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Directional Sources in Wave-based Acoustic
Simulation

*Stefan Bilbao, Senior Member, IEEE and Brian Hamilton, Member, IEEE

Abstract—Volumetric wave-based acoustic simulation relies on
the complete solution to the 3D wave equation over a spatial grid.
Detailed modeling of sources, however, requires interpolation
over the grid, which is complicated by the directional character
of the source itself. In this article, a new model of point
sources of arbitrary directivity and location with respect to an
underlying grid is presented. The model is framed in the spatio-
temporal domain directly through the differentiation of Dirac
distributions, leading to a spatial Fourier-based approximation
strategy. Various approximants are presented, of both separable
and non-separable type, and allowing for optimisation over
a specified wavenumber range. Such approximants are then
employed in a finite difference time domain setting, yielding
numerical results for sources of various types, which are then
compared against exact solutions.

Index Terms—room acoustics, finite difference time domain
method, multipole modeling, source modeling.

I. INTRODUCTION

Volumetric time domain modeling of acoustic spaces, for
applications in architectural acoustics and virtualisation, was
first proposed in the early 1990s [1]–[3]. Such methods are
based on full wave-based modeling of the acoustic field, in
contrast with geometric methods such as ray tracing [4] or the
image source method [5], which are valid in the limit of high
frequencies. At first confined to deal with problems defined
over small geometries, and for low frequencies, computational
power has increased to the extent that wave-based methods
may now be used to simulate large acoustic spaces, typically
on GPUs [6], [7] and at typical audio sampling frequencies
[8], [9]. Parallelisability of such algorithms is a major concern,
and thus methods defined over regular grids, such as the finite
difference time domain (FDTD) method [10], [11] are a natural
choice, with generalisations such as the finite volume time
domain method [12], [13] useful in order to handle irregular
geometries and realistic wall impedances in a provably stable
manner [14], [15]. Such methods have the property of a local
update at a given grid point, based on values over a set of
nearby locations, or stencil; other non-local methods, such as
pseudo-spectral methods have also seen some interest [16],
[17].

The modeling of acoustic sources in FDTD has been ap-
proached by various authors, and interest has been mainly in
the modeling of point-like monopoles, activating a single node
in a grid. The emphasis has been on distinct models (soft-
source, hard-source and transparent-source [18]–[20]), and, in
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particular, filtering strategies applied in order to obtain rea-
sonable impulse responses [21]. Directional sources have also
been described, sometimes employing differences between
neighbouring values on the grid [22], [23], and through direct
comparison against specified directivity patterns [24]. The dual
problem of receiver directivity in waveguide meshes (which
are equivalent to FDTD) has been described in [25], [26].
Sources within spectral approximations have been discussed
in [27].

In most cases above, which deal with discretisation directly,
there is an absence of an underlying model of the source itself
for the continuous problem (with some exceptions [7]). Such
models do appear in the acoustics literature, often framed in
terms of the free-space solution to the wave equation (and its
derivatives) under steady sinusoidal excitation conditions [28].
Considering the simulation of realistic spaces and sources,
where (a) free-space solutions do not hold due to the fi-
nite extent of the problem domain, (b) sources may have a
complex directional character and be mobile or dynamic, and
furthermore (c) may not be aligned with grid points or axes
in an FDTD setting, a more general model is desirable. Such
generality follows from a model framed as an inhomogeneous
wave equation with a source term depending on a localised
distribution (such as a Dirac delta function or its derivatives),
and thus suitable for direct spatio-temporal simulation. The
problem, then, becomes one of the representation of such
localised distributions over a grid [29], [30], which requires
some care when audio considerations come into play.

In this article, a new localised source model is presented,
allowing for arbitrary source placement and directivity, as
well as various approaches to discretisation. The 3D wave
equation is presented in Section II, followed by a model of
pointwise multipole sources of arbitrary order in Section III.
Different families of approximations to the 3D Dirac delta
function and its derivatives are presented in Section IV, and
basic finite difference schemes for the 3D wave equation in
Section V. Numerical results appear in Section VI, and some
concluding remarks and perspectives follow in Section VII.
Some relevant tensor definitions and identities appear in the
Appendix. Preliminary results have appeared in [31].

II. THE 3D WAVE EQUATION

The usual starting point for models of wave propagation in
room acoustics applications is the linearised system

ρ∂tv +∇p = 0 (1a)
1

ρc2
∂tp+∇ · v = 0 . (1b)
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Here, the scalar quantity p(x, t) and the three-vector v(x, t)
are the acoustic pressure and vector particle velocity, respec-
tively. Both are defined for time t ≥ 0, and in terms of
coordinates x = [x1, x2, x3] ∈ D ⊂ R3. ∂t represents partial
differentiation with respect to time t, and ∇ and ∇· are the
three-dimensional (3D) gradient and divergence operations,
respectively. ρ and c are the density of air and wave speed
respectively at a given temperature, and assumed constant here.
0 is the null three vector. Equations (1a) and (1b) correspond,
respectively, to pointwise conservation of momentum and mass
in the acoustic field. In this article, which is concerned with
source modeling, the domain will be assumed to be infinite,
so that D = R3, and thus wall conditions need not be taken
into consideration.

The 3D wave equation may be deduced from (1) through
the elimination of the velocity variable v:

1

c2
∂2t p−∆p = 0 . (2)

Here ∆ = ∇ · ∇ is the 3D Laplacian operator. (2) above is
written in terms of the acoustic pressure p alone, although it
is possible to arrive at a similar form written in terms of the
velocity potential—see, e.g., [32]. Both the first order system
(1) and the 3D wave equation can be used as starting points
for volumetric time-stepping methods such as FDTD. Here,
the second order form will be employed.

III. DIRECTIONAL POINT SOURCE MODELING

Suppose a source is located at coordinates xS =
[xS,1, xS,2, xS,3]. It is useful, before presenting a model of
the source itself, to introduce source-centred coordinates r as

r = x− xS , (3)

or, in terms of distance r and azimuth and inclination angles
θ and φ between the source and field point as r = rd, where

r = |r| d = [sin(φ) cos(θ) sin(φ) sin(θ) cos(φ)] . (4)

In the setting of numerical simulation, the underlying absolute
coordinates x will be retained for the definition of a spatial
grid, and relative coordinates r for approximations to the
source. The definitions of the spatial differential operators
∇, ∇· and ∆ may be interpreted in terms of either set of
coordinates, and thus will be left unlabelled here.

A. Monopole Sources

Source terms are not included in (1) above. A standard
model of a pointwise monopole source [28], located at ab-
solute coordinates xS may be written through a modification
of (1b), and in source-centred coordinates r, as

1

ρc2
∂tp+∇ · v = Qδ(3) (r) . (5)

Here, Q = Q(t) is the so-called source strength, with dimen-
sions of volume velocity. δ(3) (r) is a 3D Dirac delta function
centered at the absolute coordinates xS ; formally, it may be
separated as

δ(3) (r) = δ(1)(x1−xS,1)δ(1)(x2−xS,2)δ(1)(x3−xS,3) , (6)

where δ(1) represents the one-dimensional (1D) Dirac distribu-
tion. When combined with (1a), the following inhomogeneous
wave equation results [28]:

1

c2
∂2t p−∆p = ρQ̇δ(3)(r) , (7)

where here, Q̇ represents the ordinary time derivative of
Q. Under quiescent initial conditions, the inhomogeneous
equation (7) has the well-known solution

p(r, t) =
ρQ̇ (t− r/c)

4πr
. (8)

Such a model can be viewed as resulting from a uniformly
vibrating sphere, in the limit of vanishing source radius. It
is not to be viewed as a boundary—that is, it is capable of
producing acoustic energy, but not scattering it.

B. Dipole Sources

Basic models of dipole sources are often written in terms of
closely-spaced pairs of monopole sources of opposite strength
[32]. It is also possible to begin from the addition of a
pointwise directional source term in (1a), as

ρ∂tv +∇p = nDFδ
(3) (r) . (9)

Here, F = F (t) is a scalar signal with dimensions of Newtons,
again acting at absolute source coordinates xS , and with
direction nD, where nD is a unit amplitude 3-vector, defined
in terms of azimuth and inclination angles θD and φD as

nD = [sin(φD) cos(θD) sin(φD) sin(θD) cos(φD)] . (10)

Again, through recombination with (1b), an inhomogeneous
wave equation results [28]:

1

c2
∂2t p−∆p = −FnD · ∇δ(3)(r) , (11)

where ∇δ(3) is the gradient of δ(3) in the distributional sense.
The solution to (11), again under zero initial conditions, is

p(r, t) =
d · nD
4πr2

(r
c
∂t + 1

)
F (t− r/c) . (12)

C. General Multipole Sources

The introduction of higher-order multipole sources is often
approached through the combination of simpler combinations
of monopoles and dipoles [28]. A more general approach
is to make use of source terms which result from multiple
differentiation of the Dirac delta function:

1

c2
∂2t p−∆p− f = 0 f(r, t) =

∞∑
q=0

f (q) , (13)

where
f (q) = Ψ(q) (q)

·
(
∇qδ(3)(r)

)
︸ ︷︷ ︸

Υ(q)

. (14)

Here, Ψ(q) = Ψ
(q)
γ (t) is a qth-order tensor indexed by the

q-vector γ = [γ1, . . . , γq], where γl, l = 1, . . . , q takes on
the value 1, 2 or 3. See the Appendix. ∇q , the qth power of
the gradient operation, as defined in (69) is also a qth-order
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Fig. 1: Directivity for various sources in dB, as a function of θ, for φ = π/2: the monopole, the dipole, with [φD, θD] = [π/2, π/6], a lateral quadrupole,
with [φQ, θQ] = [π/2, π/3] and [φ̂Q, θ̂Q] = [π/2,−π/6], a longitudinal quadrupole with φQ = φ̂Q = π/2 and θQ = θ̂Q = 0, and an asymmetric source
as described in Section III-E with [φD, θD] = [π/2,−π/4]. In the last two cases, directivity is dependent on the parameter η = rω/c, shown in the near
field for η = 0.01 (black), η = 1 (dotted) and in the far field for η = 100 (white).

tensor, indexed similarly. The operation
(q)
· represents a q-fold

contracted inner product, as defined in (68). For a given q,
the term in the series appearing in (13) represents a general
combination of qth-order spatial derivatives of the Dirac delta
function, represented here as the qth-order tensor Υ(q).

The general solution to (13) may be derived as

p(r, t) =
1

4π

∞∑
q=0

∇q
(q)
·

(
Ψ(q)(t− r/c)

r

)
. (15)

If the forcing functions Ψ(q) are proportional to Dirac delta
functions (in time), the Fourier transform of the solution above
may be viewed as the free-space Green’s function for the
Helmholtz equation, under the forcing term as given in (13).

The inhomogeneous equations (7) and (11) corresponding
to the point monopole and dipole may be recovered from (13)
above by using, in isolation, Ψ(0) = ρQ̇ and Ψ(1) = −nDF .
The general solutions (8) and (12) for the monopole and dipole
also follow from the general form from (15) above, under the
choices given above, again employed in isolation.

D. Quadrupole Sources

A useful special case, beyond that of the monopole or
dipole, is that of the general quadrupole, characterised by the
source 2-tensor Ψ(2). Well-known examples of the longitudi-
nal and lateral quadrupole follow from the representation

Ψ(2) =
ψ(2)

2
(nQ ⊗ n̂Q + n̂Q ⊗ nQ) , (16)

which is written in terms of a scalar quadrupole amplitude
ψ(2)(t), and the outer product (indicated by ⊗) of two unit-
length column 3-vectors nQ and n̂Q. These may be written
in terms of the azimuth/inclination angle pairs [θQ, φQ] and
[θ̂Q, φ̂Q] as in the case of the dipole in (10). If nQ = n̂Q,
then a longitudinal quadrupole results, oriented in direction
nQ. If nQ ⊥ n̂Q, then a lateral quadrupole results, oriented
in direction nQ × n̂Q. Though these are generally the only
cases that appear in the acoustics literature, the representation
in (16) does not span the range of possible quadrupoles, for a
general 2-tensor Ψ(2).

For the special case of a quadrupole which may be written
in the form (16) above, the general solution is

p(r, t) = −
(nQ · n̂Q)

(
r
c ψ̇

(2) + ψ(2)
)

4πr3
(17)

+
(nQ · d) (n̂Q · d)

(
r2

c2 ψ̈
(2) + 3 rc ψ̇

(2) + 3ψ(2)
)

4πr3
,

where ψ(2) and its temporal derivatives are evaluated at time
t− r/c.

E. Asymmetric Sources

For the model given in (13), if only one term, of order q is
included, then the solution exhibits symmetry (or antisymme-
try) about r = 0, as

p(r, t) = (−1)qp(−r, t) . (18)

Sources with an asymmetric character require multiple terms
in (13). As a simple example, consider (13) with terms in
q = 0 and q = 1, and where ψ(0) and Ψ(1) = ψ(1)nD, for
some unit 3-vector nD, are related by

ψ(0) (t) =
1

c
ψ̇(1) (t) . (19)

As in the case of the longitudinal quadrupole, near and far
field directivity effects will in general appear, as illustrated in
Figure 1 at right, showing a typical cardioid pattern.

F. Directivity and Near- and Far-field Effects

The general model given in (13) leads, obviously, to solu-
tions with directivity. To recover standard directivity patterns
from the solution in (15), one may assume sinusoidal variation
of the coefficients Ψ(q) at angular frequency ω, or Ψ(q) =

Ψ̂
(q)
e−jωt, for constants Ψ̂

(q)
, q = 0, . . .. In this case, the

solution (15) may be written as p(r, t) = e−jωtp̂(r, ω), where

p̂(r, ω) =
1

4π

∞∑
q=0

Ψ̂
(q) (q)
· ∇q

(
ejωr/c

r

)
. (20)

For a given radius r and direction d, one can write an
expression for the normalised directivity of the source as

D (r,d, ω) =
|p̂ (r, ω) |

maxd |p̂ (r, ω) |
. (21)
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For monopole and dipole sources, directivity is independent
of frequency ω. For higher order multipoles, near and far
field effects will, in general, appear. See Figure 1, illustrating
directivity patterns for a variety of source types.

G. Separable Decompositions of Source Terms

Except in the case of the monopole, the source term f (q) (r)
is not separable according to the coordinates r. Each individual
term under the inner product in (14), however, is separable.
Indeed, the entry Υ

(q)
γ of Υ(q) with index γ has the form:

Υ(q)
γ =

(
3∏

ν=1

∂qνν

)
δ(3) (r) =

3∏
ν=1

∂qνν δ
(1) (rν)︸ ︷︷ ︸
w

(qν )
ν

. (22)

Here, separability of the 3D Dirac delta function (6) has been
used, and where qν , ν = 1, . . . , 3 is the number of elements of
γ which take on the value ν (and thus

∑3
ν=1 qν = q). The sep-

arability property leads to simplifications when approximating
such distributions over a grid, as 1D forms (indicated as w(qν)

ν ,
representing the qν th spatial derivative of a 1D Dirac delta
function, in coordinate rν) may be approximated individually
and then recombined.

IV. APPROXIMATIONS TO THE DIRAC DELTA FUNCTION
AND ITS DERIVATIVES

FDTD methods for acoustics applications are normally de-
fined over regular spatial grids which are often (but not always)
chosen to be Cartesian. For point-like sources as described in
Section III, a discrete representation is thus necessary.

Consider a spatial Cartesian grid, defined over grid indices
l = [l1, l2, l3] ∈ Z3, corresponding to locations x = lX , where
X is the grid spacing. An arbitrary source location xS may
be represented uniquely with reference to the grid as

xS = (lS + ξS)X , (23)

where lS ∈ Z3, and where ξS = [ξS,1, ξS,2, ξS,3] satisfies
− 1

2 ≤ ξS,ν < 1
2 , ν = 1, 2, 3. Here, lS is the nearest

rounded integer grid location to the source location, and ξS
is the fractional remainder. In this section, we further assume
0 ≤ ξS,ν < 1

2 , ν = 1, 2, 3 without loss of generality.
A grid function f = fl may be constructed as an approxi-

mation to a continuously variable function f(x), at locations
xl = lX . A useful representation of such a grid function,
when intended to approximate a localised distribution is

fl =
∑
l′∈B

bl′Il−lS−l′ . (24)

Here, B ∈ Z3 represents the family of grid points over which
the approximation is taken, relative to lS , and bl′ , l′ ∈ B are
the corresponding coefficients. The symbol Iq, for q ∈ Z3

is the indicator function (or 3D Kronecker delta), taking the
value 1 when q = 0, and 0 otherwise.

For local approximations, there are various useful choices of
the set B. One choice is the cubic domain B(3)

�,N , for integer

N , which may be defined as a Cartesian product B(3)
�,N =

B(1)
N × B(1)

N × B(1)
N of 1D domains B(1)

N , where

B(1)
N = [−bN − 1

2
c, . . . , bN

2
c] , (25)

Fig. 2: Domains B(3)
�,N and B(3)

◦,N , for N = 4.

and where b·c indicates a flooring operation. Another is the
spherical distribution B = B(3)

◦,N , where

B(3)
◦,N = {l′ ∈ Z3|‖l′ − ξS‖2 ≤ (3/4π)

1/3
N} , (26)

which is an excellent match in isotropic problems such as the
wave equation (2). The additional factor of (3/4π)

1/3 above
serves to equalise the computational cost of approximation
over the two domains B(3)

�,N and B = B(3)
◦,N . See Figure 2 for

an illustration of the two distributions.

A. Spatial Fourier Transforms

Because of the point-like nature of the source terms, approx-
imations over a grid are best approached in the spatial Fourier
transform domain. For a continuous function f (r), the spatial
Fourier transform f̂ (k) is defined, in terms of wave vectors
k = [k1 k2 k3] ∈ R3, as

f̂ (k) =

∫∫∫
R3

f (r) e−jk·rdr . (27)

In particular, for the source terms f (q) (r), as defined in (14),
the spatial Fourier transforms f̂ (q) (k) follow as

f̂ (q) (k) = Ψ(q) (q)
· (jk)

q
, (28)

where an inner product as defined in (68) has been used, and
where (jk)

q is a qth-order tensor, as defined in (69). See the
Appendix.

In the case of grid functions fl, a discrete 3D spatial Fourier
transform may be defined as

f̂d,x (k) = X3
∑
l∈Z3

fle
−jk·lX (29)

in terms of a discrete wave vector k, defined over the cube-
shaped region ‖k‖∞ ≤ π/X . Note that the definition in
(29) above incorporates a factor of X3, for consistency with
the continuous Fourier transform, as defined in (27). This
transform is defined with respect to the absolute coordinates
x (and hence the subscript x in f̂d,x (k)).

Consider now a grid function fl defined with respect to
a particular local approximation region B, with associated
coefficients b, as in (24). The discrete Fourier transform (29)
may now be written as

f̂d,x (k) = X3
∑
l′∈B

bl′e
−jk·(l′+lS)X . (30)
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A shift to a Fourier transform f̂d defined over source-centered
coordinates follows from a multiplication by a phase factor
corresponding to a displacement of xS = (lS + ξS)X:

f̂d (k) = ejk·(lS+ξS)X f̂d,x = X3
∑
l′∈B

bl′e
−jk·(l′−ξS)X .

(31)

B. Consistency of Approximations and Constraints
Consider now the qth-order source term f (q), as defined in

(14), and an approximation over a region B, with coefficients
b
(q)
l′ = b̃

(q)
l′ /X

3+q , which may be written as

f
(q)
l =

1

X3+q

∑
l′∈B

b̃
(q)
l′ Il−lS−l′ . (32)

The source-centred discrete Fourier transform (31) is then

f̂
(q)
d =

1

Xq

∑
l′∈B

b̃
(q)
l′ e
−jk·(l′−ξS)X . (33)

Expanding this expression in Taylor series about k = 0 gives

f̂
(q)
d =

∞∑
m=0

Xm−q

m!

∑
l′∈B

b̃
(q)
l′ (−jk · (l′ − ξS))

m
. (34)

By association with the Fourier transform of the continuous
operator f (q), from (28), it is apparent that, for consistency of
the approximation f (q)l with f (q), it must follow that the term
in (34) with m = q must satisfy

1

q!

∑
l′∈B

b̃
(q)
l′ (−jk · (l′ − ξS))

q
= Ψ(q) (q)

· (jk)
q
. (35)

Furthermore, for q ≥ 1, all terms of lower order must vanish,
for consistency with the transform (28), which only contains
terms of order q in k, and no lower order terms. In other
words,∑

l′∈B
b̃
(q)
l′ (−jk · (l′ − ξS))

m
= 0, m = 0, . . . , q − 1 .

(36)
The conditions (35) and (36) above depend explicitly on the
fractional remainder ξS . By employing (36) recursively, and
making use of the identity (70) (see the Appendix), one may
arrive at the following set of conditions:∑

l′∈B
b̃
(q)
l′ (l′)

q
= (−1)qq!Ψ(q) (37)

and, for q ≥ 1,∑
l′∈B

b̃
(q)
l′ (l′)

m
= 0, m = 0, . . . , q − 1 . (38)

These conditions, which are independent of the remainder ξS ,
form a set of (q + 3)!/6q! affine constraints on the coefficients
b̃, after taking into account symmetry of the tensor Ψ(q). Such
conditions enforce only consistency of the discrete approxima-
tions with the underlying continuous functions—it is possible
to go further to enforce so-called moment conditions [29],
[33], at the expense of a reduced parameter space available
for optimisation over the full range of wavenumbers. Note also
that terms in (34) with order m > q do not vanish identically,
representing errors in the high wavenumber range—but such
terms are accompanied by increasing powers of X , the grid
spacing, and thus vanish in the limit as X becomes small.

C. Separable Approximations

Analytic simplifications are possible if the function to be
approximated and corresponding domain B are separable. A
separable domain B(3)

�,N has been defined in (25), and, as noted
in Section III-G, any source term f (q) may be decomposed into
a weighted sum of terms of the form (22), each of which is
separable according to the coordinates r. For each separable
term Υ(q)

γ in f (q), one may then design 1D approximants
w

(qν)
ν,lν

, defined over the domains lν ∈ B(1)
N as

w
(qν)
ν,lν

=
∑

l′ν∈B
(1)
N

b
(q)
ν,lν
Ilν−lS,ν−l′S,ν , (39)

such that the grid function Υ
(q)
γ,l approximates Υ(q)

γ as

Υ
(q)
γ,l =

3∏
ν=1

w
(qν)
ν,lν

. (40)

For the sake of notational simplicity, it is useful to introduce
the symbol w(g) = (d/dσ)

g
δ(1) (σ), representing the gth

derivative of a 1D Dirac delta function, for g ≥ 0, and
regardless of the spatial coordinate (a dummy coordinate σ
has been employed above). The associated 1D spatial Fourier
transform ŵ(g) may be written as

ŵ(g) =

∫ ∞
−∞

(d/dσ)
g
δ(1) (σ) e−jkσdσ = (−jk)

g (41)

in terms of a scalar wavenumber k. 1D approximants to w(g)

may be written as w(g)
l , for l ∈ Z, and expressed explicitly in

terms of coefficients c(g)l′ , l′ ∈ B(1)
N as

w
(g)
l =

∑
l′∈B(1)

N

c
(g)
l′ Il−lS−l′ , (42)

and will be associated with a scalar nearest-neighbour grid
location lS , and a scalar fractional grid distance ξS , assumed
here, by symmetry, to lie over the range 0 ≤ ξS < 1

2 . For
such 1D approximants, it is useful again to introduce scaled
coefficients as c̃(g)l′ = X1+gc

(g)
l′ . Taylor expansion of the 1D

Fourier transform of w(g)
l , defined as

ŵ
(g)
d =

1

Xg

∑
l′∈B(1)

N

c̃
(g)
l′ e
−jk(l′−ξS)X , (43)

again phase shifted corresponding to a displacement of lS+ξS ,
leads to the following consistency conditions:∑

l′∈B(1)
N

c̃
(g)
l′ (l′)

g
= (−1)gg! (44)

and, for g ≥ 1,∑
l′∈B(1)

N

c̃
(m)
l′ (l′)

m
= 0, m = 0, . . . , g − 1 . (45)
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D. Nearest-Neighbour and Trilinear Approximations

The most basic type of approximation is that of nearest-
neighbour type—the approximation point is taken to be the
nearest grid location to the source location. In this case,
separable approximations may be defined recursively, through
repeated application of difference operators to a single Kro-
necker delta function centered at the grid location lS , as

w
(g)
l = D

g−
− D

g+
+ Il−lS , (46)

where D− and D+ are defined as

D−Ij =
1

X
(Ij − Ij+1) D+Ij =

1

X
(Ij−1 − Ij) ,

(47)
and where g− = bg/2c and g+ = b(g + 1) /2c indicate powers
of D− and D+, respectively. This definition leads to a series of
approximations defined over B(1)

g+1, minimal for a given order
of differentiation g; it is easily verified that the 1D consistency
conditions (44) and (45) are satisfied automatically in this case.

A better approximation, using the fractional remainder ξS ,
may be obtained from the nearest-neighbour form through
two-point averaging or linear interpolation, or as

w
(g)
l = M

(g)
ξS
D
g−
− D

g+
+ Il−lS . (48)

In this case, the averaging operator M (g)
ξS

is defined, in terms
of its action on a Kronecker delta function Ij , as

M
(g)
ξS
Ij =

{
(1− ξS) Ij + ξSIj−1, g even(
1
2 + ξS

)
Ij +

(
1
2 − ξS

)
Ij+1, g odd

.

(49)
Such 1D linear approximants, when combined into a 3D
approximant lead to a standard trilinear approximant. It is
again easily verified that the 1D consistency conditions (44)
and (45) are satisfied automatically in this case. See Figure 3,
illustrating such nearest neighbour and linear approximants,
for various orders g.

E. Optimised Separable Approximations

The nearest-neighbour and trilinear approximations may be
derived explicitly. Another approach is to optimise directly
in the Fourier domain against the transform of the multipole
distribution, from (28). To this end, and defining a normalised
wavenumber k̃ = Xk, one may define a least-squares error
measure in the wavenumber domain as

E
(g)
ζ = Xg

∫ πζ

−πζ
|ŵ(g)
d (k̃)− ŵ(g)(k̃)|2dk̃ (50)

=

∫ πζ

−πζ
|
∑
l′∈B(1)

N

c̃
(g)
l′ e
−jk̃(lS−ξS) − (jk̃)g|2dk̃ .

Here, the parameter ζ, with 0 < ζ ≤ 1 allows for the selection
of a wavenumber range for the optimisation, and constitutes an
additional degree of control over the resulting approximant—
which is useful when used in the finite difference setting,
where it may be used in conjunction with knowledge about the
dispersive properties of a given scheme. This will be described
further in Section V.

In this case, the consistency conditions (44) and (45) are
not satisfied automatically, and form an additional g+1 affine

Fig. 3: Discrete approximations to the gth derivative of the 1D Dirac delta
function, about a given fractional grid location (indicated here by a cross),
where g is as indicated. In each case, a simple nearest-neighbour approxima-
tion is shown (top row), as well as a linear approximant (second row) and an
optimised approximant (third row), using N = 8, and a relative bandwidth of
ζ = 0.7. In the bottom row, the relative error |ŵ(g)

d − ŵ
(g)|/|ŵ(g)| is shown

as a function of normalised wavenumber kX/π for the nearest-neighbour
(dotted), linear (white) and optimised (black) approximants.

constraints. Using the error measure (51), a constrained least-
squares optimisation problem results. See Figure 3, illustrating
a typical optimised approximant. Upon recombination of the
1D approximants, a 3D approximant results over the cube-
shaped wave vector region k ∈ U�,ζ , defined as

U�,ζ = {k ∈ R3|‖k‖∞ ≤ πζ/X} . (51)

The region U�,ζ is shown in Figure 4 at left.

Fig. 4: Cross-sections, in the k1, k2 plane, of the cube-shaped wave vector
region U�,ζ (at left) and the spherical region U◦,ζ (at right), for ζ = 1 (light
grey) and ζ = 0.6 (grey).

F. Nonseparable Approximations

Loosening the requirement of separability leads to more
general approximation strategies. In this case, a source dis-
tribution f may be approximated in its entirety, without
the requirement of an additive decomposition into separable
components. In addition, for optimisation purposes, one may
introduce the more natural wave-vector range U◦,ζ , defined as

U◦,ζ = {k ∈ R3|‖k‖2 ≤ πζ/X} . (52)
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The wave-vector range U◦,ζ is spherical, and parameterised
by ζ, with 0 < ζ ≤ 1. The region U◦,ζ is shown in Figure 4
at right.

Consider a general approximant f = fl as defined in (24)
intended to approximate a distribution f (r), for a set of
coefficients bl′ , l′ ∈ B. An optimal constrained least-squares
approximation over the wave-vector range U◦,ζ follows from
the minimisation of the error function

Eζ =

∫∫∫
U◦,ζ
|f̂d − f̂ |2dk (53)

with respect to the coefficients bl′ , l′ ∈ B. As the approximant
f = fl is linear in the coefficients bl′ , a linear system results,
subject to the consistency constraints (35) and (36). In this
article, for such nonseparable approximants, B = B◦,N is used.

V. FINITE DIFFERENCE TIME DOMAIN METHODS

Finite difference time domain methods represent what is
perhaps the simplest approach to volumetric time domain
modeling in the context of room acoustics. The spatial domain
under study is represented over a uniform grid, and time
stepping is performed at a fixed rate. FDTD basics are covered
in many texts [34], [35], and a great variety of schemes
have been proposed for 3D acoustics applications [36]. The
representations of point-like source terms as presented here
are relatively independent of the particular choice of scheme.
Although the best known, and by far the simplest is the so-
called seven-point scheme, described below, in the interest of
examining the behaviour of the various source term approx-
imations, particularly in the high frequency range, a higher
order accurate scheme (fourth-order in time and space) will
be employed here. The source term approximations presented
in this article can equally be used with simpler methods such
as the seven-point scheme.

The spatial Cartesian grid in 3D has already been defined
at the beginning of Section IV. A grid function pnl represents
an approximation to a continuously variable function p(x, t),
at locations x = lX and at times t = nT , where here, X is
the grid spacing, and T is the time step (and Fs = 1/T is the
associated sample rate).

The class of explicit two-step FDTD methods for the wave
equation (2) may be written as

pn+1
l − 2pnl + pn−1l − λ2Lpnl = 0 , (54)

where the operator L is a discrete approximation to the
Laplacian, scaled by X2, and is defined, in general, as

Lpnl =
∑
ν∈Q

gν
(
pnl+ν − pnl

)
. (55)

Here, the set Q ∈ Z3\0 represents the stencil of points around
the operating location of the scheme from which neighbouring
values are drawn, and the scalars gν are the associated scheme
coefficients. The dimensionless parameter λ = cT/X is often
referred to as the Courant number for the scheme [34].

There is a wide variety of schemes, each characterised by
a particular choice of stencil Q and associated coefficients
gν—see, e.g., [37] for a catalogue of options. In all cases of
interest, the scheme stencil and coefficients exhibit symmetry

with respect to the three coordinate directions: if ν ∈ Q,
with associated coefficient gν then any permutation ν̃ of ν,
under possible changes in sign, is also in Q, and gν̃ = gν .
For consistency with the 3D Laplacian, the coefficients must
satisfy

∑
ν∈Q gν |ν|2 = 6.

The basic Laplacian approximation defined by

Q = {q ∈ Z3\0|‖q‖1 = 1} g[1 0 0] = 1 (56)

is a popular choice, leading, when employed in (54), to the
so-called seven-point scheme, the simplest possible scheme
for the 3D wave equation; it is stable under the condition
λ ≤ 1/

√
3. Another more elaborate scheme [37], with fourth-

order accuracy in space and time is described by

Q = {[1 0 0], [1 1 0], [2 0 0], [1 1 1], [2 1 0]}

g[1 0 0] =
2

15
+
λ2

9
g[1 1 0] =

8

5
− 8λ2

9
g[2 0 0] =

1

5
− λ2

9

g[1 1 1] = − 4

15
+
λ2

3
g[2 1 0] = −2

3
+

5λ2

9
. (57)

In this case, the scheme (54) is stable under the condition
0.516 < λ ≤ 0.897.

Fig. 5: Relative numerical phase velocities, as a function of normalised
wavenumber k̃, for various angles of propagation (as indicated), chosen to
indicate best and worst cases. Left: for the simple scheme with coefficients
as defined in (56), and right: for the fourth-order accurate scheme with
coefficients as given in (57). The 2% error threshold is indicated as a dashed
line.

A. Numerical Dispersion

The dispersive behaviour of any such scheme may be
characterised in terms of a dispersion relation ω = ω (k),
which is obtained by examining harmonic solutions of the
form pnl = ej(−ωnT+k·lX), for wave vectors over the dis-
crete range ‖k‖∞ ≤ π/X . The numerical phase velocity
vphase (k) = ω/|k| is generally dependent on the wave vector,
and thus direction dependent, and, in particular, is not equal
to c, the phase velocity for plane-wave solutions to the wave
equation. It is useful to show comparisons of the relative phase
velocity vphase (k) /c for the two aforementioned schemes
operating at their respective stability limits, as a function of
normalised wave vector k̃ = Xk, where

k̃ = k̃[sin(φk) cos(θk) sin(φk) sin(θk) cos(φk)] . (58)

Here, k̃ is the normalised wavenumber, and θk and φk are
the azimuth/inclination angle pair defining the direction of
propagation of a plane wave. See Figure 5, showing the
numerical phase velocities for the two schemes described in
this article. In particular, note that the phase velocity exhibits
a high degree of variation for the simple scheme defined by
coefficient choice (56), reaching an error of 2% at k̃ = 0.27π
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whereas the variation is greatly decreased in the case of the
fourth-order scheme given by the choice (57), and the 2%
threshold is reached at k̃ = 0.65π.

For the remainder of this article, except when indicated
otherwise, the scheme defined by (57) will be used, at the
maximal Courant number λ = 0.897.

B. Source Terms and Input Filtering

The dispersion analysis presented above neglects the pres-
ence of the source term. A useful approach to such an analysis,
including sources, is to make use of so-called modified equa-
tion techniques [38], [39]. Only a very abbreviated treatment
is presented here—see [37] for an in-depth presentation. First
assume that the grid function pnl represents samples of an
underlying continuous function p† (x, t), at x = lX and
t = nT . Expanding in Taylor series leads, in the case of
the simple source-free scheme (54) defined by the coefficients
(56), and using constant λ, to the modified equation(

1

c2
∂2t −∆

)
p† = O(T 2) . (59)

The modified equation differs from the wave equation by a
term with O(T 2) in the time step T , and the solution is a
second-order accurate approximation. In the case of the fourth-
order scheme, of coefficients given by (57), the corresponding
modified equation is(

1 +
T 2

12

(
∂2t + c2∆

))
︸ ︷︷ ︸

G

(
1

c2
∂2t −∆

)
p† = O(T 4) , (60)

which differs from the wave equation by a term in O(T 4),
leading to a fourth-order accurate solution. It also includes an
additional operator, written above as G, which approximates
the identity to second order in T . It is this additional operation
which must be included in a full model of the inhomogeneous
wave equation in (13). Indeed, consider the scheme

pn+1
l − 2pnl + pn−1l − λ2Lpnl − T 2f̄nl = 0 , (61)

where f̄ is some approximation to Gf , accurate to at least
second order in T , and thus f̄ = Gf + O(T 2). Again
expanding in Taylor series,

G

((
1

c2
∂2t −∆

)
p† − f

)
= O(T 4) (62)

and, because G = O(1), fourth-order accuracy follows; due
to the nature of the operator G, one would expect such a
correction to be of importance in the high frequency range. The
operator G, consisting of both spatial and temporal differential
operators, can be employed a priori to the source term f , if
it is of a known form. A further simplification is to use G u
1 + T 2

6 ∂
2
t , eliminating the need for spatial differentiation of

the source term, but reducing accuracy to second order. This
approach is taken in the remainder of this article. If the time
dependence of the source term is not known a priori, then a
good further discrete-time approximation is

f̄nl = fnl +
1

6

(
fn+1
l − 2fnl + fn−1l

)
, (63)

which may be used as pre-filtering applied to the temporally-
varying factors in the sampled time series fnl , and an illustra-
tive example appears in Section VI-A.

C. Output Interpolation and Receivers

The problem of pointwise receiver design is dual to that
presented here for a source, and is not presented here in detail.
Drawing a value for the pressure p from the solution to (2)
at a location x may be written, formally, through the use of a
Dirac delta function, as

pout (t) = p (x, t) =

∫∫∫
D
δ(3) (x′ − x) p (x′, t) dx′ . (64)

By reciprocity, all of the approximant types presented in
Section IV may equally well be used as interpolants in order
to draw output from a particular location on the grid; in this
article, only omnidirectional output will be used. Consider a
receiver located at absolute coordinates xR. As in the case of
the source, the receiver location may be written uniquely in
terms of a nearest grid location lR and fractional index ξR
as xR = X (lR + ξR). Employing the procedures in Section
IV, with lR and ξR in place of lS and ξS , for an interpolant
defined over B, with coefficients bl′ , l′ ∈ B, omnidirectional
output pnR at the receiver may be drawn as

pnR = X3
∑
l′∈B

bl′p
n
l−lR−l′ . (65)

Note the factor X3, which follows from consistency with the
expression in the continuous case from (64), with x = xR.

VI. NUMERICAL RESULTS

It is obviously difficult, given the large number of design
parameters, to illustrate the complete behaviour of these
families of approximants. Some features have been selected
here in order to illustrate basic properties of these methods—
these will be examined with regard to comparisons between
exact and numerically-computed transients both in the time
domain, as well as in terms of numerical source directivity
for steady sinusoidal forcing. A basic example of the use of
such approximants in a dynamic setting is also presented here.

For transient responses, forcing functions of bandlimited
Gaussian type will be used:

ψ (t) = e−σ(t−t0)
2

∗ sin (ζinπt/T )

πt
. (66)

Here, ψ represents any one component of the multipole tensors
Ψ(p), σ > 0 is a parameter determining the width of the
pulse, and t0 is a time delay chosen in all cases such that the
starting value ψ(0) is suitably small. ∗ represents the temporal
convolution operation, and 0 < ζin ≤ 1 is the normalised
bandwidth.

For directivity plots, a ramped sinusoid of the form

ψ (t) = W (t/T0) e2πjfint (67)

is used, with frequency fin, in Hz, and where a ramp function
W is used to avoid transient artefacts. In this work, the ramp
function is chosen as W (γ) = sin2 (πγ/2) for γ ≤ 1, and
W (γ) = 1 for γ > 1; for directivity plots, the ramp duration
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Fig. 6: Responses to a Gaussian pulse at a fixed distance from the source, at directions of angles θ as indicated. Solid black: exact solution. Dotted: nearest-
neighbour approximation. White: Trilinear approximation. Circles: 12th-order separable approximation. Calculated values (shown as dots) are interpolated in
time for better visibility. Simulation parameters are as given at the beginning of Section VI-A.

Fig. 7: Simulated response using prefiltering stage (63) (circles), and without
prefiltering (dashed white). The exact solution is shown in black. Simulation
parameters are as in the caption to Figure 6, and a 12th-order optimised
separable approximant is used.

is chosen as T0 = 0.725 ms. For the special case of moving
sources, as described in Section VI-D, the real part of the
signal (67) is used, with a ramp duration of two periods of
the signal.

All solutions are generated using scheme (61) with coeffi-
cients (57), over a cube-shaped region, and where c = 344 m/s
and running at 44.1 kHz, except in the case of moving sources
in Section VI-D, where coefficients (56) are used. The input
signals (66) and (67) are sampled at this rate. Simulations are
halted before reflections from the domain boundaries reach the
receiver locations. All solutions are read using a 12th-order
separable optimised omnidirectional receiver—see Sections
IV-E and V-C.

A. Monopole Responses

As a basic result, consider the transient response to a
monopole excitation, where Ψ(0) = ψ(t), as per (66), with
σ = 8 × 108 and ζin = 0.6. The scheme is excited at a
location with ξS = [− 1

2 ,−
1
2 ,−

1
2 ], and a nearest-neighbour,

trilinear and 12th-order separable approximant, optimised with
ζ = 0.7, are used. The solution is read at distances r = 0.13
m, for φ = π/2 and a variety of azimuth angles θ. See Figure
6, showing numerical results compared with the exact solution,
as given in (15). The basic expected result is that the nearest-
neighbour approximant exhibits a large phase error, seen here
as a time shift, to a degree which is highly dependent on
the direction of propagation; the trilinear response is properly
centered, but exhibits a large amplitude error. These effects are
mitigated considerably for the optimised source approximant.

In the simulations presented above, the prefiltering stage
described in Section V-B has been applied to Ψ(0). To
demonstrate the effect of such prefiltering, consider the same

Fig. 8: Top left: normalised exact solution, for the wave equation excited
by a monopole with Gaussian source strength at a distance r = 0.13
m. Normalised error sequences εn = (pnout − pnexact) /max (|pnexact|) are
shown for nearest-neighbour and trilinear approximants (top right), optimised
separable approximants, of order N as indicated (bottom left) and optimised
nonseparable approximants (bottom right). For optimised approximants, the
relative bandwidth ζ = 0.5 is used.

simulation as described above, in the case of the high-order
separable approximant to the monopole. See Figure 7, showing
the inaccuracy in both amplitude and phase when the prefilter-
ing is not applied. Prefiltering will be applied in the remaining
numerical examples presented in this article.

In the interest of examining the effect of the order of
separable and non-separable source approximants on solution
accuracy, consider the same simulation setting, but with a
much wider pulse of the form (66), with σ = 5 × 107 and
ζin = 1. Here, a direction of θ = 0◦ is used, and with
ξS = [− 1

2 ,−
1
2 ,−

1
2 ]. See Figure 8, illustrating the error in

the computed waveforms. Error is decreased by a order of
magnitude for the trilinear approximant relative to that of
the nearest-neighbour approximant. For the case of separable
approximants, further reductions in error are shown for the
cases N = 3, N = 5 and N = 6. For the nonseparable
approximant, and for the same orders N (and thus of the
same computational cost as the separable approximant), error
is reduced by approximately an order of magnitude over the
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Fig. 9: Responses to a Gaussian pulse at a fixed distance from the source, at directions of angles θ as indicated, for a dipole, with [φD, θD] = [π/2, 5π/3]
in the top row, for a lateral quadrupole with [φQ, θQ] = [π/2, π/6] and [φ̂Q, θ̂Q] = [π/2, 5π/3] in the middle row, and for a longitudinal quadrupole with
[φQ, θQ] = [π/2, π/2] and [φ̂Q, θ̂Q] = [π/2, π/2] in the bottom row. Solid black: exact solution. Dotted: nearest-neighbour approximation. White: Trilinear
approximation. Circles: separable approximation. Calculated values (shown as dots) are interpolated in time for better visibility. Simulation parameters are as
given at the beginning of Section VI-B.

same number of grid points as the separable approximant.

B. Higher-order Multipoles: Transient Responses

As might be expected, the accuracy of computed solutions
degrades with the order of the multipole source term to be
simulated. This is particularly true of nearest-neighbour and
trilinear approximants, which are unable to resolve sharp
pulses, as is evident from the simulation results presented for
the dipole, lateral quadrupole and longitudinal quadrupole in
Figure 9. In this case, the input function is as given in (66),
with σ = 8 × 108, and with ζin = 0.5, and is used as the
amplitude −F in the case of the dipole and as ψ(2) for the
quadrupoles. The solution is read at distances r = 0.13 m,
for φ = 0 and a variety of azimuth angles θ, as indicated,
with a uniform fractional grid index of ξS = [ 12 ,

1
2 ,

1
2 ]. Of

particular interest is the case of the longitudinal quadrupole,
where the nearest-neighbour approximant fails dramatically;
the optimised interpolants, which are of separable type and
order N = 8, and optimised with ζ = 0.6, track the exact
solution very closely.

C. Higher-order Multipoles: Directivity

It is also useful to examine the directivity of such approxi-
mations, particularly in the high frequency range. In the low-
frequency limit, all approximants presented here will have
the correct directivity pattern, from the consistency constraints
presented in Section IV-B. In Figure 10, directivity plots are
presented in the case of the dipole, lateral quadrupole and
longitudinal quadrupole, at fin = 5 kHz and fin = 10 kHz,
and for a fractional grid index of ξS = [0, 0,− 1

2 ]. An input
signal of the form (67) is used to drive the multipole amplitude

(−F for the dipole, and ψ(2) for the quadrupoles). At these
frequencies, and particularly at 10 kHz, large deviations in the
directivity pattern occur for the nearest-neighbour and trilinear
approximants. At 5 kHz, the numerical directivity is a better
match, except in the case of the nearest-neighbour approximant
to the longitudinal quadrupole.

As two final examples, consider the directivity of a lon-
gitudinal quadrupole at 10 kHz, under various choices of
the quadrupole angle θQ = θ̂Q, and for a fractional index
of ξS = [− 1

2 , 0,−
1
2 ]. See Figure 11, illustrating the de-

pendence of directivity on the fractional index. Though the
numerical directivity patterns should be simple rotations of
one another, considerable variation is seen in results from
the nearest-neighbour and trilinear approximants. The opti-
mised approximant with N = 8 exhibits virtually no such
variation. Similarly, to examine the effects of displacement,
consider the numerical directivity of a dipole under different
choices of the fractional index ξS , as illustrated in Figure 12,
showing a similar variation at 10 kHz. In this case, the phase
∠
(
e−jωr/cpout

)
of the approximation (removing the effects

of propagation over a distance r) is compared to the exact
phase ∠

(
e−jωr/cpexact

)
, similarly showing variation with the

fractional index.

D. Moving Monopole and Doppler Shifts

If a source is dynamic (or able to move or rotate during the
course of a simulation) then the simulation as a whole becomes
linear and time-variant. Fully frequency domain approaches
to source modeling are no longer strictly valid. Pure spatio-
temporal source designs, however, remain viable. Moving
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Fig. 10: Normalised multipole directivity as a function of θ, for φ = π/2,
at 5kHz (left column) and 10 kHz (right column), for approximants to a
dipole, with [φD, θD] = [π/2, π/3], a lateral quadrupole, with [φQ, θQ] =

[π/2, π/6] and [φ̂Q, θ̂Q] = [π/2, 5π/3], and a longitudinal quadrupole, with
[φQ, θQ] = [φ̂Q, θ̂Q] = [π/2, 11π/6]. The exact directivity pattern is shown
(solid black), along with a nearest-neighbour approximation (dotted), trilinear
approximant (white) and an 8th-order separable approximant optimised with
ζ = 0.6 (circles).

sources obviously play a central role in auralisations, and it is
of interest to present a basic simulation result here.

As a simple example of the effects of such approximants
in a dynamic setting, consider a monopole source, moving
along a linear trajectory at a constant velocity relative to a
fixed receiver. The source excitation is a ramped sinusoid, at a
frequency of 1 kHz, as shown at top in Figure 13 and travels at
a velocity of c/4 m· s−1; the velocity is chosen to be relatively
high in order to illustrate Doppler shifting in the resulting
outputs, drawn using a fixed omnidirectional receiver. Results
using three different source approximants are illustrated. If
nearest neighbour truncation is used, then severe distortion in
the resulting waveform is observed, due to periodic jumps in
the source location. Such distortion is greatly minimised in
the case of the trilinear approximant, and not apparent in the
case of a 12th-order optimised approximant to the monopole.

Fig. 11: Normalised directivity plots for a longitudinal quadrupole as a
function of θ, for φQ = π/2, and for various rotations θQ, as indicated.
The exact directivity pattern is shown (solid black), along with a nearest-
neighbour approximation (dotted), trilinear approximant (white) and an 8th-
order separable approximant (circles).

Fig. 12: Normalised directivity plots (left) and phase (right) for a dipole
at 10 kHz, as a function of θ, for φ = π/2, and for various rotations
[φD, θD] = [π/2, π/3]. The exact directivity pattern is shown (solid black),
along with a nearest-neighbour approximation (dotted), trilinear approximant
(white) and an 8th-order separable approximant (circles). Results are shown
for two choices of the fractional grid index ξS , as indicated.

VII. CONCLUDING REMARKS

This article has been concerned with the accurate simulation
of source terms in FDTD schemes for the 3D wave equation.
Sources are represented here as additional forcing terms in
the 3D wave equation, and modeled as the product of an
input signal and some combination of the Dirac distribution
and its derivatives. In this way, point sources of arbitrary
directivity may be modeled. Various strategies for approx-
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Fig. 13: Moving monopole relative to fixed receiver, over a trajectory indicated
in the top panel (with z = 0 for both source and receiver), and with
ψ(0) chosen as a windowed sinusoidal function, as indicated in the second
panel. Omnidirectional output, drawn from a fixed receiver location is shown
in the case of a nearest neighbour approximation (third panel), trilinear
approximation (fourth panel) and using a 12th-order optimised approximant
(bottom panel).

imating these forcing distributions over a grid have been
presented here: nearest-neighbour and trilinear approximants,
which are relatively simple to construct, produce reasonable
results for low-frequency excitation, in terms of both the
coherence of computed responses and directivity, as is to be
expected. At higher frequencies, the behaviour of such ap-
proximants degrades considerably, and more general optimised
forms constitute an approach to obtaining improved accuracy
over a wider frequency range. The choice of approximant
is necessarily governed by the properties of the numerical
scheme used to approximate the 3D wave equation. A high-
accuracy design has been employed here in order to show
clearly the differences among approximation types, but if one
were to use a simpler design (such as, e.g., the seven-point
scheme mentioned in Section V), then such differences are
small over the usable range of the scheme (i.e., at frequencies
below which numerical dispersion becomes problematic). The

basic construction techniques presented here, however, are
independent of the particular choice of scheme.

A major benefit of a local spatio-temporal representation of
a source is the ability to render moving or rotating sources
during the course of a simulation, without the need for a
complete offline recalculation incorporating the entire room
geometry—as is the case, e.g., in methods of a global character
such as boundary element methods (BEM), for example [40].
The results in this article are geared towards allowing such
flexibility, and a basic example showing the importance of
good approximants in the case of moving sources has been
illustrated in Section VI-D. For local methods such as those
presented here, the approximant needs to be recalculated
once per time step, incurring a cost scaling with the number
of grid points over which the approximant is defined (and
possibly a linear system solution in the case of optimised
approximants). Though such a cost is not small, it is almost
certainly negligible compared to the cost of simulation of the
scheme over the entire problem domain for realistic room
volumes at typical audio sampling frequencies. Remaining
major issues, in the linear and time-varying case, are the
assessment of the perceptual effects of the approximant, and
the necessary accuracy required in order to render sources able
to move and rotate as will be required in full virtual acoustic
auralisations.

APPENDIX A
TENSOR DEFINITIONS AND IDENTITIES

A qth-order tensor Aγ may be indexed by a q vector
γ = [γ1, . . . , γq]; in the present context of 3D acoustics,
γl = 1, 2, 3, l = 1, . . . , q. A scalar element of A with index γ
will be indicated as Aγ1,...,γq ; in this work, Aγ1,...,γq can be
either a value or a differential operator.

A q-fold contracted inner product between two q tensors A
and B may be written as

A
(q)
· B =

3∑
γ1=1

. . .
3∑

γq=1

Aγ1,...,γqBγ1,...,γq (68)

and is a scalar.
Given a vector a = [a1, a2, a3], a qth-order tensor A = aq

may be constructed using q powers of the vector a, as

Aγ1,...,γq =

q∏
l=1

aγl . (69)

The following identity holds, for any vectors a and b:

(a · b)
q

= aq
(q)
· bq . (70)
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