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Abstract—Like many machine learning tasks, the performance
of speaker verification (SV) systems degrades when training
and test data come from very different distributions. What’s
more, both training and test data themselves could be composed
of heterogeneous subsets. These multi-source mismatches are
detrimental to SV performance. This paper proposes incor-
porating maximum mean discrepancy (MMD) into the loss
function of autoencoders to reduce these mismatches. MMD is
a nonparametric method for measuring the distance between
two probability distributions. With a properly chosen kernel,
MMD can match up to infinite moments of data distributions.
We generalize MMD to measure the discrepancies of multiple
distributions. We call the generalized MMD domain-wise MMD.
Using domain-wise MMD as an objective function, we propose
two autoencoders, namely nuisance-attribute autoencoder (NAE)
and domain-invariant autoencoder (DAE), for multi-source i-
vector adaptation. NAE encodes the features that cause most
of the multi-source mismatch measured by domain-wise MMD.
DAE directly encodes the features that minimize the multi-
source mismatch. Using these MMD-based autoencoders as a
preprocessing step for PLDA training, we achieve a relative
improvement of 19.2% EER on the NIST 2016 SRE compared
to PLDA without adaptation. We also found that MMD-based
autoencoders are more robust to unseen domains. In the domain
robustness experiments, MMD-based autoencoders show 6.8%
and 5.2% improvements over IDVC on female and male Can-
tonese speakers, respectively.

Index Terms—speaker verification, domain adaptation, i-
vectors, maximum mean discrepancy.

I. INTRODUCTION

Using i-vector as an unsupervised feature extraction method
and PLDA as a supervised channel compensation technique
have been very successful in speaker verification [1], [2]. How-
ever, like many machine learning algorithms, i-vector/PLDA
assumes that the training data and test data are independently
sampled from the same distribution. When training data and
test data have a severe mismatch, the performance degrades
rapidly [3]–[9]. The mismatch between training data and test
data is not uncommon, as it can be caused by a lot of factors
such as languages, channels, noises, and genders. Basically,
collecting more data to retrain the system is time-consuming
and computationally-expensive. Such a solution is unrealistic
in some scenarios. It is desirable to use the existing data and
a small amount of target-specific data to modify the system
to meet the need, which is essentially what domain adaptation
(DA) does.

Garcia-Romero and McCree [3] found that the mismatch
between the out-of-domain PLDA model and the in-domain

This works was in part supported by the RGC of Hong Kong SAR, Grant
No. PolyU 152137/17E and PolyU 152518/16E, and the Taiwan MOST with
Grant 107-2634-F-009-003.

test data contributes to most of the performance loss. There-
fore, it is important to apply domain adaptation to reduce
the mismatch between in-domain and out-domain i-vectors
before training the PLDA model. Alternatively, a PLDA model
trained on out-of-domain data can be adapted to fit the in-
domain data.

Earlier attempts in i-vector based DA require the in-domain
data to have speaker labels. For example, Garcia-Romero and
McCree [3] computed the MAP-estimates of the in-domain
within-speaker and across-speaker covariance matrices in the i-
vector space using the speaker labels from the in-domain data.
In [5], these matrices are treated as latent variables and their
joint posterior distribution is factorized using variational Bayes
so that MAP point estimates of the matrices can be computed
from the factorized distributions. The point estimates are
then used for scoring in the target environment. More recent
approaches attempt to obviate the requirement of speaker
labels. For instance, Villalba and Lleida [10] extended their
Bayesian adaptation in [5] by treating the unknown speaker
labels in the in-domain data as latent variables. Borgstrom et
al. [11] obviated the speaker-label requirement by assuming
that all in-domain data in Villalba’s Bayesian adaptation are
independent. Another approach is to generate hypothesized
speaker labels via unsupervised clustering [4], [12], [13].
Given the hypothesized labels, the covariance matrices of in-
domain data can be computed as usual and can be interpo-
lated with the out-of-domain covariance matrices to obtain
an adapted PLDA model. Of course, correctly inferring all
of the missing labels is even harder than performing speaker
verification. However, as is shown in [4], even imperfect labels
can achieve performance almost as good as the correct labels.
Still, cluster-based approaches require a lot of heuristics to set
the number of clusters.

It is also possible to carry out the unsupervised DA without
inferring the missing labels at all. Most of the methods in
this category assume that there is a common feature space
in which in-domain and out-domain have a minimum mis-
match. DA aims to project data on such feature space and
uses the projected data to train a classifer. Fig 1 shows
the process of i-vector based domain adaptation using the
common feature-space approach. As mismatch can be caused
by multiple sources, it is helpful to divide the training data
into homogenous subsets according to their sources before
finding a common feature space. This is called multi-source
domain adaptation in the literature [14]. In addition to the
robustness to heterogeneous sources, this approach also has
the potential to generalize to unseen domains, as it does not
assume a particular in-domain environment.
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Over the years, several unsupervised DA techniques have
been proposed to find a common feature space that is less
domain dependent. These techniques include inter-dataset vari-
ability compensation (IDVC) [6], [15], [16], source normal-
ization (SN) [7] and discriminative multi-domain PLDA [9].
IDVC divides the training data into several subsets, and for
each subset, the mean is computed. The means of these
subsets are used to find the directions of maximum inter-
dataset variability; then the subspace corresponding to these
directions is removed from all i-vectors. In [6], the author
successfully used IDVC to reduce the mismatch between NIST
telephone data and switchboard data. In several NIST 2016
submissions [17], [18], IDVC is also found to be very helpful
in boosting system performance. Recently, domain-adversarial
training of neural networks has also been successfully applied
to unsupervised domain adaptation for speaker recognition
[19]. In domain-adversarial learning [20], a feature extrac-
tion network is trained to produce embedded features that
are indistinguishable to a domain classifier but are highly
speaker discriminative to a speaker classifier. After training,
the embedded features are believed to be domain-invariant.

I-vector	extraction

Test	MFCC

Project	into	common	
feature	space

Preprocessing

PLDA	scoring

Enrolment	
MFCC

Fig. 1. A flow chart showing the process of i-vector based domain adaptation
using the common feature-space approach.

Several theoretical works in DA [21]–[23] and practical
applications [24] suggest that minimizing the divergence be-
tween the in-domain and out-domain distributions is very
important for obtaining a good representation for DA. From
this perspective, approaches based solely on the differences
among the domain-means, such as IDVC, are not enough
for finding a good representation. The reason is that even
if the means of the distributions are exactly the same, there
could still be severe mismatch between the data distributions if
their variances are very different. Thus, to reduce inter-dataset
mismatch, it is important to consider the statistics beyond the
means.

To better utilize the statistics of multi-source data, we extend
our earlier work [25] on using maximum mean discrepancy
(MMD) for domain adaptation. MMD is a nonparametric
method for measuring the distance between two distributions
[26]–[28]. With a properly chosen kernel, MMD can utilize

all moments of data. In this paper, we generalize MMD to
measure the discrepancies among multiple distributions. By
formulating MMD as a part of the objective function for
training autoencoders, the autoencoders will learn the features
that contain less domain-specific information but are still
relevant to the classification task. We also apply MMD to force
an autoencoder to capture the inter-data set variabilities. By
subtracting out these variabilities, the i-vectors become more
domain independent.

II. THE I-VECTOR/PLDA FRAMEWORK

Since its first appearance [1], i-vector has become the de
facto choice for the representation of utterances in speaker
verification and other related areas. The i-vector approach
is essentially a factor analysis technique trying to find a
low-dimensional subspace that captures most of the varia-
tions in the GMM-supervectors [29]. Specifically, the GMM-
supervector of utterance t can be generated by the following
generative model:

µt = µ+Twt, (1)

where µ is a supervector formed by stacking the means of a
universal background model (UBM) and T is a low-rank total
variability matrix. The posterior mean of wt is the i-vector xt

of utterance t.
As i-vectors contain all sort of variabilities in utterances,

channel compensation techniques are essential for suppressing
the non-speaker variability. Among them, probabilistic dis-
criminant analysis (PLDA) [2] performs the best. Given a set
of D-dimensional length-normalized [30] i-vectors {xij ; i =
1, . . . , N ; j = 1, . . . ,Hi; } from N speakers, each with Hi

sessions, PLDA assumes that the i-vectors can be expressed
as the following factor analysis model:

xij = m+Vzi + εij , (2)

where m is the global mean of the i-vectors, V defines the
speaker subspace, zi is the speaker factor and εij is the
residual noise.

III. MAXIMUM MEAN DISCREPANCY AUTOENCODER

In this section, we first highlight the domain mismatches in
NIST 2016 SRE data and the limitation of IDVC. Then, we
explain why maximum mean discrepancy is theoretically better
than IDVC and how it can be incorporated into the training
of autoencoders for extracting domain-invariant features.

A. Multi-source Mismatch in NIST 2016 SRE

NIST 2016 speaker recognition evaluation (SRE16) intro-
duces various new challenges to speaker recognition [31],
[32], among which the multilingual setup brought the most
attention. Unlike previous SREs, both development (Dev) and
evaluation (Eval) data in SRE16 comprise utterances spoken in
non-English languages and were recorded outside north Amer-
ica. Table I shows the composition of SRE16 data. Because all
of the SRE16 data are non-English, training using data from
previous SREs results in poor performance. The mismatch
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Fig. 2. (a) Scatter plot of 2-dimensional t-SNE embedded i-vectors. In the legend, “M” and “F” stand for male and female, respectively, and “ENG”,
“CAN” and “TGL” stand for English, Cantonese, and Tagalog, respectively. (b) Pairwise differences between the means. (c) Pairwise differences between the
covariance matrices. The means and covariances differences are measured in the original space and are normalized to the range between 0 and 1 for ease of
comparison.

between the recording environments of previous SREs and
SRE16 also causes performance degradation. Training using
only SRE16 development data is also not feasible, as there
are only 2,472 segments in total and a very small number of
them are labeled. Besides, the labeled development data have
different languages than the evaluation data.

Dataset Category Language

Dev Unlabelled Cantonese and Tagalog
Dev Unlabelled Mandarin and Cebuano
Dev Labelled Mandarin and Cebuano
Eval Enrollment Cantonese and Tagalog
Eval Test Cantonese and Tagalog

TABLE I
THE COMPOSITION OF SRE16 DATA. “LABELED” MEANS SPEAKER

LABELS ARE PROVIDED. “UNLABELED” MEANS SPEAKER LABELS ARE
NOT PROVIDED.

Fig. 2(a) shows the t-distributed stochastic neighbor em-
bedding (t-SNE) [33] of i-vectors from SRE16 development
data and previous SRE data. In the figure, datasets are col-
ored according to their genders and languages. The gender-
and language-dependent clusters are clearly visible in this
2-dimensional embedded space. Also, the multi-source mis-
matches occur not only between the English data (ENG F
and ENG M) and SRE16 data but also within SRE16 data
(CAN F, CAN M, TGL F and TGL M).

To compare the closeness between different language- and
gender-clusters in the original i-vector space, we computed
the squared Euclidean distances between the means of these
clusters and normalized the pairwise distances by their maxi-
mum. Fig. 2(b) shows these normalized distances. Apparently,
some gender-language combinations (e.g., English-male) are
more distinct from the others. To get a sense of the degree
of dispersion of these clusters, we may compare the maxi-
mum pairwise distance (= 0.0021) with the trace of the total
covariance matrix (= 0.0068). This means that the maximum

distance (occurs between CAN F and ENG M) is about 31%
of the total variance, which is not a small value because if the
i-vectors are domain-independent, this value should be zero.

To compare the variances of these clusters, Fig. 2(c) shows
the pairwise differences between the covariance matrices of the
i-vectors from the six language- and gender-dependent groups.
The differences are measured in terms of Frobenius norm
[34]. Again, the differences are normalized by the maximum
difference. We can see that the covariance matrices of these
clusters are fairly different from each other. In particular,
even the minimum difference (ENG M–ENG F) is 55% of
the maximum difference (CAN M–TGL F). Interestingly, al-
though CAN M and ENG F are closest in terms of their
means, the difference between their covariance matrix is the
second largest. Overall speaking, Fig. 2 shows that the i-
vectors of these six groups differ from each other not only
by their means but also by their covariance matrices.

B. Inter-dataset Variability Compensation

Inter-dataset variability compensation (IDVC) was proposed
in [6]. IDVC follows the subspace removal approach proposed
in [35]. It aims to find the directions in the i-vector space with
the largest inter-dataset variability and remove the variability
in these directions. This is achieved by projecting the i-vectors
x’s as follows:

x̂ = (I−WWT)x, (3)

where the columns of W span the subspace of unwanted
variability. W comprises the eigenvectors of the covariance
matrix of the subset means. The idea of IDVC has been ex-
tended to compensating for the variability in the PLDA hyper-
parameters (between- and within-speaker covariance matrices)
due to domain mismatch [16]. Recently, it has been extended
to reduce the inaccuracy of PLDA scores caused by domain
mismatch [15].

Note that in IDVC the domain mismatch is defined by
the covariances of subset means. However, the mismatch of
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datasets may not only manifest in the dataset means, but also
in the higher-order statistics of these datasets. The limitation
of IDVC will become apparent when we consider some
Gaussian distributions (one for each dataset) with identical
means but different covariance matrices. Despite of the severe
mismatches among these Gaussians, IDVC considers these
Gaussians to be identical and will not remove any subspace
(W in Eq. 3 is a null matrix) to reduce the mismatches.

C. Maximum Mean Discrepancy

The theoretical works in DA [21]–[23] suggest that it is
important to have a good measurement of the divergence
between the data distributions of different domains. Maximum
mean discrepancy is a distance measure in the space of
probability. Given two sets of samples {xi}Ni=1 and {yj}Mj=1,
MMD computes the mean squared difference of the statistics
of the two datasets:

DMMD =

∥∥∥∥∥∥ 1

N

N∑
i=1

φ(xi)−
1

M

M∑
j=1

φ(yj)

∥∥∥∥∥∥
2

, (4)

where φ is a feature map. When φ is the identity function, the
MMD distance simply computes the discrepancy between the
sample means.

Eq. 4 can be expanded as:

DMMD =
1

N2

N∑
i=1

N∑
i′=1

φ(xi)
Tφ(xi′)

− 2

NM

N∑
i=1

M∑
j=1

φ(xi)
Tφ(yj) +

1

M2

M∑
j=1

M∑
j′=1

φ(yj)
Tφ(yj′).

(5)

As each term in Eq. 5 involves dot products only, the kernel
trick can be applied:

DMMD =
1

N2

N∑
i=1

N∑
i′=1

k(xi,xi′)

− 2

NM

N∑
i=1

M∑
j=1

k(xi,yj) +
1

M2

M∑
j=1

M∑
j′=1

k(yj ,yj′), (6)

where k(·, ·) is a kernel function. In the case of quadratic
(Quad) kernels, we have:

k(x,y) = (xTy + c)2. (7)

Then, the MMD becomes:

DMMD = 2c

∥∥∥∥∥∥ 1

N

N∑
i=1

xi −
1

M

M∑
j=1

yj

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

N

N∑
i=1

xix
T
i −

1

M

M∑
j=1

yjy
T
j

∥∥∥∥∥∥
2

F

, (8)

where ‖·‖F represents the Frobenius norm. We can see that
with a quadratic kernel, MMD can match up to the second-
order statistics and c can be adjusted to control the trade-off

of the matching between the first-order and the second-order
moments.

Another popular kernel is the radial basis function (RBF)
kernel:

k(x,y) = exp
(
− 1

2σ2
‖x− y‖2

)
, (9)

where σ is the width parameter. With the RBF kernel, the
feature space is of infinite dimension and contains all moments
of data. Minimizing MMD using the RBF kernel is equivalent
to matching all moments of two distributions [27]. It is also
possible to use a mixture of RBF kernels [28]:

k(x,y) =

K∑
q=1

exp
(
− 1

2σ2
q

‖x− y‖2
)
, (10)

where σq is the width parameter of the q-th RBF kernel.

Fig. 3. Architecture of the proposed domain-invariant autoencoder (DAE)
when data are from three different domains. Solid black arrows represent the
connections between neurons. Dashed red arrows represent the hidden nodes’
outputs for computing the domain-mismatch loss or autoencoder’s outputs for
computing the reconstruction loss.

D. Domain-invariant Autoencoder
Assume that we have in-domain data {xin

i }
Nin
i=1 and out-

domain data {xout
j }

Nout
j=1. We want to learn a transform h =

f(x) such that the transformed data {hin
i }

Nin
i=1 and {hout

j }
Nout
j=1

are as similar as possible. The mismatch between the trans-
formed data can be measured by MMD:

DMMD =
1

N2
in

Nin∑
i=1

Nin∑
i′=1

k(hin
i ,h

in
i′)

− 2

NinNout

Nin∑
i=1

Nout∑
j=1

k(hin
i ,h

out
j ) +

1

N2
out

Nout∑
j=1

Nout∑
j′=1

k(hout
j ,hout

j′ ).

(11)
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Fig. 4. Architecture of the proposed nuisance-attribute autoencoder (NAE)
when data are from three different domains. Solid black arrows represent
the connections between neurons. Dashed red arrows represent the signal
pathways for computing the domain-mismatch loss or reconstruction loss.

When the data come from multiple sources, we want the
transformed data to be as similar to each other as possible. To
this end, we define a domain-wise MMD measure. Specifically,
given D sets of data {xd

i }
Nd
i=1, where d = 1, 2, . . . , D, we want

the transformed data {hd
i }

Nd
i=1 to have small loss as defined by

the following equation:

Lmismatch =

D∑
d=1

D∑
d′=1
d′ 6=d

(
1

N2
d

Nd∑
i=1

Nd∑
i′=1

k(hd
i ,h

d
i′)

− 2

NdNd′

Nd∑
i=1

Nd′∑
j=1

k(hd
i ,h

d′

j ) +
1

N2
d′

Nd′∑
j=1

Nd′∑
j′=1

k(hd′

j ,h
d′

j )

)
.

(12)

Of course, we also want to retain as much non-domain related
information as possible. Assume that another transform can
reconstruct the input from h:

x̃ = g(h), (13)

where x̃ is the reconstruction of the input x. We want to make
x̃ as close to x as possible by minimizing:

Lrecons =
1

2

D∑
d=1

Nd∑
i=1

∥∥∥xd
i − x̃d

i

∥∥∥2 . (14)

Both objectives can be achieved by an antoencoder comprising
an encoder network f and a decoder network g, with the total
loss function:

Ltotal = Lmismatch + λLrecons, (15)

where λ is a parameter controlling the importance of the
reconstruction loss. Note that both f and g can be multilayer
neural networks. As the autoencoder encodes domain-invariant
information, we call it domain-invariant autoencoder (DAE).1

Fig. 3 shows the architecture of DAE for the case of three
domains (D = 3), with each row corresponding to one domain.
Note that the weights in the rows are shared across all domains.
Fig. 5 shows a scatter plot of 2-dimensional t-SNE embedded
of the hidden activations of a DAE. Compared with the t-SNE
plot in Fig 2(a), we can see that the embedding of the hidden
activations have apparently less domain-clustering effect than
the embedding of i-vectors, which shows that the DAE indeed
learns a domain-invariant representation.

Fig. 5. Scatter plot of 2-dimensional t-SNE embedding of the hidden
activations of DAE. In the legend, “M” and “F” stand for male and female,
respectively, and “ENG”, “CAN” and “TGL” stand for English, Cantonese,
and Tagalog, respectively.

E. Nuisance-attribute Autoencoder

In addition to directly learning domain-invariant features,
we can also train an autoencoder to remove the domain-
specific features similar to the idea of IDVC. Note that Eq. 3
can be written as:

x̂ = x−WWTx, (16)

where WWTx can be interpreted as the nuisance components.
In stead of using principal component analysis (PCA) as in
IDVC, we may use an autoencoder to estimate the nuisance
components. Specifically, Eq. 16 can be replaced by:

x̂ = x− x̃

= x− g(f(x)),
(17)

where g(f(x)) is implemented by a special form of autoen-
coders. Similar to the DAE, the autoencoder has an encoder
h = f(x) and a decoder x̃ = g(h). But unlike the DAE, the
autoenconder is trained to make x̂ as close to x as possible.

1Not to be confused with the denoising autoencoder of Vincent et al [36].
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The subtraction in Eq. 17 will make x̃’s to contain all of the
domain-specific information and x̂ to become less domain-
dependent.

To achieve the goal mentioned above, we can use MMD to
measure the discrepancy between the distribution of x̂ across
different datasets:

Lmismatch =

D∑
d=1

D∑
d′=1
d′ 6=d

(
1

N2
d

Nd∑
i=1

Nd∑
i′=1

k(x̂d
i , x̂

d
i′)

− 2

NdNd′

Nd∑
i=1

Nd′∑
j=1

k(x̂d
i , x̂

d′

j ) +
1

N2
d′

Nd′∑
j=1

Nd′∑
j′=1

k(x̂d′

j , x̂
d′

j )

)
.

(18)

Also, we can add reconstruction loss between x and x̂. As this
network encodes the unwanted domain-specific information,
we call it nuisance-attribute autoencoder (NAE). Fig. 4 shows
the architecture of NAE for the case of three domains (D = 3).

Fig. 6. The relationship between the width σ of the radial basis function kernel
and the accuracy of the softmax domain classifier on the features extracted
from a DAE.

IV. EXPERIMENTAL SETUP

A. Speech Data and Acoustic Features

Speech files from NIST 2004–2010 Speaker Recognition
Evaluation (hereafter, referred to as SRE04–SRE10)2 and
the development set of SRE16 (SRE16-dev) were used as
development data and speech files from the evaluation set
of SRE16 (SRE16-eval) were used as test data. The speech
regions in the speech files were extracted by using a two-
channel voice activity detector [37]. For each speech frame, 19
MFCCs together with energy plus their 1st and 2nd derivatives
were computed, followed by cepstral mean normalization and
feature warping [38] with a window size of three seconds.
A 60-dim acoustic vector was extracted every 10ms, using a
Hamming window of 25ms.

2https://www.nist.gov/itl/iad/mig/speaker-recognition

B. I-vector Extraction and PLDA Model Training

The i-vector/PLDA system is based on a gender-independent
UBM with 512 mixtures and a gender-independent total vari-
ability matrix with 300 total factors. Unlabelled and enroll-
ment utterances from SRE16 development data were used for
training the UBM and the total variability (TV) matrix. The
TV matrix and UBM were used for extracting i-vectors from
the speech files (both gender) in SRE04–SRE10, SRE16–dev
and SRE16–eval.

Unless stated otherwise, i-vectors derived from SRE04–
SRE10 and the SRE16 development set were used for training
the DAEs, the NAEs, and the projection matrices of IDVC.
Note that the non-English speech in SRE04–SRE10 were
filtered out. The resulting networks and projection matrices
were then used to transform i-vectors derived from SRE04–
SRE10 and SRE16. Then, we computed a PCA projection
matrix by using the transformed i-vectors from SRE04–SRE10
and reduced the dimension of i-vectors to 200. Length nor-
malization were applied to the 200-dimensional i-vectors [30].
Then, we trained a gender-independent PLDA model with 200
latent variables using SRE04–SRE10 data only. PLDA scores
were normalized by S-norm using SRE16 development data
as the cohort set [39].

Speech files with bad recordings (e.g., without speech or
contain telephone tones only) as detected by the VAD and
speech files shorter than 10 seconds were excluded from
training any models (UBM, TV matrix, and PLDA) and
networks (DAEs and NAEs).

C. MMD Autoencoders and IDVC Training Details

We used quadratic kernels and RBF kernels for MMD,
and used a softmax (multi-class logistic regression) domain
classifier to determine the best hyperparameters of the RBF
kernel. Specifically, for each candidate RBF width, we trained
a DAE and extracted vectors from the hidden nodes’ acti-
vations in Fig. 3 and used them as the input to a softmax
classifier with the number of outputs equals to the number
of domains. Similarly, another softmax domain classifier was
trained to classify the domain-removed vectors x̂ in Fig. 4.
Because our goal is to make these vectors as domain-invariant
as possible, we selected the RBF width such that the resulting
MMD vectors and domain-removed vectors lead to the lowest
accuracy in the domain classifiers.

Fig. 6 shows the classification accuracy of the MMD vectors
h’s. with respect to the RBF width. Evidently, the MMD
vectors contain the least domain information when σ = 1,
as they lead to the lowest domain classification accuracy. For
both DAE and NAE, the weights in the decoder and encoder
networks are always tied as in [40]. Unless stated otherwise,
we divided SRE04–10 and SRE16 data into gender- and
language-homogenous subsets to train the IDVC projection
matrices, the DAEs, and the NAEs. Excluding the minor
data in SRE16, we have six subsets: English male, English
female, Cantonese male, Cantonese female, Tagalog male
and Tagalog female. The networks were optimized using
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithm [41], [42]. The history size of L-BFGS was
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Architecture EER (%) mCprim aCprim Lmismatch Lrecons Ltotal

No Adapt - 15.84 0.89 0.93 - - -
PCA - 14.77 0.89 0.92 - - -
IDVC - 13.08 0.86 0.93 - - -

Linear DAE 300-300(linear)-300 12.79 0.85 0.91 0.002 0.012 0.014
Non-linear DAE 300-300(sigm)-300(linear)-300(linear)-300(sigm)-300 24.36 0.98 0.99 0.001 0.220 0.221

Linear NAE 300-10(linear)-300 12.81 0.85 0.91 0.003 0.211 0.214
Non-linear NAE 300-10(sigm)-10(linear)-10(linear)-10(sigm)-300 14.73 0.93 0.93 0.156 2.032 2.188

TABLE II
THE PERFORMANCE OF FOUR DOMAIN ADAPTATION METHODS AND THE PERFORMANCE OF A CLASSICAL I-VECTOR PLDA SYSTEM WITHOUT DOMAIN
ADAPTATION (No Adapt) IN THE SRE16 EVALUATION SET. “LINEAR” AND “SIGM” MEAN THAT THE HIDDEN NODES IN THE DAE AND NAE USE LINEAR

AND SIGMOID ACTIVATION FUNCTIONS, RESPECTIVELY. PCA: THE WEIGHTS OF THE LINEAR AUTOENCODER WERE FOUND BY PCA. IDVC:
INTER-DATASET VARIABILITY COMPENSATION. “MCPRIM” AND “ACPRIM” ARE THE MINIMUM DETECTION COST AND THE ACTUAL DETECTION COST AS

SPECIFIED IN THE EVALUATION PLAN OF SRE16.

set to 20 and the learning rate was set to 1. Training was
stopped when the difference of loss between two iterations
was smaller than 0.0001.

V. RESULTS AND DISCUSSIONS

A. General Performance Analysis

Table II shows the performance of four i-vector adaptation
methods. All systems use PLDA as their backend. A classical
i-vector PLDA system without domain adaptation (No Adapt)
is also included for comparison. For the DAEs and NAEs, we
used a quadratic kernel with c = 1 and λ in Eq. 15 was set to
1. Both linear and non-linear autoencoders were used in the
experiments.

We can also see from Table II that except for non-linear
DAE, all of the DA methods boost the performance sig-
nificantly in term of EER, although in terms of minimum
Cprimary and actual Cprimary, the improvement is minor. We
can also observe that the linear DAE and NAE have a small
improvement over IDVC. Surprisingly, the non-linear DAE
and NAE perform worse than their linear counterparts. When
we look into the losses of these autoencoders, we found that
the non-linear DAE and NAE produce higher loss than their
linear counterparts. Considering that non-linear autoencoders
should have higher capacity in fitting the training data (but
they fail to do so), they probably got stuck in local minima
[43]–[45]. Because of the relatively poor performance of non-
linear autoencoders, we only present and discuss the results
of linear autoencoders in the sequel.

In [46], the authors showed that a linear autoencoder
works like PCA if their weights are found by minimizing the
mean-squared error (MSE). A natural question which arises
is whether the linear DAE and NAE will reduce to PCA.
Note that in [46], the objective function of the autoencoders
comprises the MSE loss only. On the other hand, the objective
function of DAE and NAE comprises both the MMD loss and
MSE loss. As MMD loss is totally different from MSE loss,
DAEs and NAEs will not reduce to PCA even with linear units.
To demonstrate that our linear NAE and DAE are different
from PCA, we also report results obtained by using PCA
to preprocess the i-vectors in Table II. Evidently, using PCA
alone could not improve the performance significantly.

To gain more insights into the performance of IDVC, DAEs,
and NAEs, we report the performance of the three systems on
four gender- and language-dependent subsets in Table III(a)
and Fig 7. The results suggest that Tagalog is more challenging
than Cantonese, with EERs of 20.55% and 19.89% for male
and female, respectively. Also, the female subsets seem to be
more difficult than the male ones. The performance of the four
subsets improves significantly after applying the three domain
adaptation methods.

B. Robustness to Unseen Domains

In the previous section, we partitioned the training data into
gender- and language-homogenous groups. There are always
data in the training set that match both the gender and the
language of the test set. However, it is not always feasible to
obtain training data that match the gender and language of the
test data for domain adaptation. Therefore, we conducted a
domain robustness experiment. Specifically, for each gender
and language (Tagalog or Cantonese) in test sessions, we
excluded the speech of the same gender who speak that
language from training. In other words, there is no in-domain
data for domain adaptation. Here, the term “domain” refers
to genders and languages, and in-domain data are evaluation
data with a specific combination of gender and language. For
example, for the evaluation of male Tagalog, we exclude male
Tagalog data for training the IDVC, DAE and NAE. Note that
the gender and language information can be obtained from the
key file of the development data provided by NIST.

Table III(b) shows the results of the three DA methods on
unseen domains. Fig. 7 shows the EERs of the DA methods
with and without using in-domain training data. Not surpris-
ingly, without in-domain data for training, the performance of
all DA methods degrades. Despite of the performance degra-
dation, the performance of these DA methods are still better
than the one without domain adaptation. More importantly,
the DAE and NAE appear to suffer less when compared
with IDVC. In particular, for Cantonese speakers, the DAE
has 6.8% and 5.2% relative improvement over IDVC for
female and male speakers, respectively. We believe that the
incorporation of high moments of the data distributions is the
reason that MMD-based methods are more robust to unseen
domains.
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Cantonese Tagalog

Female Male Female Male

EER mCprim aCprim EER mCprim aCprim EER mCprim aCprim EER mCprim aCprim

No Adapt 10.92 0.77 0.87 10.87 0.74 0.96 20.55 0.93 0.94 19.89 0.94 0.96
IDVC 9.47 0.74 0.88 8.74 0.68 0.96 17.50 0.91 0.93 15.75 0.90 0.96
DAE 9.15 0.73 0.84 8.61 0.67 0.94 17.26 0.90 0.91 15.59 0.89 0.94
NAE 9.27 0.74 0.83 8.73 0.67 0.94 17.34 0.90 0.91 15.59 0.89 0.94

(a)

Cantonese Tagalog

Female Male Female Male

EER mCprim aCprim EER mCprim aCprim EER mCprim aCprim EER mCprim aCprim

No Adapt 10.92 0.77 0.87 10.87 0.74 0.96 20.55 0.93 0.94 19.89 0.94 0.96
IDVC 10.22 0.75 0.87 9.67 0.70 0.96 18.11 0.91 0.93 16.71 0.92 0.95
DAE 9.52 0.73 0.83 9.17 0.68 0.95 17.74 0.91 0.91 16.83 0.91 0.94
NAE 9.82 0.74 0.82 9.44 0.69 0.95 17.93 0.91 0.92 16.89 0.92 0.94

(b)

TABLE III
THE PERFORMANCE OF VARIOUS DOMAIN ADAPTATION METHODS ON THE SUBSETS OF THE SRE16 EVALUATION SET. IN (A), THE IDVC, DAE AND
NAE WERE TRAINED USING BOTH IN-DOMAIN DATA AND OUT-DOMAIN DATA. IN (B), THE IDVC, DAE AND NAE WERE TRAINED WITHOUT USING

IN-DOMAIN DATA.

CAN_F CAN_M TGL_F TGL_M

6

8

10

12

14

16

18

E
E

R

9.47
8.74

17.50

15.75

10.22
9.67

18.11

16.71

IDVC

with in-domain data
without in-domain data

CAN_F CAN_M TGL_F TGL_M

9.15
8.61

17.26

15.59

9.52 9.17

17.74
16.83

DAE

with in-domain data
without in-domain data

CAN_F CAN_M TGL_F TGL_M

9.27
8.73

17.34

15.59

9.82 9.44

17.93
16.89

NAE

with in-domain data
without in-domain data

Fig. 7. Bar charts showing the EERs of three domain adaptation methods with and without using in-domain data.

C. Impact of the Hyperparameters

Comparing with IDVC, DAEs and NAEs have more hyper-
parameters to tune. In this subsection, we present the results
of DAEs and NAEs with different values of λ and different
choices of kernels. The kernels we experimented with include
quadratic kernels with c = 0 and c = 1, RBF kernels with
σ = 1, and the mixture of four RBF kernels with width equals
to 1, 3, 5, and 10, respectively. Tables IV(a) and IV(b) show
the results of DAEs and NAEs with different choices of λ’s
and kernels. Fig. 8 shows the EERs of DAEs and NAEs with
different choices of λ and kernels.

Three phenomena can be observed from the results in
Table IV and Fig. 8. Firstly, quadratic kernels and RBF kernels
require different values of λ to obtain good performance.
Specifically, both NAEs and DAEs with quadratic kernels
perform the best when λ is equal to 0.1 or 1, while NAEs
and DAEs with RBF kernels perform the best when λ is

equal to 0.01 or 0.1. Secondly, for NAEs, the quadratic kernel
with c = 0 generally performs poorly in most cases. Recall
that c controls the trade-off between the matching in the first
and the second moments. It seems that matching the second
moments alone is not enough in most cases. Thirdly, there
is no noticeable performance gain from using RBF kernels
or a mixture of RBF kernels. Theoretically, RBF kernels can
match up to infinite moments of data distributions and are
therefore better than quadratic kernels for reducing the domain
mismatch. However, in our experiments, RBF kernels have no
advantage over quadratic kernels. It may be due to the fact
that PLDA only uses up to the second moment.

D. Impact of Data Partition
In the previous sections, we partitioned i-vectors by both

genders and languages. In this section, we investigated the
influence of different partitioning schemes. According to the
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Quad(c=0) Quad(c=1) RBF Mixture RBF

λ EER mCprim aCprim EER mCprim aCprim EER mCprim aCprim EER mCprim aCprim

0.01 13.76 0.86 0.93 14.07 0.87 0.91 12.94 0.85 0.92 13.01 0.85 0.90
0.1 12.81 0.85 0.91 12.85 0.84 0.90 13.29 0.85 0.90 13.23 0.85 0.91
1 12.90 0.86 0.93 12.79 0.85 0.91 14.13 0.87 0.89 14.05 0.88 0.91
10 13.73 0.87 0.89 13.36 0.86 0.90 14.26 0.87 0.89 14.31 0.87 0.89

(a)

Quad(c=0) Quad(c=1) RBF Mixture RBF

λ EER mCprim aCprim EER mCprim aCprim EER mCprim aCprim EER mCprim aCprim

0.01 13.27 0.86 0.91 12.80 0.85 0.91 12.97 0.85 0.92 13.11 0.85 0.91
0.1 13.47 0.85 0.93 12.79 0.85 0.91 13.02 0.85 0.90 13.04 0.85 0.91
1 13.72 0.86 0.90 12.81 0.85 0.91 13.81 0.85 0.89 14.10 0.85 0.90
10 13.80 0.86 0.91 13.05 0.85 0.91 13.99 0.85 0.92 13.90 0.88 0.91

(b)

TABLE IV
THE PERFORMANCE OF (A) DAES AND (B) NAES WITH DIFFERENT CHOICES OF KERNELS AND λ’S. QUAD IS THE QUADRATIC KERNEL IN EQ. 7. BOTH

DAES AND NAES WERE TRAINED BY PARTITIONING SRE04–10 AND SRE16 DEVELOPMENT DATA INTO GENDER- AND LANGUAGE-HOMOGENOUS
GROUPS.

Fig. 8. Line plots showing the EERs of DAEs (top row) and NAEs (bottom row) with different choices of λ’s and kernels.

Partitioning Scheme IDVC DAE NAE
EER mCprim aCprim EER mCprim aCprim EER mCprim aCprim

Gender and Language 13.08 0.86 0.93 12.79 0.85 0.91 12.81 0.85 0.91
Gender 13.75 0.87 0.9 13.09 0.85 0.90 13.03 0.86 0.92
Language 13.59 0.85 0.93 13.29 0.85 0.90 13.29 0.85 0.90

TABLE V
THE PERFORMANCE OF IDVC, DAE AND NAE USING DIFFERENT PARTITION SCHEMES.

gender and language, we can partition data into gender-
homogenous groups, language-homogenous groups or gender-
and language-homogenous groups. Table V shows the results
of the DA methods using different partitioning schemes. For

all of the three DA methods, it is apparent that partitioning by
both genders and languages achieves the best result, which
clearly demonstrates the advantage of multi-source domain
adaptation.
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E. Combined with PLDA Model Interpolation
It is also possible to combine i-vector domain adaptation

with PLDA model interpolation [4]. Specifically, the unla-
belled i-vectors in the target domain were clustered to obtain
some hypothesized labels, which were used to train a PLDA
model. As PLDA models obtained in this way may not be
very reliable, a better approach is to linearly interpolate the
parameters of source as well as target PLDA models [4]. Table
VI shows the results of i-vector adaptation in combination with
model interpolation. The interpolation parameter was set to
0.3. When compared with using the unadapted i-vectors, it is
clear that adapting the i-vectors improves performance of the
PLDA model interpolation. Also, the best performance was
achieved by the proposed DAE.

Adaptation Method EER mCprim aCprim

No Adaptation 13.47 0.86 0.91
IDVC 12.88 0.85 0.93
DAE 12.43 0.84 0.90
NAE 12.51 0.84 0.91

TABLE VI
THE PERFORMANCE OF UNSUPERVISED PLDA MODEL INTERPOLATION

USING UNADAPTED I-VECTORS AND I-VECTORS ADAPTED BY IDVC,
DAES AND NAES. THE INTERPOLATION PARAMETER WAS SET TO 0.3

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed two MMD-based autoencoders
for multiple-source i-vector domain adaptation. Unlike IDVC,
the domain-wise MMD can utilize second, third and even
infinite moments of data distributions for measuring the do-
main mismatch. The experiments on SRE16 show that both
autoencoders can significantly improve SV performance. The
experiments also demonstrate that the proposed methods are
more robust to unseen domains than IDVC.

Despite the promising results, there are still some problems
we have not solved. For example, we have not fully utilized the
rich representations that the non-linear autoencoders can offer.
As shown in Table II, the non-linear autoencoders perform
worse than the linear ones. As the non-linear autoencoders
produce higher losses, they obviously stuck in local minima.
There are promising results in the literature for incorporating
more supervised objectives to reduce the chance of stucking
in local minima in representation learning [44], [45]. In future
work, we could incorporate metric learning [47]–[49] in the
objective functions as a way to guide the learning of the
autoencoders.

Currently, we separate the optimization of MMD kernel
parameters and autoencoders’ weights. As a result, the kernel
parameters may not be optimal. However, how to jointly
optimize the kernel parameters and network parameters is still
an open problem, although some success in this direction has
been seen recently [50]. Joint optimization is a very promising
direction to look at in the future.
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