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Abstract—One of the biggest challenges in multi-microphone
applications is the estimation of the parameters of the signal
model such as the power spectral densities (PSDs) of the sources,
the early (relative) acoustic transfer functions of the sources with
respect to the microphones, the PSD of late reverberation, and
the PSDs of microphone-self noise. Typically, the existing methods
estimate subsets of the aforementioned parameters and assume
some of the other parameters to be known a priori. This may
result in inconsistencies and inaccurately estimated parameters
and potential performance degradation in the applications using
these estimated parameters. So far, there is no method to jointly
estimate all the aforementioned parameters. In this paper, we
propose a robust method for jointly estimating all the afore-
mentioned parameters using confirmatory factor analysis. The
estimation accuracy of the signal-model parameters thus obtained
outperforms existing methods in most cases. We experimentally
show significant performance gains in several multi-microphone
applications over state-of-the-art methods.

Index Terms—Confirmatory factor analysis, dereverbera-
tion, joint diagonalization, multi-microphone, source separation,
speech enhancement.

I. INTRODUCTION

M ICROPHONE arrays (see e.g., [1] for an overview) are

used extensively in many applications, such as source

separation [2]–[6], multi-microphone noise reduction [1],

[7]–[13], dereverberation [14]–[19], sound source localiza-

tion [20]–[23], and room geometry estimation [24], [25]. All

the aforementioned applications are based on a similar multi-

microphone signal model, typically depending on the follow-

ing parameters: i) the early relative acoustic transfer functions

(RATFs) of the sources with respect to the microphones; ii)

the power spectral densities (PSDs) of the early components of

the sources, iii) the PSD of the late reverberation, and, iv) the

PSDs of the microphone-self noise. Other parameters, like the

target cross power spectral density matrix (CPSDM), the noise

CPSDM, source locations and room geometry information,

can be inferred from (combinations of) the above mentioned

parameters. Often, none of these parameters are known a

priori, while estimation is challenging. Often, only a subset

of the parameters is estimated, see e.g., [14]–[17], [19], [26]–

[30], typically requiring rather strict assumptions with respect

to stationarity and/or knowledge of the remaining parameters.

In [15], [17] the target source PSD and the late reverberation

PSD are jointly estimated assuming that the early RATFs of

the target with respect to all microphones are known and all the

remaining noise components (e.g., interferers) are stationary in

time intervals typically much longer than a time frame. In [19],

This work was supported by the Oticon Foundation and NWO, the Dutch
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[26], [31], it was shown that the method in [15], [17] may lead

to inaccurate estimates of the late reverberation PSD, when the

early RATFs of the target include estimation errors. In [19],

[26], a more accurate estimator for the late reverberation PSD

was proposed, independent of early RATF estimation errors.

The methods proposed in [27], [28] do not assume that

some noise components are stationary like in [17], but assume

that the total noise CPSDM has a constant [27] or slow-

varying [28] structure over time (i.e., it can be written as an

unknown scaling parameter multiplied with a constant spatial

structure matrix). This may not be realistic in practical acous-

tical scenarios, where different interfering sources change

their power and location across time more rapidly and with

different patterns. Moreover, these methods do not separate the

late reverberation from the other noise components and only

differentiate between the target source PSD and the overall

noise PSD. As in [17], these methods assume that the early

RATFs of the target are known. In [28], the structure of

the noise CPSDM is estimated only in target-absent time-

frequency tiles using a voice activity detector (VAD), which

may lead to erroneous estimates if the spatial structure matrix

of the noise changes during target-presence.

In [30], the early RATFs and the PSDs of all sources are es-

timated using the expectation maximization (EM) method [32].

This method assumes that only one source is active per

time-frequency tile and the noise CPSDM (excluding the

contributions of the interfering point sources) is estimated

assuming it is time-invariant. Due to the time-varying nature

of the late reverberation (included in the noise CPSDM), this

assumption is often violated. This method does not estimate

the time-varying PSD of the late reverberation, neither the

PSDs of the microphone-self noise.

While the aforementioned methods focus on estimation of

just one or several of the required model parameters, the

method presented in [4] jointly estimates the early RATFs

of the sources, the PSDs of the sources and the PSDs of the

microphone-self noise. Unlike [30], the method in [4] does not

assume single source activity per time-frequency tile and, thus,

it is applicable to more general acoustic scenarios. The method

in [4] is based on the non-orthogonal joint-diagonalization

of the noisy CPSDMs. This method unfortunately does not

guarantee non-negative estimated PSDs and, thus, the obtained

target CPSDM may not be positive semidefinite resulting in

performance degradation. Moreover, this approach does not

estimate the PSD of the late reverberation. In conclusion,

most methods only focus on the estimation of a subset of the

required model parameters and/or rely on assumptions which

may be invalid and/or impractical.
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In this paper, we propose a method which jointly estimates

all the aforementioned parameters of the multi-microphone

signal model. The proposed method is based on confirmatory

factor analysis (CFA) [33]–[36] and on the non-orthogonal

joint-diagonalization principle introduced in [4]. The combi-

nation of these two theories and the adjustment to the multi-

microphone case gives us a robust method, which is applicable

for temporally and spatially non-stationary sources. The pro-

posed method uses linear constraints to reduce the feasibility

set of the parameter space and thus increase robustness. More-

over, the proposed method guarantees positive estimated PSDs

and, thus, positive semidefinite target and noise CPSDMs.

Although generally applicable, in this manuscript, we will

compare the performance of the proposed method with state-

of-the-art approaches in the context of source separation and

dereverberation.

The remaining of the paper is organized as follows. In

Sec. II, the signal model, notation and used assumptions are

introduced. In Sec. III, we review the CFA theory and its

relation to the non-orthogonal joint diagonalization principle.

In Sec. IV, the proposed method is introduced. In Sec. V, we

introduce several constraints to increase the robustness of the

proposed method. In Sec. VI, we discuss the implementation

and practicality of the proposed method. In Sec. VII, we

conduct experiments in several multi-microphone applications

using the proposed method and existing state-of-the-art ap-

proaches. In Sec. VIII, we draw conclusions.

II. PRELIMINARIES

A. Notation

We use lower-case letters for scalars, bold-face lower-

case letters for vectors, and bold-face upper-case letters for

matrices. A matrix A can be expressed as A = [a1, · · · , am],
where ai is its i-th column. The elements of a matrix A are

denoted as aij . We use the operand tr(·) to denote the trace of a

matrix, E[·] to denote the expected value of a random variable,

diag(A) = [a11, · · · , amm]T to denote the vector formed from

the diagonal of a matrix A ∈ Cm×m, and || · ||2F to denote

the Frobenius norm of a matrix. We use Diag(v) to form a

square diagonal matrix with diagonal v. A hermitian positive

semi-definite matrix is expressed as A � 0, where A = AH

and its eigenvalues are real non-negative. The cardinality of a

set is denoted as | · |. The minimum element of a vector v is

obtained via the operation min(v).

B. Signal Model

Consider an M -element microphone array of arbitrary struc-

ture within a possibly reverberant enclosure, in which there are

r acoustic point sources (target and interfering sources). The

i-th microphone signal (in the short-time Fourier transform

(STFT) domain) is modeled as

yi(t, k)=

r∑

j=1

eij(t, k)+

r∑

j=1

lij(t, k)+vi(t, k), (1)

where k is the frequency-bin index; t the time-frame index; eij
and lij the early and late components of the j-th point source,

respectively; and vi denotes the microphone self-noise. The

early components include the line of sight and a few initial

strong reflections. The late components describe the effect of

the remaining reflections and are usually referred to as late

reverberation. The j-th early component is given by

eij(t, k) = aij(β, k)sj(t, k), (2)

where aij(β, k) is the corresponding RATF with respect to the

i-th microphone, sj(t, k) the j-th point-source at the reference

microphone, β is the index of a time-segment, which is a

collection of time-frames. That is, we assume that the source

signal can vary faster (from time-frame to time-frame) than the

early RATFs, which are assumed to be constant over multiple

time-frames (which we call a time-segment). By stacking

all microphone recordings into vectors, the multi-microphone

signal model is given by

y(t, k)=

r∑

j=1

aj(β, k)sj(t, k)
︸ ︷︷ ︸

ej(t,k)

+

r∑

j=1

lj(t, k)

︸ ︷︷ ︸

l(t,k)

+v(k) ∈ C
M×1,

(3)

where y(t, k) = [y1(t, k), · · · , yM (t, k)]T and all the other

vectors can be similarly represented. If we assume that all

sources in (3) are mutually uncorrelated and stationary within

a time-frame, the signal model of the CPSDM of the noisy

recordings is given by

Py(t, k) =

r∑

j=1

Pej
(t, k) +Pl(t, k) +Pv(k) ∈ C

M×M , (4)

where Pej
= pj(t, k)aj(β, k)a

H
j (β, k), pj = E[|sj(t, k)|

2]
is the PSD of the j-th source at the reference microphone,

Pl(t, k) the CPSDM of the late reverberation and Pv(k) is a

diagonal matrix, which has as its diagonal elements the PSDs

of the microphone-self noise. Note that pj(t, k) and Pl(t, k)
are time-frame varying, while the microphone-self noise PSDs

are typically time-invariant. The CPSDM model in (4) can be

re-written as

Py(t, k) = Pe(t, k) +Pl(t, k) +Pv(k), (5)

where Pe(t, k) = A(β, k)P(t, k)AH (β, k) and A(β, k) ∈
CM×r is commonly referred to as mixing matrix and has

as its columns the early RATFs of the sources. As we

work with RATFs, the row of A(β, k) corresponding to the

reference microphone is equal to a vector with only ones.

Moreover, P(t, k) is a diagonal matrix, where diag (P(t, k)) =
[p1(t, k), · · · , pr(t, k)]

T
.

C. Late Reverberation Model

A commonly used assumption (adopted in this paper) is that

the late reverberation CPSDM has a known spatial structure,

Φ(k), which is time-invariant but varying over frequency [14],

[17]. Under the constant spatial-structure assumption, Pl(t, k)
is modeled as [14], [17]

Pl(t, k) = γ(t, k)Φ(k), (6)
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with γ(t, k) the PSD of the late reverberation which is

unknown and needs to be estimated. By combining (5), and

(6), we obtain the final CPSDM model given by

Py(t, k)=Pe(t, k)+γ(t, k)Φ(k)+Pv(k). (7)

There are several existing methods [15], [17]–[19], [26] to

estimate γ(t, k) under the assumption that Φ(k) is known.

There are mainly two methodologies of obtaining Φ(k). The

first is to use many pre-calculated impulse responses measured

around the array as in [7]. The second is to use a model which

is based on the fact that the off-diagonal elements of Φ(k)
depend on the distance between every microphone pair. The

distances between any two microphone pairs is described by

the symmetric microphone-distance matrix D with elements

dij which is the distance between microphones i and j.

Two commonly used models for the spatial structure are the

cylindrical and spherical isotropic noise fields [10], [37]. The

cylindrical isotropic noise field is accurate for rooms where

the ceiling and the floor are more absorbing than the walls.

These models are accurate for sufficiently large rooms [10].

D. Estimation of CPSDMs Using Sub-Frames

The estimation of Py(t, k), is achieved using overlapping

multiple sub-frames. The set of all used sub-frames within the

t-th time-frame is denoted by Θt, and the number of used sub-

frames is |Θt|. We assume that the noisy microphone signals

within a time-frame are stationary and, thus, we can estimate

the noisy CPSDM using the sample CPSDM, i.e.,

P̂y(t, k) =
1

|Θt|

∑

θ∈Θt

yθ(t, k)y
H
θ (t, k), (8)

with θ the sub-frame index. Fig. 1 summarizes how we split

time using sub-frames, time-frames and time-segments.

E. Problem Formulation

The goal of this paper is to jointly estimate the parameters

A(β, k), P(t, k), γ(t, k), and Pv(k) for the β-th time-segment

of the signal model in (7) by only having estimates of the

noisy CPSDM matrices P̂y(t, k) for all time frames belonging

to the β-th time-segment and possibly having an estimate

Φ̂(k) and/or D̂. From now on, we will neglect time-frequency

indices to simplify notation wherever is necessary.

III. CONFIRMATORY FACTOR ANALYSIS

Confirmatory factor analysis (CFA) [33], [34], [36] aims at

estimating the parameters of the following CPSDM model:

Py = APAH +Pv ∈ C
M×M , (9)

where Pv = Diag([q1, · · · , qM ]T ) and P � 0. In CFA,

some of the elements in A and P are fixed such that the

remaining variables are uniquely identifiable (see below).

More specifically, let Υ and K denote the sets of the selected

row-column index-pairs of the matrices A and P, respectively,

where their elements are fixed to some known constants ãij ,

and p̃kr.

time

TF

· · ·

TF

SF

TS
· · ·· · ·

Fig. 1: Splitting time into time-segments (TS), time-frames

(TF), and sub-frames (SF).

There are several existing CFA methods (see e.g. [36], for

an overview). Most of these are special cases of the following

general CFA problem

Â, P̂, P̂v = arg min
A,P,Pv

F (P̂y,Py)

s.t. Py = APAH +Pv,

Pv = Diag([q1, · · · , qM ]T ),

qi ≥ 0, i = 1, · · · ,M,

P � 0,

aij = ãij , ∀(i, j) ∈ Υ,

pkr = p̃kr, ∀(k, r) ∈ K, (10)

with F (P̂y,Py) a cost function, which is typically one of

the following cost functions: maximum likelihood (ML), least

squares (LS), or generalized least squares (GLS). That is,

F (P̂y,Py)=







(ML): log|Py|+ tr
(

P̂yP
−1
y

)

, [34],

(LS): 1
2 ||Py − P̂y||

2
F , [36], [38],

(GLS):12 ||P̂
− 1

2

y (Py − P̂y)P̂
− 1

2

y ||2F , [39],
(11)

where Py is given in (9). Notice, that the problem in (10) is

not convex (due to the non-convex terms APAH ) and may

have multiple local minima.

There are two necessary conditions for the parameters of

the CPSDM model in (9) to be uniquely identifiable1. The

first identifiability condition states that the number of equations

should be larger than the number of unknowns [36], [40]. Since

P̂y � 0, there are M(M+1)/2 known values, while there are

Mr− |Υ| unknowns due to A, r(r+1)/2−|K| unknowns due

to P (because P � 0), and M unknowns due to Pv (because

Pv is diagonal). Therefore, the first identifiability condition is

given by [40]

M(M + 1)

2
≥ Mr +

r(r + 1)

2
− |Υ| − |K|+M. (12)

The identifiability condition in (12) is not sufficient for guar-

anting unique identifiability [36]. Specifically, for any arbitary

non-singular matrix T ∈ Cr×r, we have Py(A,P,Pv) =
Py(AT−1,TPTH ,Pv) and, therefore [34]

F (P̂y,A,P,Pv) = F (P̂y,AT−1
︸ ︷︷ ︸

Ã

,TPTH
︸ ︷︷ ︸

P̃

,Pv). (13)

This means that there are infinitly many optimal solutions

(Ã, P̃ � 0) of the problem in (10). Since there are r2 variables

1We say that the parameters of a function are uniquely identifiable if there
is one-to-one relationship between the parameters and the function value.
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in T, the second identifiability condition of the CPSDM model

in (9) states that we need to fix at least r2 of the parameters

in A and P [34], [40], i.e.,

|Υ|+ |K| ≥ r2. (14)

This second condition is necessary but not sufficient, since

we need to fix the proper parameters and not just any r2

parameters [34], [40] such that T = I. For a general full-

element P, a recipe on how to select the r2 constraints in

order to achieve unique identifiability is provided in [34].

A. Simultaneous CFA (SCFA) in Multiple Time-Frames

The β-th time-segment consists of the following |Bβ | time-

frames: t = β|Bβ | + 1, · · · , (β + 1)|Bβ|, where Bβ is the

set of the time-frames in the β-th time-segment. For ease of

notation, we can alternatively re-write this as ∀t ∈ Bβ . The

problem in (10) considered |Bβ | = 1 time-frame. Now we

assume that we estimate P̂y(t) for |Bβ | ≥ 1 time-frames

in the β-th time-segment. We also assume that ∀(ti, tj) ∈
Bβ, P̂y(ti) 6= P̂y(tj), if i 6= j. Recall that the mixing matrix

A is assumed to be static within a time-segment. Moreover,

Pv is time-invariant and, thus, shared among different time-

frames within the same time-segment. One can exploit these

two facts in order to increase the ratio between the number of

equations and the number of unknown parameters [33], [35]

and thus satisfy the first and second identifiability conditions

with less microphones. This can be done by solving the

following general simultaneous CFA (SCFA) problem [35]

Â, {P̂(t)}, P̂v= arg min
A,{P(t)},Pv

∑

∀τ∈Bβ

F (P̂y(τ),Py(τ))

s.t. Py(t) = AP(t)AH +Pv, ∀t ∈ Bβ,

Pv = Diag([q1, · · · , qM ]T ),

qi ≥ 0, i = 1, · · · ,M,

P(t) � 0, ∀t ∈ Bβ,

aij = ãij , ∀(i, j) ∈ Υ,

pkr(t) = p̃kr(t), ∀(k, r) ∈ Kt, ∀t ∈ Bβ . (15)

The CFA problem in (10) is a special case of SCFA, when

we select |Bβ | = 1. The first identifiability condition for the

SCFA problem becomes

|Bβ|
M(M+1)

2
≥Mr+|Bβ|

r(r+1)

2
−|Υ|−

∑

∀t∈Bβ

|Kt|+M. (16)

We conclude from (12) and (16) that the SCFA problem (for

|Bβ| > 1) needs less microphones compared to the problem in

(10) to satisfy the first identifiability condition, assuming both

problems have the same number of sources. Moreover, the

second identifiability condtion in the SCFA problem becomes

|Υ|+
∑

∀t∈Bβ

|Kt| ≥ r2. (17)

From (14) and (17), we conclude that the SCFA problem (for

|Bβ| > 1) satisfies easier the second identifiability condition

compared to the problem in (10), if both problems have the

same number of sources and microphones.

B. Special Case (S)CFA: P(t) is Diagonal

A special case of (S)CFA, which is more suitable for the

application at hand, is when P(t), ∀t ∈ Bβ are constrained

to be diagonal due to the signal model in (5). We refer to this

special case as the diagonal (S)CFA problem. By constraining

P(t) to be diagonal, the total number of fixed parameters in

A,P(t), ∀t ∈ Bβ is

|Υ|+
∑

∀t∈Bβ

|Kt| = |Υ|+ |Bβ |(
r2

2
−

r

2
). (18)

It has been shown in [41], [42] that in this case, and for r > 1,

the class of the only possible T is T = ΠS, where Π is a

permutation matrix and S is a scaling matrix, if the following

condition is satisfied

2κA + κZ ≥ 2(r + 1), (19)

where

Z =
[
z1 z2 · · · z|Bβ |

]
, zt = diag (P(t)) , t ∈ Bβ,

(20)

and κA, κZ are the Kruskal-ranks [41] of the matrices A and

Z, respectively. We conclude, that if (16) is satisfied, and there

are at least r2 fixed variables in A and P(t), ∀t ∈ Bβ , and the

condition in (19) is satisfied, then the parameters of (9) (for

P(t) diagonal) will be uniquely identifiable up to a possible

scaling and/or permutation.

C. Diagonal SCFA vs Non-Orthogonal Joint Diagonalization

The diagonal SCFA problem in Sec. III-B is very similar

to the joint diagonalization method in [4] apart from the two

positive semidefinite constraints that avoid improper solutions,

and which are lacking in [4]. Finally, it is worth mentioning

that the method proposed in [4] solves the scaling ambiguity

by setting aii = 1 (corresponding to a varying reference

microphone per-source), which means r fixed elements in A,

i.e., |Υ| = r. Therefore, in [4], the total number of fixed

parameters in A,P(t), ∀t ∈ Bβ is given by

|Υ|+
∑

∀t∈Bβ

|Kt| = r + |Bβ|(
r2

2
−

r

2
). (21)

By combining (21) and (17), the second identifiability condi-

tion becomes

r + |Bβ |(
r2

2
−

r

2
) ≥ r2. (22)

Note that for r ≥ 2, if |Bβ| ≥ 2, the second identifiability

condition is always satisfied, but the permutation ambiguity

still exists and needs extra steps to be resolved [4]. However,

for r = 1, the second identifiability condition is satisfied

for |Bβ | ≥ 1 and there are no permutation ambiguities. By

combining (21), and (16), the first identifiability condition for

the diagonal SCFA with |Υ| = r becomes

|Bβ|
M(M + 1)

2
≥ Mr + |Bβ|r − r +M. (23)
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IV. PROPOSED DIAGONAL SCFA PROBLEMS

In this section, we will propose two methods based on

the diagonal SCFA problem from Sec. III-B to estimate the

different signal model parameters in (7). Unlike the diagonal

SCFA problem and the non-orthogonal joint diagonalization

method in [4], the first proposed method also estimates the

late reverberation PSD. The second proposed method skips

the estimation of the late reverberation PSD and thus is more

similar to the diagonal SCFA problem and the non-orthogonal

joint diagonalization method in [4]. Since we are using the

early RATFs as columns of A, we fix all the elements of the

ρ-th row of A equal to 1, where ρ is the reference microphone

index. Thus, unlike the method proposed in [4], which uses a

varying reference microphone (i.e., aii = 1), we use a single

reference microphone (i.e., aρj = 1).

Although our proposed constraints aρj = 1 will resolve the

scaling ambiguity (described in Sec III-B), the permutation

ambiguity (described in Sec III-B) still exists and needs extra

steps to be resolved. In this paper, we do not focus on this

problem and we assume that we know the perfect permutation

matrix per time-frequency tile. The interested reader can find

more information on how to solve permutation ambiguities

in [4]–[6]. An exception occurs in the context of dereverbera-

tion where, typically, a single point source (i.e., r = 1) exists

and, therefore, a single fixed parameter in A is sufficient to

solve both the permutation and scaling ambiguities.

A. Proposed Basic Diagonal SCFA Problem

The proposed basic diagonal SCFA problem is based on

the signal model in (7), which takes into account the late

reverberation. Here we assume that we have computed a priori

Φ̂. The proposed diagonal SCFA problem is given by

Â, {P̂(t)}, P̂v, {γ̂(t)} = arg min
A,{P(t)},
Pv,{γ(t)}

∑

∀τ∈Bβ

F (P̂y(τ),Py(τ))

s.t. Py(t) = AP(t)AH + γ(t)Φ̂+Pv, ∀t ∈ Bβ

Pv = Diag([q1, · · · , qM ]T ),

qi ≥ 0, i = 1, · · · ,M,

P(t) = Diag([p1(t), · · · , pr(t)]
T ), ∀t ∈ Bβ ,

pj(t) ≥ 0, ∀t ∈ Bβ, j = 1, · · · , r,

γ(t) ≥ 0, ∀t ∈ Bβ,

aρj = 1, for j = 1, · · · , r. (24)

We will refer to the problem in (24) as the SCFArev problem.

The objective function of the SCFArev problem depends on

γ(t). This means that we have |Bβ| additional unknowns

in (23). Thus, the first identifiability condition becomes

|Bβ|
M(M + 1)

2
≥ Mr + |Bβ |r − r + |Bβ |+M. (25)

A simplified version of the SCFArev problem is obtained

when the reverberation parameter γ is omitted. This problem

therefore uses the signal model of (9) instead of (7). We will

refer to this simplified problem as the SCFAno-rev problem.

The only differences between the SCFAno-rev and the method

proposed [4], is that in the SCFAno-rev we use a fixed reference

microphone and positivity constraints for the PSDs.

Since, we have r fixed parameters in A corresponding to

the reference microphone, in both proposed methods, the total

number of fixed parameters in A and P(t), ∀t ∈ Bβ is the

same as in (21). The second identifiability condition of all

proposed methods is therefore the same as in (22).

B. SCFArev versus SCFAno-rev

Although the SCFArev method typically fits a more accurate

signal model to the noisy measurements compared to the

SCFAno-rev method, it does not necessarily guarantee a better

performance over the SCFAno-rev method. In other words,

the model-mismatch error is not the only critical factor in

achieving good performance. Another important factor is how

over-determined is the system of equations to be solved is, i.e.,

what is the ratio of knowns and unknowns. With respect to

the over-determination factor, the SCFAno-rev method is more

efficient, since it has less parameters to estimate, if Bβ is

the same in both methods. Consequently, the problem boils

down to how much is the model-mismatch error and the over-

determination. Thus, it is natural to expect that for not highly

reverberant environments, the SCFAno-rev method may perform

better than the SCFArev method, while for highly reverberant

environments the inverse may hold.

V. ROBUST ESTIMATION OF PARAMETERS

In Secs. V-A—V-E, we propose additional constraints in

order to increase the robustness of the initial versions of

the two diagonal SCFA problems proposed in Sec. IV. The

robustness is needed in order to overcome CPSDM estimation

errors and model-mismatch errors. We use linear inequality

constraints (mainly simple box constraints) on the parameters

to be estimated. These constraints limit the feasibility set of

the parameters to be estimated and avoid unreasonable values.

A less efficient alternative procedure to increase robustness

would be to solve the proposed problems with a multi-start

optimization technique such that a good local optimum will

be obtained. Note that this procedure is more computational

demanding and also (without the box constraints) does not

guarantee estimated parameters that belong in a meaningful

region of values.

A. Constraining the Summation of PSDs

If the model in (7) perfectly describes the acoustic scene,

the sum of the PSDs of the point sources, late reverberation,

and microphone self-noise at the reference microphone equals

pyρρ (where ρ is the reference microphone index and pyρρ is the

(ρ, ρ) element of Py). That is,

||diag (P) ||1 + γφρρ + qρ = pyρρ, (26)

where φρρ is the ρ-th diagonal element of Φ. In practice, the

model is not perfect and we do not know pyρρ, but an estimate

p̂yρρ. Therefore, a box constraint is used, instead of an equality

constraint. That is,

0 ≤ ||diag (P) ||1 + γφ̂ρρ + qρ ≤ δ1p̂
y
ρρ, (27)
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where δ1 is a constant which controls the underestimation or

overestimation of the PSDs. This box constraint can be used to

improve the robustness of the SCFArev problem, but cannot be

used by the SCFAno-rev problem, since it does not estimate γ. A

less tight box constraint that can be used for both SCFAno-rev,

SCFArev problems is

0 ≤ ||diag (P) ||1 ≤ δ2p̂
y
ρρ. (28)

One may see the inequality in (28) as a sparsity constraint,

natural in audio and speech processing as the number of the

active sound sources is small (typically much smaller than

the maximum number of sources, r, existing in the acoustic

scene) for a singe time-frequency tile. In this case, δ2 controls

the sparsity. A low δ2 implies large sparsity, while a large δ2
implies low sparsity. The sparsity is over frequency and time.

B. Box Constraints for the Early RATFs

Extra robustness can be achieved if the elements of the early

RATFs are box-constrained as follows:

ℜ(lij) ≤ ℜ(aij) ≤ ℜ(uij), ℑ(lij) ≤ ℑ(aij) ≤ ℑ(uij), (29)

where uij , lij are some complex-valued upper and lower

bounds, respectively2. We select the values of uij , lij based

on relative Green functions. Let us denote with fj ∈ R3×1 the

location of the j-th source, with mi the location of the i-th
microphone, and with dij = ||fj −mi||2 the distance between

the j-th source and i-th microphone. The anechoic ATF (direct

path only) at the frequency-bin k between the j-th source i-th
microphone is given by [43]

ãij(k) =
1

4πdij
exp

(
j2πfsk

K

dij
c

)

, (30)

where K is the FFT length, c is the speed of sound, and dij/c
is the time of arrival (TOA) of the j-th source to the i-th
microphone. The corresponding anechoic relative ATF with

respect to the reference microphone ρ is given by

aij(k) =
ãij(k)

ãρj(k)
=

dρj
dij

exp

(
j2πfsk

K

(dij − dρj)

c

)

, (31)

where (dij − dρj) /c is the time difference of arrival (TDOA)

of the j-th source between microphones i and ρ. What

becomes clear from (31) is that the anechoic relative ATF

depends only on the two unknown parameters dij , dρj . The

upper and lower bounds of the real part of (31) can be written

compactly using the following box inequality

−
dρj
dij

≤ ℜ (aij(k)) ≤
dρj
dij

, (32)

and similarly for the imaginary part of aij(k).
Among all the points on the circle with any constant radius

and center the middle point between microphones with indices

i and ρ, the inequality in (32) becomes maximally relaxed

for the maximum possible dρj and minimum possible dij ,

i.e., when the ratio dρj/dij becomes maximum. This happens

2An alternative method would be to constrain ||aij || with real lower and
upper bounds but that would lead to a non-linear inequality constraint and,
thus, a more complicated implementation.

when the j-th source is in the endfire direction of the two

microphones and closest to i-th microphone. In this case we

have dρj = dρi + dij and, therefore, (32) becomes

−
dρi + dij

dij
≤ ℜ (aij(k)) ≤

dρi + dij
dij

. (33)

The imaginary part of aij(k) is constrained similarly to (33).

In the inequality in (33), the parameters dρi, dij are unknown.

Now, we try to relax this inequality and find ways that are

independent of these unknown parameters.

Note that the quantity |dij − dρj |/c should not be allowed

to be greater than the sub-frame length in seconds, i.e., N/fs,

where N is the sub-frame length in samples. If it is greater than

N/fs, the signal model given in (7) is invalid, i.e., the CPSDM

of the j-th point source cannot be written as a rank-1 matrix,

because it will not be fully correlated between microphones

i, ρ. Therefore, we have

|dij − dρj |

c
≤

N

fs
⇐⇒ |dij − dρj | ≤

Nc

fs
. (34)

Note that the inequality in (34) should also hold in the endfire

direction of the two microphones, which means

dρi ≤
Nc

fs
. (35)

The inequality in (33) is maximally relaxed for the maxi-

mum possible dρi and the minimum possible dij . The max-

imum allowable dρi is given by (35). Moreover, another

practical observation is that the sources cannot be in the same

location as the microphones. Therefore, we have

dij ≥ λ, (36)

where λ is a very small distance (e.g., 0.01 m). Therefore, the

maximum range of the real part of the relative anechoic ATF

is given by

−

Nc
fs

+ λ

λ
≤ ℜ (aij(k)) ≤

Nc
fs

+ λ

λ
. (37)

The imaginary part of aij(k) is constrained similar to (37).

The above inequality is based on anechoic free-field RATFs.

In practice, we have early RATFs which include early echoes

and/or directivity patterns which means that we might want to

make the box constraint in (37) less tight.

C. Tight Box Constraints for the Early RATFs based on D̂

In Sec. V-B we proposed the box constraints in (37) based

on practical considerations without knowing the distance be-

tween sensors or between sources and sensors. In this section

we assume that we have an estimate of the distance matrix (see

Sec. II-C), D̂. Consequently we know d̂ρi and, therefore, we

can make the box constraint in (37) even tighter. Specifically,

the inequality in (33) is maximally relaxed as follows

−
d̂ρi + λ

λ
≤ ℜ (aij(k)) ≤

d̂ρi + λ

λ
. (38)

The imaginary part of aij(k) is constrained similar to (38).
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D. Box Constraints for the Late Reverberation PSD

In this section, we take into consideration the late reverbera-

tion. We can be almost certain that the following box constraint

is satisfied:

0 ≤ γ(t, k)min
(

diag(Φ̂)
)

≤ min
[

diag
(

P̂y(t, k)
)]

. (39)

This box constraint is only applicable in the SCFArev problem.

The box-constraint in (39) prevents large overestimation errors

which may result in speech intelligibility reduction in noise

reduction applications [18], [44].

E. All microphones have the same microphone-self noise PSD

Here we examine the special case where Pv(k) = q(k)I,
i.e., all microphones have the same self-noise PSD. Moreover,

since the microphone self-noise is stationary, we can be almost

certain that the following box-constraint holds

0 ≤ q(k) ≤ min
∀t∈Bβ

(

min
[

diag
(

P̂y(t)
)])

. (40)

Similar to the constraint in (39), the constraint in (40) avoids

large overestimation errors.

By having a common self-noise PSD for all microphones,

the number of parameters are reduced by M − 1, since we

have only one microphone-self noise PSD for all microphones.

Hence, the first identifiability condition for the SCFAno-rev

problem is now given by

|Bβ|
M(M + 1)

2
≥ Mr + |Bβ|r − r + 1. (41)

Similarly, the first identifiability condition for the SCFArev

problem is now given by

|Bβ |
M(M + 1)

2
≥ Mr + |Bβ|r − r + |Bβ|+ 1. (42)

VI. PRACTICAL CONSIDERATIONS

In this section, we discuss practical problems regarding the

choice of several parameters of the proposed methods and

implementation aspects. Although, we have already explained

the problem of over-determination in Sec. IV-B, in Sec VI-A,

we discuss additional ways of achieving over-determination. In

Sec. VI-B, we discuss about some limitations of the proposed

methods. Finally, in Secs. VI-C and VI-D, we discuss how to

implement the proposed methods.

A. Over-determination Considerations

Increasing the ratio of the number of equations over the

number of unknowns obviously fits better the CPSDM model

to the measurements under the assumption that the model is

accurate enough and the early RATFs do not change within a

time-segment. There are two main approaches to increase the

ratio of the number of equations over the number of unknowns.

The first approach is to reduce the number of the parameters to

be estimated while fixing the number of equations as already

explained in Sec. IV-B. In addition to the explanation provided

in IV-B, we could also reduce the number of parameters by

source counting per time-frequency tile and adapt r. However,

this is out of the scope of the present paper and here we assume

that we have a constant r in the entire time-frequency horizon

which is the maximum possible r. The second approach is to

increase the number of time-frames |Bβ| in a time-segment

and/or the number of microphones M . Increasing |Bβ | is not

practical, because typically, the acoustic sources are moving.

Thus, |Bβ | should not be too small but also not too large. Note

that |Bβ| is also effected by the time-frame length denoted

by T . If T is small we can use a larger |Bβ |, while if T
is large, we should use a small |Bβ| in order to be able to

also track moving sources. However, if we select T to be

very small, the number of sub-frames will be smaller and

consequently the estimation error in P̂y will be large and will

cause performance degradation.

B. Limitations of the Proposed Methods

From the identifiability conditions in (23), (25), (41) and

(42) for fixed |Bβ | and r, we can obtain the minimum

number of microphones needed to satisfy these inequalities.

Alternatively, for a fixed M and r we can obtain the min-

imum number of time-frames |Bβ | needed to satisfy these

inequalities. Finally, for a fixed M and |Bβ| we can find the

maximum number of sources r for which we can identify

their parameters (early RATFs and PSDs). Let M1, M2,

M3 and M4 the minimum number of microphones satisfying

the identifiability conditions in (23), (25), (41) and (42),

respectively. Moreover, let J1, J2, J3 and J4 the minimum

number of time-frames satisfying the identifiability conditions

in (23), (25), (41) and (42), respectively. In addition, let R1,

R2, R3 and R4 the maximum number of sources satisfying

the identifiability conditions in (23), (25), (41) and (42),

respectively. The following inequalities can be easily proved:

M3 ≤ M4, M1 ≤ M2, M4 ≤ M2, M3 ≤ M1,

J3 ≤ J4, J1 ≤ J2, J4 ≤ J2, J3 ≤ J1,

R3 ≥ R4, R1 ≥ R2, R4 ≥ R2, R3 ≥ R1.

C. Online Implementation Using Warm-Start

The estimation of the parameters is carried out for all time-

frames within one time-segment. Subsequently, in order to

have low latency, we shift the time-segment one time-frame.

For the |Bβ| − 1 time-frames in the current time-segment that

overlap with the time-frames in the previous time-segment,

the parameters are initialized using the estimates from the

corresponding |Bβ| − 1 time-frames in the previous time-

segment. The parameters of the most recent time-frame are

initialized by selecting a value that is drawn from a uniform

distribution with boundaries corresponding to the lower and

upper bound of the corresponding box constraint. Only for

the first time-segment, the early RATFs are initialized with

the r most dominant relative eigenvectors from the averaged

CPSDM over all time-frames of the first time-segment.

D. Solver

The non-convex optimization problems that we proposed

can be solved with various existing solvers within the literature

such as [45]–[48]. In this paper, we used the standard MAT-

LAB optimization toobox to solve the optimization problems
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which implements a combination of the methods in [46]–

[48]. These methods require first and sometimes second-

order derivatives of the objective function. The first-order

derivatives of the objective functions in (11) with respect to

most parameters have been obtained already in [4], [34]–[36]

without taking into account the late reverberation PSD. Thus,

here we provide only the first-order derivatives with respect

to the late reverberation PSD parameter. We have

ML:
∂F (P̂y,Py)

∂γ
= tr

(

P−1
y

(

Py − P̂y

)

P−1
y Φ̂

)

, (43)

LS:
∂F (P̂y,Py)

∂γ
= tr

((

Py − P̂y

)

Φ̂
)

, (44)

GLS:
∂F (P̂y,Py)

∂γ
= tr

(

P̂−1
y

(

Py − P̂y

)

P̂−1
y Φ̂

)

. (45)

For the second-order derivatives, we used the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) approximated Hessian [36].

VII. EXPERIMENTS

In this section, we show the performance of the proposed

methods in the context of two multi-microphone applications.

The first application is dereverberation of a single point

source (r = 1). The second application is source separation

combined with dereverberation examined in an acoustic scene

with r = 3 point sources. In this paper, we use the perfect

permutation matrix for all compared methods in the source

separation experiments. For these experiments we selected the

maximum-likelihood objective function in (11). The values

of the parameters that we selected for both applications are

summarized in Table I. All methods based on the diagonal

SCFA methodology are implemented using the online im-

plementation in Sec. VI-C. The acoustic scene we consider

for the source separation example is depicted in Fig. 2. The

acoustic scene we consider for the dereverberation example

is similar with the only difference that the music signal and

male talker sources (see Fig. 2) are not present. The room

dimensions are 7 × 5 × 4 m. The reverberation time for the

dereverberation application is selected T60 = 1 s, while for

the source separation, T60 = 0.2 and 0.6 s. The microphone

signals have a duration of 50 s and the duration of the

impulse responses used to construct the microphone signals

is 0.5 s. The microphone signals were constructed using the

image method [43]. The microphone array is circular with

a consecutive microphone distance of 2 cm. The reference

microphone is the right-top microphone in Fig. 2. Moreover,

we assume that the microphone-self noise has the same PSD

at all microphones. Finally, it is worth mentioning that the

early part of a room impulse response (see Sec. II-B) is of the

same length as the sub-frame length.

A. Performance Evaluation

We will perform two types of performance evaluations in

both applications. The first one measures the error of the

estimated parameters, while the second one measures the

performance by using the estimated parameters in a source

estimation algorithm and measure instrumental intelligibility

TABLE I: Summary of parameters used in the experiments.

Parameter Definition Value

M number of microphones 4

K FFT length 256

T time-frame length 2000 samples (0.125 s)

N sub-frame length 200 samples (0.0125 s)

ovN overlapping of sub-frames 75%

Φ̂ spatial coherence matrix spherical isotropic model

ρ reference microphone index 1

δ1
controls overestimation

underestimation
1.2

δ2 controls sparsity 1

c speed of sound 343m/s

λ
minimum possible

source-microphone distance
1 cm

fs sampling frequency 16 kHz

q mic. self noise PSD 9 ∗ 10−6

and sound quality of the estimated source waveforms. We

measure the average PSD errors of the sources, the average

PSD error of the late reverberation, and the average PSD

error of the microphone-self noise using the following three

measures [49]:

Es =
10

C(K/2 + 1)r

C∑

t=1

K/2+1
∑

k=1

r∑

j=1

∣
∣
∣
∣
log

pj(t, k)

p̂j(t, k)

∣
∣
∣
∣
(dB), (46)

El =
10

C(K/2 + 1)r

C∑

t=1

K/2+1
∑

k=1

∣
∣
∣
∣
log

γ(t, k)

γ̂(t, k)

∣
∣
∣
∣
(dB), (47)

Ev =
10

C(K/2 + 1)r

C∑

t=1

K/2+1
∑

k=1

∣
∣
∣
∣
log

q(t, k)

q̂(t, k)

∣
∣
∣
∣
(dB). (48)

We also compute the underestimates (denoted as above with

superscript un) and overestimates (denoted as above with

superscript ov) of the above averages as in [44] since a large

overestimation error in the noise PSDs and a large under-

estimation error in the target PSD typically results in large

target source distortions in the context of a noise reduction

framework [44]. On the other hand, a large underestimation

error in the noise PSDs may result in musical noise [44]. We

also evaluate the average early RATF estimation error using

the Hermitian angle measure [50] given by

EA=
1

rV

r∑

j=1

V∑

β=1

acos

(

|aHj (β, k)âj(β, k)|

||aHj (β, k)||2||âj(β, k)||2

)

(rad). (49)

If the PSD of a source in a frequency-bin is negligible for

all time-frames within a time-segment, the estimated PSD and

RATF of this source at that time-frequency tile are skipped

from the above averages.

To evaluate the intelligibility and quality of the j-th target

source signal, the estimated parameters are used to construct

a multi-channel Wiener filter (MWF) as a concatenation of a
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Fig. 2: Acoustic scene with r = 3 sources and M = 4
microphones.

single-channel Wiener filter (SWF) and a minimum variance

distortionless response (MVDR) beamformer [1]. That is,

ŵj =
p̂j

p̂j + ŵH
j,MVDRP̂j,nŵj,MVDR

ŵj,MVDR, (50)

and

ŵj,MVDR =
P̂−1

j,nâj

âHj P̂−1
j,nâj

, (51)

where

P̂j,n =
∑

∀i6=j

p̂iâiâ
H
i + γ̂Φ+ q̂I. (52)

The noise reduction of the j-th source is evaluated using

the segmental-signal-to-noise-ratio (SSNR) for the j-th source

only in sub-frames where the j-th source is active after which

we average the SSNRs over all sources. Moreover, for speech

sources, we measure the predicted intelligibility with the SIIB

measure [51], [52] and average SIIB over all speech sources.

B. Reference State-of-the-Art Dereverberation and Parameter-

Estimation Methods

For the dereverberation we first estimate the PSD of the

late reverberation using the method proposed in [19], [26].

Specifically, we first compute the Cholesky decomposition

Φ̂ = LΦL
H
Φ after which we compute the whitened estimated

noisy CPSDM as

Pw1 = L−1
Φ P̂y(L

H
Φ)−1. (53)

Next, we compute the eigenvalue decomposition Pw1 =
VRVH , where the diagonal entries of R are sorted in

descending order. The PSD of the late reverberation is then

computed as

γ̂ =
1

M − 1

M∑

i=2

Rii. (54)

Having an estimate of the late reverberation, we compute the

noise CPSDM matrix as P̂n = γ̂Φ̂+Pv and use it to estimate

the early RATF and PSD of the target in the sequel.

We estimate the early RATF of the target using the method

proposed in [8], [53]. We first compute the Cholesky de-

composition P̂n = LnL
H
n . We then compute the whitened
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Fig. 3: Dereverberation results: The proposed methods are

denoted by SCFArev1 and SCFArev2. The ref. is the reference

method reviewed in Sec. VII-B.

estimated noisy CPSDM as Pw2 = L−1
n P̂y(L

H
n )−1. Next,

we compute the eigenvalue decomposition Pw2 = VRVH ,

where the diagonal entries of R are sorted in descending order.

We compute the early RATF as

â =
LnV1

eT1 LnV1
, (55)

with e1 = [1, 0, · · · , 0]T . We improve even further the ac-

curacy of the estimated RATF by estimating the RATFs of

all time frames within each time-segment and then use the

average of these as the RATF estimate. Finally, the target PSD

is estimated as proposed in [15], [28], i.e.,

p̂ = ŵH
MVDR

(

P̂y − P̂n

)

ŵMVDR, (56)

where ŵMVDR is given in (51).

C. Dereverberation

We compare two different versions of the proposed SCFArev

problem referred to as SCFArev1 and SCFArev2. Unlike the

SCFAno-rev problem, the SCFArev problem also estimates the

late reverberation PSD and thus is more appropriate in the

context of dereverberation. Both versions use the box con-

straint for the γ parameter in (39) and the box constraint

of the early RATF in (38). Moreover, since we assume that

the microphones-self noise PSDs are all equal, both versions

will use the box constraint in (40). Both methods use the

true distance matrix D̂ = D. The SCFArev1 uses the linear

inequality in (27), while the SCFArev2 does not use a constraint

for the sum of PSDs. We also include in the comparisons the
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Fig. 4: Underestimates (with superscript un) and overestimates

(with superscript ov): The proposed methods are denoted by

SCFArev1 and SCFArev2. The ref. is the reference method

described in Sec. VII-B.

state-of-the-art approach described in Sec. VII-B (denoted as

ref.). The reference method does not estimate the microphone-

self noise PSD and we assume for the reference method that

we have a perfect estimate, i.e., Pv = qI. We consider a

single target source without interfering signals so that the

signal model in (7) reduces to

Py=p1a1a
H
1 +γΦ+qI

︸ ︷︷ ︸

Pn

. (57)

After having estimated all the model parameters for the

proposed and reference methods, the estimated parameters are

used within the MWF given in (50), which is applied to the

reverberant target source in order to enhance it.

Fig. 3 shows the results of the compared methods. It is clear

that in almost all evaluation criteria both proposed methods

are significantly outperforming the reference method, except

for the overall source PSD error Es. However, the proposed

methods have all larger intelligibility gain and better noise

reduction performance compared to the reference method for

|Bβ| ≥ 2. Fig. 4 shows the underestimates and overestimates

for the PSDs. It is clear that although the overall PSD error Es

is lower for the reference method, the proposed method has a

lower underestimation error for the target, Eun
s , and a lower

overestimation for the noise, Eov
γ , which means less distortions

to the target signal and therefore increased intelligibility.

D. Source Separation

We consider r = 3 source signals. In this acoustic scenario,

the signal model is given by

Py=Pe+γΦ+qI. (58)

First we estimate the signal model parameters. We examine

the performance of the proposed SCFAno-rev method and

the proposed methods SCFAno-rev1, SCFAno-rev2, SCFArev1,

SCFArev2. Unlike the methods SCFArev1, SCFArev2, the meth-

ods SCFAno-rev1 and SCFAno-rev2 are based on the SCFAno-rev

problem. The SCFAno-rev2 method uses the box constraints

in (28), (38) (which assumes full knowledge of D̂ = D),

and (40). We also use the method SCFAno-rev1 where the only

difference with SCFAno-rev2 is that SCFAno-rev1 uses the RATF

box constraint in (37) which does not depend on D̂. For

the reference method, we use the method proposed in [4]

(denoted as m. Parra), modified such that is as much aligned

as possible with the proposed methods. Specifically, we solved

the optimization problem of the reference method differently

compared to [4]. Unlike [4] which uses the constraints aii = 1,

we set the reference microphone row of A equal to the unity

vector, as we did in all proposed methods. In addition, instead

of the LS objective function used in [4], we used the ML

objective function as with the proposed methods. We also used

the same solver (see Sec. VI-D) for all compared methods.

Note that the authors in [4] have solved the iterative problem

using first-order derivatives only, while here we also use an

approximation of the Hessian. Finally, the extracted parameters

for both the reference and proposed methods are combined

with the MWF in (50) where for each different source signal

we use a different MWF ŵi.

1) Low reverberation time: T60 = 0.2s: In order to have a

clear visualization of the performance differences, we group

the comparisons in two figures. Fig. 5 compares all blind

methods that do not depend on D̂ or Φ̂, i.e., SCFAno-rev,

SCFAno-rev1 and the reference method (referred to as m. Parra).

Recall that the only difference between the SCFAno-rev method

and the m. Parra is the positivity constraints for the PSDs. It

is clear that using these positivity constraints improves perfor-

mance significantly. Note also that the usage of extra inequality

constraints from SCFAno-rev1 is beneficial for improving the

performance even more significantly.

In Fig. 6, we compare the best-performing SCFAno-rev1

method of Fig. 5 with SCFAno-rev2, SCFArev1 and SCFArev2.

The problems that estimate the late reverberation parameter γ
have worse estimation accuracy for the PSD of the sources

and microphone-self noise and worse predicted intelligibility

improvement compared to the rest of the proposed methods.

This is mainly due to the low reverberation time (T60 = 0.2 s)

and the large number of parameters of SCFArev1 and SCFArev2

as argued in Sec. IV-B. However, both SCFArev1 and SCFArev2

achieve a better noise reduction performance than the other

methods. Finally, it is worth noticing that the SCFAno-rev1 has

almost identical performance with the SCFArev2 method which

used the extra information of D̂ = D.

2) Large reverberation time: T60 = 0.6s: In Figs. 7 and 8,

we compare the same methods as in Fig. 5 and 6, respectively,

but with T60 = 0.6. Here we observe that the methods which

estimate γ become more accurate in RATF estimation, since

now the contribution of late reverberation is significant (see

the explanation in Sec. IV-B). Moreover, when the number

of time-frames per time-segment |Bβ | increases significantly

the methods SCFArev1 and SCFArev2 have the same predicted

intelligibility improvement compared to the other proposed

methods but have a much better noise reduction performance.

In conclusion, we observe that in both applications the pro-

posed approaches have shown remarkable robustness in highly

reverberant environments. The box constraints that we used

indeed provided estimates that are useful in both examined

applications. Specifically, the box constraints avoided large

overestimation errors in the late reverberation and microphone-

self noise PSDs and large underestimation errors for the point
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Fig. 5: Source separation results for T60 = 0.2 s: Comparison of m. Parra method and the proposed blind methods SCFAno-rev

and SCFAno-rev1.
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Fig. 6: Source separation results for T60 = 0.2 s: Comparison

of the proposed SCFAno-rev2, SCFArev1 and SCFArev2 methods

which assume knowledge of D, and the proposed blind method

denoted by SCFAno-rev1.

sources PSDs. As a result the sources were not distorted

significantly and combined with the good noise reduction

performance we achieved large predicted intelligibility gains

compared to the reference methods.

VIII. CONCLUSION

In this paper, we proposed several methods based on

the combination of confirmatory factor analysis and non-

orthogonal joint diagonalization principles for estimating

jointly several parameters of the multi-microphone signal

model. The proposed methods achieved, in most cases, a better

parameter estimation accuracy and a better performance in the

context of dereverberation and source separation compared to

existing state-of-the-art approaches. The inequality constraints

introduced to limit the feasibility set in the proposed methods

resulted in increased robustness in highly reverberant environ-

ments in both applications.
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