred more than each of the other three 

VC methods. When using vocoded target speech as reference, the preference on WNR was 

largely increased against HEX, and so was the preference on WNR against GMM. The 

Wilcoxon signed-rank test [41] was performed regarding statistical significances of the 

differences in preference count for the two subtests (Tables VIII and IX) and the three cases 

of WNR vs. HEX, WNR vs. GMM, and WNR vs. CGMM. In every case the difference was 

statistically significant at the level of p ≤ 0.005.

4) Preference Assessment on Naturalness: In this test, the WNR method was 

directly compared with each of the other 3 VC methods in naturalness. There were 34 

listeners, each listened to a sound track consisting of 36 pairs of audio samples. Each pair 

had one sample by WNR, and one sample by one of HEX, GMM, or CGMM, where the 

order of WNR and the comparison VC method was randomized to avoid order effects. The 

36 pairs of audio samples covered combinations of the 3 comparison VC methods and the 12 

speaker pairs evenly. For each audio sample pair, a listener selected the preferred VC 

method having better naturalness, with “equal” for indistinguishability. Listeners’ selection 

counts are summarized as percentage of preference for each of the three pairs of VC 

methods in Table X.

It is seen that the WNR method was more preferred than the other three VC methods by 

large margins. Again, the Wilcoxon signed-rank test was performed to assess significance in 

the difference of preference counts for WNR vs. HEX, WNR vs. GMM, and WNR vs. 

CGMM. In every case, the difference was statistically significant at the level p ≤ 0.005.
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V. Discussion and Conclusion

We have developed a structured sparse spectral transform method for voice conversion that 

performs frequency warping and spectral shaping simultaneously on high-D STRAIGHT 

spectra. We have also designed objective measures for assessing VC speech quality in terms 

of spectral and temporal structural similarity to target and structural contrasts. Our 

experimental evaluations have demonstrated that the frequency-warping-based ROS 

facilitates efficient learning of structured sparse transform matrices and provides flexibility 

in tradeoffs between spectral distortion and speech structure preservation. Our spectral 

transform approach further has a low computation complexity at the conversion stage, where 

for each speech utterance it performs direct matrix multiplications instead of iterative NMF 

as required by the exemplar approach.

The objective measures of covariance and variance have revealed a clear relation between 

the strictness of ROS constraints and the level of structure preservation. That the subjective 

MOS rating of the structured sparse transform VC method is “very good” suggests the 

relevance of local spectral and temporal structures to speech quality. Furthermore, local 

covariance is suggestive of voice similarity to target, as the structured transform VC method 

that has high values of local covariance also has high similarity scores. Spectral distortion 

also affects perceived speech quality and voice similarity, as the examplar method of HEX 

with lower spectral distortions than CGMM is rated higher in MOS and voice similarity, 

even though the structure scores of HEX are lower than CGMM. Moreover, the studied 

objective measures are all spectral-feature-based, while prosodic features that are also 

important to speech perception have not been utilized. In this regard, the undulating 

impression of CGMM might have attributed to its lower MOS and voice similarity, even 

though its covariance and variance values are competitive.

Further progress on VC speech quality and voice similarity calls for improvements not only 

on spectral conversion, but also on prosody conversion and speech vocoder. As humans 

would synthesize multiple relevant speech features in subjective evaluations, it is desirable 

to combine different objective measures in VC speech quality prediction. Similarly, it is 

important to consider different factors of speech quality and voice similarity in learning 

models for VC. Our current work suggests the merit of integrating physical structure 

constraints with mathematical optimization. In a broader view, multiple objective learning 

that is becoming common in deep learning provides a promising framework for such a task 

as well.
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Appendix

In Fig. 5, the estimated transforms W are shown for using the ROC’s of WNC, WWR, WSP, 

and WNR in a male-to-female conversion (rms-to-slt). It is observed that WNC yielded a 

noisy W with low sparsity; WSP yielded a W that was constrained by one warping path and 

with the highest sparsity; the W’s from WWR and WNR were between the two extremes 

and the sparsity given by WNR was higher than that by WWR.
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Fig. 1. 
Comparison between NMF-based voice conversion approaches using (a) proposed spectral 

transformation and (b) exemplar activation transfer.
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Fig. 2. 
Comparison of regions-of-support in transform matrix initialization, where the dotted 

regions are initialized by ones, and the blank regions are zeros. (a) ROS covers the entire 

matrix (WNC) (b) ROS is constrained by the largest possible extent of frequency warping 

(WWR) (c) ROS is constrained by the best frequency warping path of a source-target 

speaker pair (WSP) (d) ROS is constrained by the best frequency warping path and its 

neighboring paths of a source-target speaker pair (WNR).
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Fig. 3. 
Illustration on local spectral and temporal covariance computation.
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Fig. 4. 
Spectral shaping by transformation matrix W(WNR). (a) male->female (bdl->slt) and (b) 

female->male (slt->bdl).
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Fig. 5. 
3D plots of estimated W for one pair of speakers.

Zhao et al. Page 22

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2020 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao et al. Page 23

TABLE I

Selected Frequnecy Warping Parameters αm’s and α* (Bold) for WNR

m->m bdl->rms rms->bdl

1.00,1.04 0.92,0.96

m->f bdl->slt rms->slt bdl->clb rms->clb

0.84,0.88 0.80,0.84 0.88,0.92 0.84,0.88

f->m clb->rms slt->rms clb->bdl slt->bdl

1.08,1.12 1.12,1.16 1.04,1.08,1.12 1.08,1.12

f->f clb->slt slt->clb

0.96,1.00 1.00,1.04
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TABLE II

RMSE of Log Spectra

HEX WNC WWR WNR WSP CGMM GMM

MEAN 7.713 7.815 8.471 8.743 8.882 8.913 8.611

STD 0.713 0.760 0.725 0.716 0.709 0.723 0.730
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TABLE III

Spectral Covariance and Variance of Converted and Target Speech

Mel filt.: 7 11 15 GLOBAL

COV VAR COV VAR COV VAR COV VAR

HEX 0.057 0.054 0.104 0.098 0.144 0.134 0.675 0.635

WNC 0.061 0.060 0.111 0.109 0.154 0.150 0.691 0.668

WWR 0.065 0.094 0.121 0.164 0.169 0.223 0.758 0.847

WNR 0.074 0.133 0.134 0.212 0.185 0.276 0.762 0.875

WSP 0.075 0.148 0.135 0.231 0.187 0.298 0.760 0.880

CGMM 0.069 0.109 0.126 0.187 0.174 0.249 0.785 0.962

GMM 0.055 0.069 0.103 0.122 0.145 0.168 0.734 0.824

TAR NA 0.150 NA 0.234 NA 0.300 NA 0.925
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TABLE IV

Temporal Covariance and Variance of Converted and Target Speech

Time: 200 ms 280 ms 360 ms GLOBAL

COV VAR COV VAR COV VAR COV VAR

HEX 0.172 0.194 0.217 0.239 0.248 0.269 0.389 0.404

WNC 0.173 0.197 0.221 0.246 0.253 0.280 0.402 0.435

WWR 0.198 0.295 0.250 0.362 0.285 0.407 0.444 0.615

WNR 0.202 0.321 0.257 0.396 0.294 0.447 0.460 0.677

WSP 0.203 0.331 0.258 0.408 0.295 0.461 0.461 0.699

CGMM 0.197 0.328 0.250 0.405 0.287 0.460 0.450 0.701

GMM 0.175 0.260 0.220 0.317 0.250 0.356 0.383 0.531

TAR NA 0.340 NA 0.424 NA 0.481 NA 0.742

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2020 January 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao et al. Page 27

TABLE V

Mean Opinion Score

NAT VOC HEX WNR GMM CGMM

mean 4.47 4.36 2.48 3.74 2.28 2.33

stdev 0.65 0.55 0.52 0.53 0.52 0.52

rescaled 5.00 4.88 2.77 4.18 2.55 2.61
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TABLE VI

Similarity-to-Target (Natural) Score

HEX WNR GMM CGMM TAR

mean 2.45 2.52 2.11 2.37 3.76

stdev 0.46 0.40 0.50 0.56 0.52
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TABLE VII

Similarity-to-Target (Vocode) Score

HEX WNR GMM CGMM TAR

mean 2.46 2.62 2.03 2.08 3.88

stdev 0.47 0.42 0.34 0.28 0.30
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TABLE VIII

Preference (%) in Similarity-to-Target (Natural)

X vs WNR cases: X=HEX X=GMM X=CGMM

X is preferred 18.28 14.58 11.22

WNR is preferred 39.25 64.06 63.78

X and WNR are equal 42.47 21.36 25.00
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TABLE IX

Preference (%) in Similarity-to-Target (Vocode)

X vs WNR cases: X=HEX X=GMM X=CGMM

X is preferred 22.54 13.39 13.50

WNR is preferred 46.31 70.29 63.71

X and WNR are equal 31.15 16.32 22.78
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TABLE X

Preference (%) in Naturalness

X vs WNR cases: X=HEX X=GMM X=CGMM

X is preferred 3.69 4.22 2.41

WNR is preferred 69.21 84.66 82.17

X and WNR are equal 27.09 10.92 15.42
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